Skip to main content

Nucleation of Ice in Large Water Clusters: Experiment and Simulation

  • Chapter
Water in Confining Geometries

Part of the book series: Springer Series in Cluster Physics ((CLUSTER))

Summary

Experimental studies of water in greatly confined spaces carried out at the University of Michigan are reviewed. In particular, measurements of rates of homogeneous nucleation of ice in large clusters of water probed by electron diffraction are discussed. Nucleation rates were astronomically higher than any previously observed in the laboratory. Measurements of rates permit inferences to be drawn about interfacial free energies of the ice-water boundary. Diffraction patterns also show that the phase of ice formed when supercooling is deep is the metastable cubic ice. This is because the interfacial free energy for the cubic ice boundary is lower than that for the stable hexagonal phase. Moreover, it is shown that very finely divided water can be cooled substantially below the temperature at which bulk water has been proposed to freeze catastrophically. Possible reasons for small drops avoiding such a critical point are proposed. Molecular dynamics simulations of large, crystalline and deeply supercooled liquid clusters were carried out with a variety of potential functions. They indicated that, despite the disorder found in the surface layers of the crystalline clusters, this disorder was not responsible for the nonideal profiles of the Bragg reflections seen in experiments. Simulations show promise in the field of nucleation. Fully realistic simulations of the freezing of water would be much more enlightening than the traditional nucleation experiments because of the detailed accounts of the underlying cooperative molecular motions they would afford. Such simulations have proven to be elusive, partly because of the enormous demands on computer times involved. Even with advances in computer technology showing signs of overcoming that obstacle, it is not clear that a suitable interaction potential function is available for the purpose. Steps that may be necessary to resolve the problem are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. See, for example, L. S. Bartell: In: 50 Years of Electron Diffraction, International Union of Crystallography, ed. by P. Goodman (Reidel, Dordrecht, 1981), pp. 235–242.

    Google Scholar 

  2. L. S. Bartell: In: Stereochemical Applications of Gas-Phase Electron Diffraction, ed. by I. Hargittai (VCH Publishers, New York, 1988), pp. 55–83.

    Google Scholar 

  3. L. S. Bartell: Chem. Rev. 86, 492 (1986).

    Article  ADS  Google Scholar 

  4. L. S. Bartell, R. K. Heenan, M. Nagashima: J. Chem. Phys. 78, 236 (1983).

    Article  ADS  Google Scholar 

  5. L. S. Bartell, L. R. Sharkey, X. Shi: J. Amer. Chem. Soc. 110, 7006 (1988).

    Article  Google Scholar 

  6. L. S. Bartell, T. S. Dibble: J. Amer. Chem. Soc. 112, 890 (1990).

    Article  Google Scholar 

  7. See, for example, L. S. Bartell: J. Phys. Chem. 99, 1080 (1995).

    Article  Google Scholar 

  8. L. S. Bartell: Ann. Rev. Phys. Chem. 49, 43 (1998).

    Article  ADS  Google Scholar 

  9. H. R. Pruppacher, J. D. Klett: Microphysics of Clouds (D. Reidel, Dordrecht, 1978).

    Book  Google Scholar 

  10. H. R. Pruppacher: J. Atm. Sci. 52, 1924 (1995).

    Article  ADS  Google Scholar 

  11. J. M. McBride: Science 256, 814 (1992).

    ADS  Google Scholar 

  12. D. Turnbull, J. C. Fisher: J. Chem. Phys. 17, 71 (1949).

    Article  ADS  Google Scholar 

  13. D. Turnbull, B. Vonnegut: Industr. and Eng. Chem. 44, 1292 (1952).

    Article  Google Scholar 

  14. G. R. Wood, A. G. Walton: J. Appl. Phys. 41, 3027 (1970).

    Article  ADS  Google Scholar 

  15. G. T. Butorin, V. P. Skripov: Krystallografiya 17, 379 (1972).

    Google Scholar 

  16. P. Taborek: Phys. Rev. B32, 5903 (1985).

    ADS  Google Scholar 

  17. L. S. Bartell, L. Harsanyi, E. J. Valente: J. Phys. Chem. 93, 6201 (1989).

    Article  Google Scholar 

  18. L. S. Bartell: J. Phys. Chem. 96, 108 (1992).

    Article  Google Scholar 

  19. L. S. Bartell: J. Phys. Chem. 100, 8197 (1996).

    Article  Google Scholar 

  20. J. Huang, L. S. Bartell: J. Phys. Chem. 99, 3924 (1995).

    Article  Google Scholar 

  21. L. S. Bartell, R. J. French: Rev. Sci. Instrum. 60, 1223 (1989).

    Article  ADS  Google Scholar 

  22. J. W. Hovick, R. J. French, L. S. Bartell: J. Mol. Struct. 376, 59 (1995).

    Article  Google Scholar 

  23. R. D. Beck, J. W. Nibler: Chem. Phys. Lett. 148, 271 (1988).

    Article  ADS  Google Scholar 

  24. R. D. Beck, M. F. Hineman, J. W. Nibler: J. Chem. Phys. 92, 7068 (1990).

    Article  ADS  Google Scholar 

  25. G. Torchet, M. F. de Feraudy, B. Raoult: J. Chem. Phys. 103, 3074 (1995).

    Article  ADS  Google Scholar 

  26. L. S. Bartell: J. Phys. Chem. 94, 5102 (1990).

    Article  Google Scholar 

  27. L. S. Bartell and R. A. Machonkin.: J. Phys. Chem. 94, 6468 (1990).

    Article  Google Scholar 

  28. J. Gspann: In: Physics of Electronic and Atomic Collisions, ed. by S. Datz (Hemisphere, Washington, DC, 1976), pp. 29–96.

    Google Scholar 

  29. C. E. Klots: Nature 322, 222 (1987).

    Article  ADS  Google Scholar 

  30. L. S. Bartell: In Enciclopedia della Chemica, Vol. IV, ed by S. Califano (USES, Firenze, Italy 1975). pp. 448–453.

    Google Scholar 

  31. D. Kashchiev, D. Verdoes, G. M. van Rosmalen: J. Cryst. Growth 110, 373 (1991).

    Article  ADS  Google Scholar 

  32. L. S. Bartell, J. Huang: J. Phys. Chem. 98, 7455 (1994).

    Article  Google Scholar 

  33. R. Speedy, C. A. Angell: J. Chem. Phys. 65, 851, (1976).

    Article  ADS  Google Scholar 

  34. C. A. Angell: J. Phys. Chem. 97, 6339 (1993).

    Article  Google Scholar 

  35. V. P. Koverda, N. M. Bogdanov, V. P. Skripov: J. Non-Cryst. Solids 57, 203 (1983).

    Article  ADS  Google Scholar 

  36. T. Kobayashi, K. Furukawa, T. Takahashi: J. Cryst. Growth 35, 262 (1976).

    Article  ADS  Google Scholar 

  37. T. Takahashi, T. Kobayashi: J. Cryst. Growth 64, 593 (1983).

    Article  ADS  Google Scholar 

  38. E. R. Buckle: Proc. Roy. Soc. London. A261, 189 (1961).

    ADS  Google Scholar 

  39. L. Granasy: J. Non-Cryst. Solids 162, 301 (1993).

    Article  ADS  Google Scholar 

  40. L. Granasy: Mater. Sci. Eng. A178, 121 (1994).

    Google Scholar 

  41. D. Oxtoby: In: Liquids, Freezing and Glass Transition, ed. by J. P. Hansen, D. Levesque and J. Zinn-Justin (Elsevier, Amsterdam, The Netherlands, 1991), pp. 147–191.

    Google Scholar 

  42. L. S. Bartell: J. Phys. Chem. B 101, 7573 (1997).

    Google Scholar 

  43. W. Kauzmann: L’Eau Syst. Biol. Colloq. Int. C.N.R.S. 246, 63 (1975).

    Google Scholar 

  44. M. Vedamuthu, S. Singh, G. W. Robinson: J. Phys. Chem. 98, 2222 (1994)

    Article  Google Scholar 

  45. M. Vedamuthu, S. Singh, G. W. Robinson: J. Phys. Chem. 99, 9263 (1995).

    Article  Google Scholar 

  46. G. W. Robinson, S. Zhu, S. Singh, M. W. Evans: Water in Biology, Chemistry and Physics, (World Scientific, Singapore, 1996).

    Google Scholar 

  47. R. J. Speedy: Nature 380, 289 (1996).

    Article  ADS  Google Scholar 

  48. P. V. Hobbs, W. M. Ketcham: In Physics of Ice, ed. by N. Riehl (Plenum, New York, 1969).

    Google Scholar 

  49. W. B. Hillig: J. Cryst. Growth 183, 463 (1998).

    Article  ADS  Google Scholar 

  50. L. Granasy: private communications.

    Google Scholar 

  51. J. Huang, L. S. Bartell: J. Phys. Chem. (in press).

    Google Scholar 

  52. B. Pluis, D. Frenkel, J. F. van der Veen: Surf. Sci. 239, 282 (1990).

    Article  ADS  Google Scholar 

  53. H. Tanaka, R. Yamaoto, K. Koga, X. C. Zeng: Chem. Phys. Lett. 304, 378 (1999).

    Article  ADS  Google Scholar 

  54. J. P. Devlin, V. Buch: J. Phys. Chem. 99, 16534 (1995).

    Article  Google Scholar 

  55. B. Rowland, N. S. Kadagathur, J. P. Devlin, V. Buch, T Feldmann, M. J. Wojcik: J. Chem. Phys. 102, 8328 (1995).

    Article  ADS  Google Scholar 

  56. M. W. Mahoney, W. L. Jorgensen: J. Chem. Phys. 112, 9810 (2000).

    Article  Google Scholar 

  57. K. Refson: Comput. Phys. Commun. 126, 310 (2000).

    Article  ADS  MATH  Google Scholar 

  58. K. Refson: Physica B131, 256 (1985).

    Google Scholar 

  59. J. S. van Duijneveldt, D. Frenkel: J. Chem. Phys. 96, 4655 (1992).

    Article  ADS  Google Scholar 

  60. Y. Chushak, L. S. Bartell: J. Phys. Chem. A 104, 9328 (2000).

    Google Scholar 

  61. M. Sugisaki, H. Suga, S. Seki: Bull. Chem. Soc. Japan, 41, 2591 (1968).

    Article  Google Scholar 

  62. K. Ito, C. T. Moynihan, C. A. Angell: Nature, 398, 492 (1999).

    Article  ADS  Google Scholar 

  63. J. C. M. Li, P. J. Chang: J. Chem. Phys. 23, 518 (1955).

    Article  Google Scholar 

  64. T. V. Lokotosh, S. Magazni, G. Maisano, N. P. Malomuzh: Phys. Rev. E 62, 3572 (2000).

    Google Scholar 

  65. H. J. C. Berendsen, J. R. Grigera, T. P. J. Straatsma: Phys. Chem. 91, 6269 (1987).

    Article  Google Scholar 

  66. B. W. Arbuckle, P. Clancy: J. Chem. Phys. 116, 5090 (2002).

    Article  ADS  Google Scholar 

  67. L. A. Baez, P. Clancy: J. Chem. Phys. 103, 9744 (1995).

    Article  ADS  Google Scholar 

  68. I. M. S. Bvishchev, P. G. Kusalik: Phys. Rev. Lett. 73, 975 (1994).

    Article  ADS  Google Scholar 

  69. I. Borzak, P.T. Cummings: Phys. Rev. E 56, R6279 (1997).

    Article  ADS  Google Scholar 

  70. N. H. de Leeuw, S. C. Parker: Phys. Rev. B 58, 13901 (1998).

    Article  ADS  Google Scholar 

  71. P. J. van Maaren, D. van der Spoel: J. Phys. Chem. 105, 2618 (2001)

    Article  Google Scholar 

  72. M. Matsumoto, S. Saito, I. Ohmine: Nature, 414 409 (2002).

    Article  ADS  Google Scholar 

  73. S. Sastry: Nature, 414, 376 (2002).

    Article  ADS  Google Scholar 

  74. J. D. Honeycutt, H. C. Andersen: Chem. Phys. Lett. 108, 535 (1984).

    Article  ADS  Google Scholar 

  75. W. C. Swope, H. C. Andersen: Phys. Rev. B 41 7042 (1990).

    Article  ADS  Google Scholar 

  76. C. Moon, S. G. Pawley: J. Mol. Struct. 485, 479 (1999).

    Article  ADS  Google Scholar 

  77. A. Brodsky: Chem. Phys. Lett. 261, 563 (1996).

    Article  ADS  Google Scholar 

  78. L. Pauling: J. Amer. Chem. Soc. 57, 2680 (1935).

    Article  Google Scholar 

  79. B. E. Conway: In Physical Chemistry. An Advanced Treatise IXA. Ed by H. Eyring (Academic Press, New York 1970).

    Google Scholar 

  80. Conclusion drawn from inspection of the heat capacity of ice reported by W. F. Giauque, J. W. Stout: J. Amer. Chem. Soc. 58, 1144 (1936).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartell, L.S., Chushak, Y.G. (2003). Nucleation of Ice in Large Water Clusters: Experiment and Simulation. In: Buch, V., Devlin, J.P. (eds) Water in Confining Geometries. Springer Series in Cluster Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05231-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05231-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05581-2

  • Online ISBN: 978-3-662-05231-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics