Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 13))

Abstract

Even when reduced to its simplest form, namely that of point sets in euclidean space, the phenomenon of genuine quasi-periodicity appears extraordinary. Although it seems unfruitful to try and define the concept precisely, the following properties may be considered as representative:

  • discreteness;

  • extensiveness;

  • finiteness of local complexity;

  • repetitivity;

  • diffractivity;

  • aperiodicity;

  • existence of exotic symmetry (optional).

Dedicated to the memory of Richard (Dick) Slansky The spirit of the universe is subtle and informs all life. Things live and die and change their forms, without knowing the root from which they come. Abundantly it multiplies; eternally it stands by itself. The greatest reaches of space do not leave its confines, and the smallest down of a bird in autumn awaits its power to assume form.

— Chuang Tzu (tr. Lin Yutang)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baake, A guide to mathematical quasicrystals, in: Quasicrystals, edited by J.B. Luck, M. Schreiber and P. Häussler (Springer, 1998 ).

    Google Scholar 

  2. M. Baake, P. Kramer, M. Schlottmann and D. Zeidler, Planar patterns with five-fold symmetry as sections of periodic structures in 4-space, Int. J. Mod. Phys. B 4 (1990) 2217–2268.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Baake, J. Hermisson and P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A: Math. Gen. 30 (1997) 3029–3056.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Baake and R.V. Moody, Self-similarities and invariant densities for model sets, in: Algebraic Methods and Theoretical Physics,edited by Y. St. Aubin (Springer, New York, 1997) in press.

    Google Scholar 

  5. M. Baake and R.V. Moody, Multi-component model sets and invariant densities, in: Aperiodic ‘87, edited by M. de Boissieu, J.-L. Verger-Gaugry and R. Currat ( World Scientific, Singapore, 1998 ) 9–20.

    Google Scholar 

  6. M. Baake and R.V. Moody, Weyl’s theorem, and invariant densities for multi-component model sets, in: Directions in Mathematical Quasicrystals, edited by M. Baake and R. V. Moody, CRM Monograph Series (AMS, Rhode Island, 2000 ) in preparation.

    Google Scholar 

  7. M. Baake and R.V. Moody, Diffractive Point Sets with Entropy, J.Phys. A: Math. Gen. 31 (1998) 9023–9039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Baake, R.V. Moody and P. Pleasants, Diffraction from visible lattice points and k-th power free integers, Journal of Discrete and Computational Geometry (1999) in press.

    Google Scholar 

  9. M. Baake, R.V. Moody and M. Schlottmann, Limit-periodic point sets as quasicrystals with p-adic internal spaces, J. Phys. A: Math. Gen. 31 (1998) 5755–5765.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Baake and M. Schlottmann, Geometric Aspects of Tilings and Equivalence Concepts, in: Proc. of the 5th Int. Conf. on Quasicrystals, edited by C. Janot and R. Mosseri ( World Scientific, Singapore, 1995 ) 15–21.

    Google Scholar 

  11. N. Bourbaki, Topology 1 ( Addison-Wesley, Reading, 1966 ).

    Google Scholar 

  12. L. Chen, R.V. Moody and J. Patera, Non-crystallographic root systems, Quasicrystals and Discrete Geometry, edited by J. Patera, Fields Institute Monographs 10 ( AMS, Rhode Island, 1998 ).

    Google Scholar 

  13. J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups 2nd Ed. (Springer, New York, Berlin, 1998 ).

    Google Scholar 

  14. S. Dworkin, Spectral theory and X-ray diffraction, J. Math. Phys. 34 (1993) 2965–2967.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. V. Elser and N.J. Sloane, A highly symmetric quasicrystal, J. Phys. A: Math. Gen. 20 (1987) 6161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory (Princeton University Press, Princeton, New Jersey, 1981 ).

    Google Scholar 

  17. F. Gähler and R. Klitzing, The diffraction pattern of self-similar tilings, in: The Mathematics of Long-Range Aperiodic Order, edited by R.V. Moody, NATO ASI Series C 489 ( Kluwer, Dordrecht, 1997 ) 141–74.

    Chapter  Google Scholar 

  18. B. Grünbaum and G.C. Shephard, Tilings and Patterns ( Freeman, New York, 1987 ).

    MATH  Google Scholar 

  19. A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995) 25–43.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Hof, Diffraction by aperiodic structures, in: The Mathematics of Long-Range Aperiodic Order, edited by R.V. Moody, NATO ASI Series C 489 ( Kluwer, Dordrecht, 1997 ) 239–68.

    Chapter  Google Scholar 

  21. A. Hof, Uniform distribution and the projection method, in: Quasicrystals and Discrete Geometry, edited by J. Patera, Fields Institute Monographs 10 AMS (1998).

    Google Scholar 

  22. A. Katz and M. Duneau, Quasiperiodic patterns and icosahedral symmetry, J. Phys. France 47 (1986) 181–96.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Kramer, Non-periodic central space filling with icosahedral symmetry using copies of seven elementary cells, Acta Cryst. A 38 (1982) 257–64.

    Article  Google Scholar 

  24. P. Kramer and R. Neri, On periodic and non-periodic space fillings of Em obtained by projection, Acta Cryst. A 40 (1984) 580–7; and Acta Cryst. A 41 (1985) 619 (Erratum).

    Google Scholar 

  25. J.C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1996) 365–376.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J.C. Lagarias, Mathematical Quasicrystals, in: Directions in Mathematical Quasicrystals, edited by M. Baake and R.V. Moody, CRM Monograph series, AMS (Rhode Island, 2000 ) in preparation.

    Google Scholar 

  27. Y. Meyer, Algebraic numbers and harmonic analysis ( North Holland, Amsterdam, 1972 ).

    MATH  Google Scholar 

  28. Y. Meyer, Quasicrystals, Diophantine approximation, and algebraic numbers, in: Quasicrystals and Beyond, edited by F. Axel and D. Gratias ( Les Éditions de Physique, Springer-Verlag, 1995 ).

    Google Scholar 

  29. R.V. Moody, Meyer sets and their duals, in: The Mathematics of Long-Range Aperiodic Order, edited by R.V. Moody, NATO ASI Series C 489 ( Kluwer, Dordrecht, 1997 ) 403–41.

    Chapter  Google Scholar 

  30. R.V. Moody, Patera, Quasicrystals and Icosians, J. Phys. Y, Q Y s. A: Math. Y Gen. 26 (1993) 2829–2853.

    Article  ADS  MATH  Google Scholar 

  31. J. Neukirch, The p-adic numbers, in: Numbers, edited by H.-D. Ebbinghaus et al. ( Springer, New York, 1990 ) 155–178.

    Google Scholar 

  32. R. Penrose, Remarks on tiling: Details of a (1 + e -I- e2)-aperiodic set, in: The Mathematics of Long-Range Aperiodic Order, edited by R.V. Moody, NATO ASI Series C 489 ( Kluwer, Dordrecht, 1997 ) 467–97.

    Chapter  Google Scholar 

  33. C. Radin, The pinwheel tilings of the plane, Annals of Mathematics 139 661–702.

    Google Scholar 

  34. C. Radin and M. Wolff, Space tilings and local isomorphism, Geometriae Dedicata 42 (1992) 355–360.

    Article  MathSciNet  MATH  Google Scholar 

  35. R.M. Robinson, Undecidability and nonperiodicity of tilings of the plane, Inv. Math. 44 (1971) 177–209.

    Article  ADS  Google Scholar 

  36. D.S. Rokshar, D.C. Wright and N.D. Mermin, Scale equivalence of quasicystallographic space groups, Phys. Rev. B 37 (1988) 8145–8149.

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Schlottmann, Cut- and-project sets in locally compact abelian groups, in: Quasicrystals and Discrete Geometry, edited by J. Patera, Fields Institute Monographs 10 ( AMS, Rhode Island, 1998 ).

    Google Scholar 

  38. M. Schlottmann, Generalized model sets and dynamical systems, to appear in: Directions in Mathematical Quasicrystals, edited by M. Baake and R.V. Moody, CRM Monograph Series ( AMS, Rhode Island, 2000 ) in preparation.

    Google Scholar 

  39. M. Senechal, Quasicrystals and geometry (Cambridge University Press, 1995 ).

    Google Scholar 

  40. B. Solomyak, Dynamics of self-similar tilings, Ergod. Th. & Dynam. Syst. 17 (1997) 695–738.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Weyl, Uber die Gleichungverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916) 313–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag France

About this paper

Cite this paper

Moody, R.V. (2000). Model Sets: A Survey. In: Axel, F., Dénoyer, F., Gazeau, JP. (eds) From Quasicrystals to More Complex Systems. Centre de Physique des Houches, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04253-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04253-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67464-1

  • Online ISBN: 978-3-662-04253-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics