Skip to main content

Physical Properties and Atmospheric Reactivity of Aqueous Sea Salt Micro-Aerosols

  • Chapter
Water in Confining Geometries

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

  • 519 Accesses

Summary

Aqueous sea salt micro-aerosols play an important role in the heterogenous chemistry of the lower marine troposphere both in polluted and in remote areas. In particular, reactions with gases such as ozone or OH radicals leading to the release of molecular chlorine have been intensely studied, both experimentally and theoretically. Moreover, thin layers of sea water deposited on Arctic ice packs have been discovered to be a major source of reactive bromine species which destroy the surface ozone layer during polar sunrise. There is increasing evidence that the air-water interface is of a key importance in these chemical processes. Despite this, little has been known about the structure and physical properties of aqueous sea salt aerosols at a detailed, molecular level. Here, we summarize results of classical molecular dynamics, Car-Parrinello molecular dynamics and ab initio quantum chemistry calculations on concentrated aqueous sodium chloride and bromide solutions confined to cluster and slab geometries. The main questions addressed by the simulations concern the onset of NaC1 ionic solvation in water clusters, transition from clusters to slabs, structure of solvation layers and degree of ion pairing in concentrated solutions with confined geometries. A key result of the simulations is the observation that polarizable halogen anions (chloride and bromide) are present at the air-water interface of bulk solutions in amounts sufficient for the heterogenous atmospheric chemistry to take place. The calculations also reveal that bromide actually exhibits surfactant activity, i.e. its concentration at the interface is higher than in the bulk. This is in accord with the observed enhanced atmospheric reactivity of aqueous bromide compared to chloride and with SEM experiments on wetting and re-drying of NaCl/NaBr co-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Pitts, B. J. Pitts, J. N. Jr: Chemistry of the upper and lower atmosphere, Academic Press: San Diego, (2000).

    Google Scholar 

  2. R. P Wayne: Chemistry of atmospheres, Oxford University Press: New York, (2000).

    Google Scholar 

  3. C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast, C. M. Berkowitz: Nature. 394, 353 (1998).

    Article  ADS  Google Scholar 

  4. K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers, B. J. Finlayson-Pitts: Science. 279, 74 (1998).

    Article  ADS  Google Scholar 

  5. J. Hirokawa, K. Onaka, Y. Kajii, H. Akimoto: Geophys. Res. Lett. 25, 2449 (1998).

    Article  ADS  Google Scholar 

  6. E. M. Knipping et al.: Science. 288, 301 (2000).

    Article  ADS  Google Scholar 

  7. F. Pitts, B. J., J. C. Hemminger: J. Phys. Chem. A. 104, 11463 (2000).

    Article  Google Scholar 

  8. V. Glasow, R. R. Sander: Geophys. Res. Lett. 28, 247 (2001).

    Article  ADS  Google Scholar 

  9. M. O. Andreae, P. J. Crutzen: Science. 276, 1052 (1997).

    Article  Google Scholar 

  10. R. Sander, Y. Rudich, V. Glasow, R. Crutzen, P.J: Geophys. Res. Lett. 26, 2857 (1999).

    Article  ADS  Google Scholar 

  11. A. R. Ravishankara: Science. 276, 1058 (1997).

    Article  Google Scholar 

  12. V. R. Crutzen, P. J., R. Sander: Nature. 383, 327 (1996).

    ADS  Google Scholar 

  13. H. Boudries, J. W. Bottenheim: Geophys. Res. Lett. 27, 517 (2000).

    Article  ADS  Google Scholar 

  14. B. Ramacher, J. Rudolph, R. Koppmann : J. Geophys. Res. 104, 3633 (1999).

    Article  ADS  Google Scholar 

  15. P.A. Aryia, B. T. Jobson, R. Sander, H. G. W. Niki, J. F. Hopper, K. G. Anlauf: J. Geophys. Res. 103, 13 (1998).

    Google Scholar 

  16. L. Onsager, N. Samaras, N. T: J. Chem. Phys. 2, 528 (1934).

    Article  ADS  Google Scholar 

  17. N. K Adam: The Physics and Chemistry of Surfaces, Oxford University Press: London, (1941).

    Google Scholar 

  18. J. E. B. Randalls: Phys. Chem. Liq. 7,107 (1977).

    Article  Google Scholar 

  19. G. Markovich, R. Giniger, M. Levin, O. Cheshnovsky: J. Chem. Phys. 95, 9416 (1991).

    Article  ADS  Google Scholar 

  20. G. Markovich, S. Pollack, R. Giniger, O. Cheshnovsky: Reaction dynamics in clusters and condensed phases, Jortner, J. (ed.), Kluwer: Amsterdam, 13 (1994).

    Google Scholar 

  21. G. Markovich, S. Pollack, R. Giniger, O. Cheshnovsky: J. Chem. Phys. 101, 9344 (1994).

    Article  ADS  Google Scholar 

  22. L. Perera, M. L. Berkowitz: J. Chem. Phys. 95, 1954 (1991).

    Article  ADS  Google Scholar 

  23. L. Perera, M. L. Berkowitz: J. Chem. Phys. 99, 4222 (1993).

    Article  ADS  Google Scholar 

  24. L. Perera, M. L. Berkowitz: J. Chem. Phys. 100, 3085 (1993).

    Article  ADS  Google Scholar 

  25. L. S. Sremaniak, L. Perera, M. L. Berkowitz: Chem. Phys. Lett. 218, 3779 (1994).

    Article  Google Scholar 

  26. L. X. Dang, B. C. Garrett: J. Chem. Phys. 99, 2972 (1993).

    Article  ADS  Google Scholar 

  27. L. X. Dang, D. E. Smith : J. Chem. Phys. 99, 6950 (1993).

    Article  ADS  Google Scholar 

  28. L. X. Dang: J. Chem. Phys. 110, 1526 (1999).

    Article  ADS  Google Scholar 

  29. J. Caldwell, L. X. Dang, P. A. Kollman: J. Am. Chem. Soc. 112, 9144 (1990).

    Article  Google Scholar 

  30. G. Markovich, L. Perera, M. L. Berkowitz, O. Cheshnovsky: J. Chem. Phys. 105, 2675 (1996).

    Article  ADS  Google Scholar 

  31. Jr. MacKerell et al.: J. Phys. Chem. B 102, 3586 (1998).

    Article  Google Scholar 

  32. J. P. Ryckaert, G. Ciccotti, H. Berendsen, J. C: J. Comput. Phys. 23, 327 (1977).

    Article  ADS  Google Scholar 

  33. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, L. G. Pedersen: J. Chem. Phys. 103, 8577 (1995).

    Article  ADS  Google Scholar 

  34. D. A. Case et al.: AMBER 6 Univ. of Calif., San Francisco. (1999).

    Google Scholar 

  35. R. Car, M. Parrinello: Phys. Rev. Lett 55, 2471 (1985).

    Article  ADS  Google Scholar 

  36. A. D. Becke: Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  37. C. Lee, W. Yang, R. C. Parr: Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  38. N. Troullier, J. Martins: Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  39. J. Hutter, P. Ballone, M. Bernasconi, P. Focher, E. Fois, S. Goedecker, M. Parrinello, M. Tuckerman CPMD, Version 3.0 (MPI für Festkörperforschung, Stuttgart, 1997).

    Google Scholar 

  40. M. J. Frisch, et al.: Gaussian Inc. Pittsburgh, PA, (1998).

    Google Scholar 

  41. G. Makov, A. Nitzan: J. Chem. Phys. 96, 2965 (1992).

    Article  Google Scholar 

  42. G. Gregoire, M. Mons, C. Dedonder-Lardeux, C. Jouvet: Eur. Phys. J D 1, 5 (1998).

    Article  ADS  Google Scholar 

  43. C. P. Petersen, M. S. Gordon: J. Phys. Chem. A 103, 4162 (1999).

    Article  Google Scholar 

  44. P. Jungwirth: J. Phys. Chem. A 104, 145 (2000).

    Article  Google Scholar 

  45. D. J. Tobias, P. Jungwirth, M. Parrinello: J. Chem. Phys. 114, 7036 (2001).

    Article  ADS  Google Scholar 

  46. B. Lee, F. M. Richards: J. Mol. Biol. 55, 379 1971.

    Article  Google Scholar 

  47. P. Jungwirth, D. J. Tobias: J. Phys. Chem. B 104, 7702 (2000).

    Article  Google Scholar 

  48. P. Jungwirth, D. J. Tobias: J. Phys. Chem. B 105, 10468 (2001).

    Article  Google Scholar 

  49. S. Ghosal, A. Shbeeb, J. C. Hemminger: Geophys. Res. Lett. 27, 1879 (2000).

    Article  ADS  Google Scholar 

  50. O. W. Wingenter, D. R. Blake, N. J. Blake, B. C. Sive, F. S. Rowland: J. Geophys. Res. 104, 21819 (1999).

    Article  ADS  Google Scholar 

  51. F. B. Griffiths, T. S. Bates, P. K. Quinn, L. A. Clementson, J. S. Parslow: J. Geophys. Res. 104, 21649 (1999).

    Article  ADS  Google Scholar 

  52. T. Koop, A. Kapilashrami, L. T. Molina, M. J. Molina: J. Geophys. Res. 105, 26393 (2000).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungwirth, P. (2003). Physical Properties and Atmospheric Reactivity of Aqueous Sea Salt Micro-Aerosols. In: Buch, V., Devlin, J.P. (eds) Water in Confining Geometries. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05231-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05231-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05581-2

  • Online ISBN: 978-3-662-05231-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics