Skip to main content

Abstract

The success of Milankovitch Theory — which states that ice age cycles are real and are a result of orbital forcing — has made climate cycle research thoroughly respectable. This was not the case when E. Brückner (1862–1927) pioneered climate cycles on the scale of decade-to-century, for the last 1000 years, publishing a century ago. In the last 20 years or so, Brückner’s claim that climate cycles exist at this scale has received much support. Work on solar-forced climate cycles suggests that such cycles interfere with the assessment of human-induced global warming. A portion of the general warming observed over the last century may be owing to solar activity. If so, this shows considerable sensitivity of climate to modest changes in forcing. The original Brückner cycle of 35 years is here suggested to be of tidal origin (twice the lunar perigee period). Likewise, the 1470-y Greenland cycle is proposed to be tidal in nature (as a beat between nodal and perigee cycles, effective during the summer season).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseyev VA (1990) Periodicity in current terrestrial volcanism. Geochem. Int. 27:124–127 (Transl. from Geokhimiya, 4, 599–603, 1990)

    Google Scholar 

  • Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992

    Google Scholar 

  • Beer J, Mende W, R. Stellmacher R (2000) The role of the sun in climate forcing. Quaternary Science Reviews 19, 403–415

    Article  Google Scholar 

  • Beer, J., W. Mende, and R. Stellmacher, 2000. The role of the sun in climate forcing. Quaternary Science Reviews 19:403–415

    Article  Google Scholar 

  • Berger AL, Imbrie J, Hays J, Kukla G, Saltzman B (eds) (1984) Milankovitch and Climate (Part 1). Hingham, Mass. (Reidel), pp 1–510

    Google Scholar 

  • Berger WH (1999) The 100-kyr ice-age cycle: internal oscillation or inclinational forcing? Int J Earth Sciences 88:305–316

    Article  Google Scholar 

  • Berger WH, Von Rad U (submitted) Decadal to millennial cyclicity in varves and turbitides from the Arabian Sea: Hypothesis of Tidal Origin. Global and Planetary Change.

    Google Scholar 

  • Berger WH, Bickert T, Yasuda MK, Wefer G (1996) Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of Ontong Java plateau: the Milankovitch chron. Geol Rundsch 85:466–495

    Article  Google Scholar 

  • Berger WH, Wefer G, Richter C, Lange CB, Giraudeau J, Hermelin O, and Shipboard Scientific Party (1998) The Angola-Benguela upwelling system: paleoceanographic synthesis of shipboard results from Leg 175. In: Wefer G, Berger WH, Richter C et al., Proc. ODP, Init Repts 17 5: 5 0 5 – 5 3 2

    Google Scholar 

  • Berger WH, Lange CB, Von Rad U (2000) Brückner cycles in marine varves — detection and possible significance. European Geophys. Society, Nice, March 2000 (abs.)

    Google Scholar 

  • Biondi F, Lange CB, Hughes MK, Berger WH (1997) Inter-decadal signals during the last millennium (AD 1117–1992) in the varve record of Santa Barbara basin, California. Geophys Res Letters 24(2):193–196

    Article  Google Scholar 

  • Bradley RS, Jones PD (1992) Climate Since A. D. 1500. Routledge, London, pp 1–679

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393:450–455

    Article  Google Scholar 

  • Cartwright DE (1974) Years of peak astronomical tides. Nature 248:656–657

    Article  Google Scholar 

  • Cook ER, Meko DM, Stockton CW (1997) A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States. J Climate 10:1343–1356

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science, 89:270–277

    Article  Google Scholar 

  • Currie RG (1984) Periodic (18.6-year) and cyclic (11-year) induced drought and flood in western North America. J Geophys Res 89:7215–7230

    Article  Google Scholar 

  • Currie RG (1992) Deterministic signals in tree-rings from Europe. Ann Geophysicae 10:241–253

    Google Scholar 

  • De Silva SL, Zielinski GA (1998) Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393:455–458

    Article  Google Scholar 

  • Diaz H F, Markgraf V (eds) (1992) El Niño, Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge Univ. Press, Cambridge UK, pp 1–476

    Google Scholar 

  • Dietrich G, Kalle K, Krauss W, Siedler G (1975) Allgemeine Meereskunde, Eine Einführung in die Ozeanographie. Gebrüder Bornträger, Stuttgart, pp 1–593

    Google Scholar 

  • Eddy JA (1976) The Maunder Minimum. Science 192:1189–1202

    Article  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778

    Article  Google Scholar 

  • Frenzel B (ed) (1995) Solar output and climate during the Holocene. Gustav Fischer Verlag, Stuttgart, pp 1–186

    Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the last Glacial Maximum. Quaternary Science Reviews 19:189–211

    Article  Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10-3 — to 105 -year time resolution. J Geophys Res C 102:26455–26470

    Article  Google Scholar 

  • Grove JM (1988) The Little Ice Age. Routledge, London, pp 1–498

    Book  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194:1121–1132

    Article  Google Scholar 

  • Hoyt DV, Schatten KH (1997) The Role of the Sun in Climate Change. Oxford Univ. Press, New York Oxford, pp 1–279

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation, regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. Enslow, Short Hills, New Jersey, pp 1–224

    Google Scholar 

  • Jirikowic JL, Damon PE (1994) The medieval solar activity maximum. In: Hughes MK and Diaz HF (eds) The Medieval Warm Period. Kluwer Academic, Dordrecht, pp 309–316

    Chapter  Google Scholar 

  • Jones PD, Bradley RS, Jouzel J (1996) Climatic Variations and Forcing Mechanisms ofthe Last 2000 Years. Springer-Verlag Berlin Heidelberg, pp 1–649

    Book  Google Scholar 

  • Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: Interpretation, Integration and Comparison with general circulation model control-run temperatures. The Holocene 8:455–471

    Article  Google Scholar 

  • Keeling CD, Whorf T (1997) Possible forcing of global temperature by the oceanic tides. Proc Natl Acad Sci USA 94:8321–8328

    Article  Google Scholar 

  • Köppen V, Wegener A (1924) Die Klimate der geologischen Vorzeit. Berlin

    Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Article  Google Scholar 

  • Ladurie EL (1971) Times of Feast, Times of Famine: A History of Climate since the Year 1000. (Transl. B. Bray.) Doubleday, Garden City, New York

    Google Scholar 

  • Lamb HH (1972) Climate: Present, Past and Future — Vol. l: Fundamentals and Climate Now. Methuen, London, pp 1–613

    Google Scholar 

  • Lamb HH (1982) Climate History and the Modern World. Methuen, London, pp 1–387

    Book  Google Scholar 

  • Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J Climate 9:2407–2423

    Article  Google Scholar 

  • Lean J (1997) The Sun’s variable radiation and its relevance for Earth. Ann Rev Astron Astrophys 3 5:3 3–67

    Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophysical Research Letters 22:3195–3198

    Article  Google Scholar 

  • Lowe JJ (1991) Integration of pollen and other proxy data: The Holocene paleoclimate of the British Isles and adjacent parts of Europe. In: Frenzel B, Pons A, Gläser B (eds) Evaluation of climate proxy data in relation to the European Holocene. Gustav Fischer Verlag, Stuttgart, pp 37 – 50

    Google Scholar 

  • Maddox J (1995) Natural antidote to global warming? Nature 3 77:193

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Milankovitch M(1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. Handbuch der Klimatologie, Bd 1, Teil A. Bornträger, Berlin, pp 1–176

    Google Scholar 

  • Muller RD, MacDonald GJ (2000) Ice Ages and Astronomical causes. Springer Praxis, Chichester, pp 1–318

    Google Scholar 

  • Munk WH, Wunsch C (1998) Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010

    Article  Google Scholar 

  • Mysak LA, Venegas SA (1998) Decadal climate oscillations in the Arctic: A new feedback loop for atmos- phere-ice-ocean interactions. Geophys Res Letters 25:3607–3610

    Article  Google Scholar 

  • Penck A, Brückner E (1901–1909) Die Alpen im Eiszeitalter. 3 vols, Tauchnitz, Leipzig, pp 1–1199

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D and 16 others (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Plaut Ghil M, Vautard R (1995) Interannual and interdecadal variability in 335 years of central England temperature. Science 268:710–713

    Article  Google Scholar 

  • Rotberg RI, Rabb TK (eds) (1981) Climate and History. Princeton University Press, Princeton New Jersey, pp 1–280

    Google Scholar 

  • Rowley-Conwy P (1985) The origin of agriculture in Denmark: a review of some theories. J Danish Archaelogy 4:188–195

    Google Scholar 

  • Rossignol-Strick M (1985) Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeogr, Palaeoclimat, Palaeoecol 49:237–263

    Article  Google Scholar 

  • Schneider SH, Londer R (1984) The Coevolution of Climate and Life. Sierra Club Books, San Francisco, pp 1–563

    Google Scholar 

  • Schulz M, Berger WH, Sarnthein M, Grootes PM (1999) Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys Res Letters 26:3385–3388

    Article  Google Scholar 

  • Schwarzacher W (1993) Cylostratigraphy and the Milankovitch Theory. Elsevier, Amsterdam London, pp 1–225

    Google Scholar 

  • Shaffer JA, Cerveny RS, Balling RC (1997) Polar temperature sensitivity to lunar forcing? Geophys Res Letters 24:29–32

    Article  Google Scholar 

  • Sjöberg B, Stigebrand A (1992) Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep Sea Research 39:269–291

    Article  Google Scholar 

  • Stehr N, Von Storch H (eds) (2000) Eduard Brückner The Sources and Consequences of Climate Change and Climate Variability in Historical Times. Kluwer Academic, Dordrecht, pp 1–338

    Google Scholar 

  • Stuiver M, Braziunas TF (1993) Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3:289–305

    Article  Google Scholar 

  • Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role ofthe sun, ocean and volcanoes. Quaternary Res 44:341–354

    Article  Google Scholar 

  • Vos H, Sanchez A, Zolitschka B, Brauer A, Negendank JFW (1997) Solar activity variations recorded in varved sediments from the Crater Lake of Holzmaar — a maar lake in the Westeifel volcanic field, Germany. Surveys in Geophysics 18:163–182

    Article  Google Scholar 

  • Wigley TML, Raper SCB (1990) Natural variability of the climate system and detection of the greenhouse effect. Nature 344:324–327

    Article  Google Scholar 

  • Wood FJ (1986) Tidal Dynamics. Reidel, Dordrecht

    Google Scholar 

  • Wunsch C (2000) Moon, tides and climate. Nature 405:743–744

    Article  Google Scholar 

  • Yiou P, Jouzel J, Johnsen S, Rognvaldsson OE (1995) Rapid oscillations in Vostok and GRIP ice cores. Geophys Res Letters 22:2179–2182

    Article  Google Scholar 

  • Zvelebil M (1996) The agricultural frontier and the transition to farming in the circum-Baltic region. In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia. Univ. College London Press, London, pp 323–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, W.H., Pätzold, J., Wefer, G. (2002). A Case for Climate Cycles: Orbit, Sun and Moon. In: Wefer, G., Berger, W.H., Behre, KE., Jansen, E. (eds) Climate Development and History of the North Atlantic Realm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04965-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04965-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07744-9

  • Online ISBN: 978-3-662-04965-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics