Skip to main content

Enzymology and Molecular Biology of Lignin Degradation

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Global conversion of organic carbon to CO2 with concomitant reduction of molecular oxygen involves the combined metabolic activity of numerous microorganisms. The most abundant source of carbon is plant biomass, composed primarily of cellulose, hemicellulose, and lignin. Many microorganisms are capable of degrading and utilizing cellulose and hemicellulose as carbon and energy sources, however, a much smaller group of filamentous fungi has evolved with the ability to breakdown lignin, the most recalcitrant component of plant cell walls. Collectively known as white rot fungi, they possess the unique ability to efficiently degrade lignin to CO2 in order to gain access to the carbohydrate polymers of plant cell walls for use as carbon and energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akileswaran L, Alic M, Clark E, Hornick J, Gold M (1993) Isolation and transformation of uracil auxotrophs of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 23:351–356

    Article  PubMed  CAS  Google Scholar 

  • Alic M (1990) Mating system and DNA transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Diss Abstr Int B 51:3681

    Google Scholar 

  • Alic M, Gold MH (1985) Genetic recombination in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 50:27–30

    PubMed  CAS  Google Scholar 

  • Alic M, Gold M (1991) Genetics and molecular biology of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. In: Bennett J, Lasure L (eds) More gene manipulations in fungi. Academic Press, New York, pp 319–341

    Chapter  Google Scholar 

  • Alic M, Letzring C, Gold MH (1987) Mating system and basidiospore formation in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microb 53:1464–1469

    CAS  Google Scholar 

  • Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 55:406–411

    PubMed  CAS  Google Scholar 

  • Alic M, Clark EK, Kornegay JR, Gold MH (1990) Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune. Curr Genet 17:305–311

    Article  CAS  Google Scholar 

  • Alic M, Mayfield MB, Akileswaran L, Gold M (1991) Homologous transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 19:491–494

    Article  CAS  Google Scholar 

  • Alic M, Akileswaran L, Gold M (1993) Gene replacement in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Gene 136:307–311

    Article  PubMed  CAS  Google Scholar 

  • Alic M, Akileswaran L, Gold MH (1997) Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochim Biophys Acta 1338:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ander P, Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53:115–131

    Article  PubMed  CAS  Google Scholar 

  • Andrawis A, Johnson KA, Tien M (1988) Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem 263:1195–1198

    PubMed  CAS  Google Scholar 

  • Asada Y, Kimura Y, Kuwahara M, Tsukamoto A, Koide K, Oka A, Takanami M (1988) Cloning and sequencing of a ligninase gene from a lignin-degrading basidiomycete, Phanerochaete chrysosporium. Appl Microbiol Biotechnol 29:469–473

    Article  CAS  Google Scholar 

  • Asada Y, Kimura Y, Oka T, Kuwahara M (1992) Characterization of a cDNA and gene encoding a lignin peroxidase from the lignin-degrading Basidiomycete Bjerkandera adusta. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. Uni Publ, Tokyo, pp 421–426

    Google Scholar 

  • Asada Y, Ichizaki M, Watanabe A, Kuwahara M (1995a) Production, purification, and characterization of alcohol oxidase of a lignin-degrading basidiomycete, Phanerochaete chrysosporium. Kagawa Daigaku Nogakubu Gakujutsu Hokoku 47:61–70

    CAS  Google Scholar 

  • Asada Y, Watanabe A, Ohtsu Y, Kuwahara M (1995b) Purification and characterization of an aryl-alcohol oxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biosci Biotechnol Biochem 59:1339–1341

    Article  CAS  Google Scholar 

  • Assmann EM, Ottoboni LM, Ferraz A, Rodriguez J, DeMello MP (2003) Iron-responsive gene of Phanerochaete chrysosporium isolated by differential display reverse transcription polymerase chain reaction. Environ Microbiol 5:777–786

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Ciofi BS, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38:3205–3210

    Article  PubMed  CAS  Google Scholar 

  • Bang ML, Villadsen I, Sandal T (1999) Cloning and characterization of an endo-beta-l,3(4)glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Appl Microbiol Biotechnol 51:215–222

    Article  PubMed  CAS  Google Scholar 

  • Bao W, Fukushima Y, Jensen KA Jr, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew K, dos Santos G, Dumonceaux T, Charles T, Archibald F (2001) Genetic transformation of Trametes versicolor to phleomycin resistance with the dominant selectable marker shble. Appl Microbiol Biotechnol 56:201–204

    Article  PubMed  CAS  Google Scholar 

  • Baute M-A, Baute R (1984) Occurrence among macrofungi of the conversion of glucosone to cortalcerone. Phy-tochemistry 2:271–274

    Google Scholar 

  • Birch PR (1998) Targeted differential display of abundantly expressed sequences from the basidiomycete Phanerochaete chrysosporium which contain regions coding for fungal cellulose-binding domains. Curr Genet 33:70–76

    Article  PubMed  CAS  Google Scholar 

  • Birch PR, Sims PF, Broda P (1998) A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium. J Appl Microbiol 85:417–424

    Article  PubMed  CAS  Google Scholar 

  • Black AK, Reddy CA (1991) Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem Biophys Res Commun 179:428–435

    Article  PubMed  CAS  Google Scholar 

  • Blanchette R (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  CAS  Google Scholar 

  • Blanchette R, Krueger E, Haight J, Akhtar M, Akin D (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213

    Article  CAS  Google Scholar 

  • Blodig W, Doyle WA, Smith AT, Winterhalter K, Choinowski T, Piontek K (1998) Autocatalytic formation of a hydroxy group at Cβ of Trpl71 in lignin peroxidase. Biochemistry 37:8832–8838

    Article  PubMed  CAS  Google Scholar 

  • Blodig W, Smith AT, Winterhalter K, Piontek K (1999) Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys 370:86–92

    Article  PubMed  CAS  Google Scholar 

  • Bogan B, Schoenike B, Lamar R, Cullen D (1996a) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703

    PubMed  CAS  Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996b) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703

    PubMed  CAS  Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996c) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386

    PubMed  CAS  Google Scholar 

  • Bonnarme P, Jeffries T (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidase from lignin-degrading white-rot fungi. Appl Environ Microbiol 56:210–217

    PubMed  CAS  Google Scholar 

  • Bork P, Doolittle RS (1994) Drosophila kelch motif is derived from a common enzyme fold. J Mol Biol 236:1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    PubMed  CAS  Google Scholar 

  • Bourbonnais R, Leech D, Paice MG (1998) Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta 1379: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Brock BJ, Gold MH (1996) 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium: Spectral and kinetic analysis. Arch Biochem Biophys 331:31–40

    Article  PubMed  CAS  Google Scholar 

  • Brock BJ, Rieble S, Gold MH (1995) Purification and characterization of a 1,4-benzoquinone reductase from the Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 61:3076–3081

    PubMed  CAS  Google Scholar 

  • Brown A, Sims PFG, Raeder U, Broda P (1988) Multiple ligninase-related genes from Phanerochaete chrysosporium. Gene 73:77–85

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130

    PubMed  CAS  Google Scholar 

  • Brown J, Alic M, Gold M (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173:4101–4106

    PubMed  CAS  Google Scholar 

  • Call HP, Muncke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (lignozyme(R)-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Camarero S, Ruiz-Duenas FJ, Sarkar S, Martinez MJ, Martinez AT (2000) The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol Lett 191:37–43

    Article  PubMed  CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    Article  PubMed  CAS  Google Scholar 

  • Cassland P, Jonsson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi using PCR. New Phytol 152:151–158

    Article  CAS  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  PubMed  CAS  Google Scholar 

  • Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch Biochem Biophys 316:733–737

    Article  PubMed  CAS  Google Scholar 

  • Collins PJ, O’Brien MM, Dobson AD (1999) Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl Environ Microbiol 65:1343–1347

    PubMed  CAS  Google Scholar 

  • Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    Article  PubMed  CAS  Google Scholar 

  • Corcoran LM, Forsyth KP, Bianco AE, Brown GV, Kemp DJ (1986) Chromosome size polymorphisms of P. falciparum can involve deletions and are frequent in natural parasite populations. Cell 44:87–95

    Article  PubMed  CAS  Google Scholar 

  • Corcoran LM, Thompson JK, Walliker D, Kemp DJ (1988) Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53:807–813

    Article  PubMed  CAS  Google Scholar 

  • Covert S, Bolduc J, Cullen D (1992a) Genomic organization of a cellulase gene family in Phanerochaete chrysosporium. Curr Genet 22:407–413

    Article  PubMed  CAS  Google Scholar 

  • Covert S, Vanden Wymelenberg A, Cullen D (1992b) Structure, organization and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58:2168–2175

    PubMed  CAS  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Technical bulletin no 1258. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  PubMed  CAS  Google Scholar 

  • Cullen D (2002) Molecular genetics of lignin-degrading fungi and their application in organopollutant degradation. In: Kempten F (ed) The Mycota. Springer, Berlin Heidelberg New York, pp 71–90

    Google Scholar 

  • Cullen D, Kersten PJ (1996) Enzymology and molecular biology of lignin degradation. In: Bramble R, Marzluf G (eds) The Mycota III. Springer, Berlin Heidelberg New York, pp 297–314

    Google Scholar 

  • Daniel G (1994) Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS Microbiol Rev 13:199–233

    Article  CAS  Google Scholar 

  • Daniel G, Vole J, Kubatova E (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    PubMed  CAS  Google Scholar 

  • Danneel HJ, Rossner E, Zeeck A, Giffhorn F (1993) Purification and characterization of a pyranose oxidase from the basidiomycete Peniophora gigantea and chemical analyses of its reaction products. Eur J Biochem 214:795–802

    Article  PubMed  CAS  Google Scholar 

  • Dass SB, Dosoretz CG, Reddy CA, Grethlein HE (1995) Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions. Arch Microbiol 163:254–258

    Article  PubMed  CAS  Google Scholar 

  • Datta A (1992) Purification and characterization of a novel protease from solid substrate cultures of Phanerochaete chrysosporium. J Biol Chem 267:728–732

    PubMed  CAS  Google Scholar 

  • Datta A, Bettermann A, Kirk TK (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57: 1453–1460

    PubMed  CAS  Google Scholar 

  • De Boer HA, Zhang YZ, Collins C, Reddy CA (1987) Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium. Gene 60:93–102

    Article  PubMed  Google Scholar 

  • De Jong E, Cazemier AE, Field JA, de Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthe-sized de novo by the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 60:271–277

    PubMed  Google Scholar 

  • Dittmer JK, Patel NJ, Dhawale SW, Dhawale SS (1997) Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol Lett 149:65–70

    Article  CAS  Google Scholar 

  • Dosoretz C, Dass B, Reddy CA, Grethlein H (1990a) Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:3429–3434

    PubMed  CAS  Google Scholar 

  • Dosoretz CD, Chen H-C, Grethlein HE (1990b) Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:395–400

    PubMed  CAS  Google Scholar 

  • Dowd CA, Buckley CM, Sheehan D (1997) Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium. Biochem J 324:243–248

    PubMed  CAS  Google Scholar 

  • Doyle WA, Smith AT (1996) Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and haem. Biochem J 315 (Ptl):15–19

    PubMed  CAS  Google Scholar 

  • D’Souza TM, Dass SB, Rasooly A, Reddy CA (1993) Electrophoretic karyotyping of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Mol Microbiol 8:803–807

    Article  PubMed  Google Scholar 

  • Dumonceaux TJ, Bartholomew KA, Charles TC, Moukha SM, Archibald FS (1998) Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolor. Gene 210:211–219

    Article  PubMed  CAS  Google Scholar 

  • Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489

    Article  CAS  Google Scholar 

  • Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL (1993) Crystal structure of lignin peroxidase. Proc Natl Acad Sci USA 90:750–754

    Article  PubMed  CAS  Google Scholar 

  • Eggert C, Habu N, Temp U, Eriksson K-EL (1996) Cleavage of Phanerochaete chrysosporium cellobiose dehydrogenase (CDH) by three endogenous proteases. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Fakultas-Universitätsverlag, Vienna, pp 551–554

    Google Scholar 

  • Eggert C, Temp U, Eriksson K (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Article  PubMed  CAS  Google Scholar 

  • Eggert C, LaFayette PR, Temp U, Eriksson KE, Dean JF (1998) Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64:1766–1772

    PubMed  CAS  Google Scholar 

  • Eichlerova I, Homolka L (1999) Preparation and crossing of basidiospore-derived monokaryons—a useful tool for obtaining laccase and other ligninolytic enzyme higher-producing dikaryotic strains of Pleurotus ostreatus. Antonie Van Leeuwenhoek 75:321–327

    Article  PubMed  CAS  Google Scholar 

  • Eichlerova-Volakova I, Homolka L (1997) Variability of ligninolytic enzyme activities in basidiospore isolates of the fungus Pleurotus ostreatus in comparison with that of protoplast-derived isolates. Folia Microbiol 42:583–588

    Article  CAS  Google Scholar 

  • Eriksson K-E, Pettersson B (1982) Purification and partial characterization of two acidic proteases from the white rot fungus Sporotrichium pulverulentum. Eur J Biochem 124:635–642

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KE, Pettersson B, Vole J, Musilek V (1986) Formation and partial characterization of glucose-2-oxidase, a hydrogen peroxide producing enzyme in Phanerochaete chrysosporium. Appl Microbiol Biotech 23:257–262

    Article  CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328

    Article  CAS  Google Scholar 

  • Feijoo G, Rothschild N, Dosoretz C, Lema J (1995) Effects of addition of extracellular culture fluid on ligninolytic enzyme formation by Phanerochaete chrysosporium. J Biotechnol 40:21–29

    Article  CAS  Google Scholar 

  • Flournoy D, Paul J, Kirk TK, Highley T (1993) Changes in the size and volume of pore in sweet gum wood during simultaneous rot by Phanerochaete chrysosporium. Holzforschung 47:297–301

    Article  CAS  Google Scholar 

  • Forrester IT, Grabski AC, Mishra C, Kelly BD, Strickland GF, Leatham GF, Burgess RR (1990) Characterization and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate. Appl Microbiol Biotechnol 33:359–365

    Article  PubMed  CAS  Google Scholar 

  • Gabriel J, Volc J, Sedmera P, Daniel G, Kubátová E (1993) Pyranosone dehydratase from the basidiomycete Phanerochaete chrysosporium: improved purification, and identification of 6-deoxy-D-glucosone and D-xylosone reaction products. Arch Microbiol 160:27–34

    PubMed  CAS  Google Scholar 

  • Gabriel J, Volc J, Kubátová E, Palková Z, Pospfsek M (1994) A convenient laboratory procedure for the preparation of cortalcerone, a fungal antibiotic ß-pyrone. Carbohydr Res 252:297–301

    PubMed  CAS  Google Scholar 

  • Galagan JE et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859–868

    Article  PubMed  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    PubMed  CAS  Google Scholar 

  • Gaskell J, Cullen D (1993) Recent advances in the organization and regulation of lignin peroxidase genes of Phanerochaete chrysosporium. J Biotechnol 30:109–114

    Article  CAS  Google Scholar 

  • Gaskell J, Dieperink E, Cullen D (1991) Genomic organization of lignin peroxidase genes of Phanerochaete chrysosporium. Nucleic Acids Res 19:599–603

    Article  PubMed  CAS  Google Scholar 

  • Gaskell J, Vanden Wymelenberg A, Stewart P, Cullen D (1992) Method for identifying specific alleles of a Phanerochaete chrysosporium encoding a lignin peroxidase. Appl Environ Microbiol 58:1379–1381

    PubMed  CAS  Google Scholar 

  • Gaskell J, Stewart P, Kersten P, Covert S, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biol Technology 12:1372–1375

    Article  CAS  Google Scholar 

  • Gaskell J, Vanden Wymelenberg A, Cullen D (1995) Structure, inheritance, and transcriptional effects of Pcel, an insertional element within Phanerochaete chrysosporium lignin peroxidase gene lipI. Proc Natl Acad Sci USA 92:7465–7469

    Article  PubMed  CAS  Google Scholar 

  • Gessner M, Raeder U (1994) A histone promoter for expression of a phleomycin-resistance gene in Phanerochaete chrysosporium. Gene 142:237–241

    Article  PubMed  CAS  Google Scholar 

  • Gettemy JM, Li D, Alic M, Gold MH (1997) Truncated-gene reporter system for studying the regulation of manganese peroxidase expression. Curr Genet 31:519–524

    Article  PubMed  CAS  Google Scholar 

  • Gettemy JM, Ma B, Alic M, Gold MH (1998) Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl Environ Microbiol 64:569–574

    PubMed  CAS  Google Scholar 

  • Gilbertson RL (1981) North American wood-rotting fungi that cause brown rots. Mycotoaxon 12:372–416

    Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular manganese(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular hydrogen peroxide-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Manganese(II) oxidation is the principal function of the extracellular manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    Article  PubMed  CAS  Google Scholar 

  • Gold M, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    PubMed  CAS  Google Scholar 

  • Gold MH, Cheng TM, Mayfield MB (1982) Isolation and complementation studies of auxotrophic mutants of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 44:996–1000

    PubMed  CAS  Google Scholar 

  • Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular hydrogen peroxide requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362

    Article  PubMed  CAS  Google Scholar 

  • Goodwin DC, Aust SD, Grover TA (1995) Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry 34:5060–5065

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Poulter RT (2000) Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res 10:174–191

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Lajoie C, Kelly C (2003) Expression of Phanerochaete chrysosporium manganese peroxidase gene in yeast Pichia pastoris. Biotechnol Prog 19:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Guillén F, Evans CS (1994) Anisaldehyde and veratralde-hyde acting as redox cycling agents for H2O2 production by Pleurotus eryngii. Appl Environ Microbiol 60:2811–2817

    PubMed  Google Scholar 

  • Guillén F, Martinez AT, Martinez MJ (1990) Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotech 32:465–469

    Article  Google Scholar 

  • Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35:33–36

    Article  CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18

    Article  CAS  Google Scholar 

  • Hammel KE, Tien M, Kalyanaraman B, Kirk TK (1985) Mechanism of oxidative carbonα-carbon-β cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase: stoichiometry and involvement of free radicals. J Biol Chem 260:8348–8353

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83:3708–3712

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Tardone PJ, Moen MA, Price LA (1989) Biomimetic oxidation of nonphenolic lignin models by manganese(III): new observations on the oxidizability of guaiacyl and syringyl substructures. Arch Biochem Biophys 270:404–410

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Mozuch MD, Jensen KA, Kersten PJ (1994) H2O2 recycling during oxidation of the arylglycerol β-aryl ether lignin structure by ligninperoxidase and glyoxal oxidase. Biochemistry 33:13349–13354

    Article  PubMed  CAS  Google Scholar 

  • Harper DB, Buswell JA, Kennedy JT, Hamilton JTG (1990) Chloromethane, methyl donor in veratryl alcohol biosynthesis in Phanerochaete chrysosporium and other lignin-degrading fungi. Appl Environ Microbiol 56:3450–3457

    PubMed  CAS  Google Scholar 

  • Harvey PJ, Palmer JM, Schoemaker HE, Dekker HL, Wever R (1989) Pre-steady-state kinetic study on the formation of compound I and II of ligninase. Biochim Biophys Acta 994:59–63

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Nishiyama A, Shimada M (1999) Induction of L-phenylalanine ammonia-lyase and suppression of veratryl alcohol biosynthesis by exogenously added L-phenylalanine in a white-rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 179:305–309

    PubMed  CAS  Google Scholar 

  • Haylock R, Liwicki R, Broda P (1985) The isolation of mRNA from the basidiomycete fungi Phanerochaete chrysosporium and Coprinus cinereus and its in vitro translation. Appl Environ Microbiol 46:260–263

    Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78: 93–113

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Macedo ML, Ferraz A, Rodriguez J, Ottoboni LM, De Mello MP (2002) Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: differential analysis by sodium dodecyl sulfate Polyacrylamide gel electrophoresis and two-dimensional Polyacrylamide gel electrophoresis profiles. Electrophoresis 23:655–661

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidio-mycetes. Syst Biol 50:215–242

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodégradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  • Higuchi T (1993) Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotechnol 30:1–8

    Article  CAS  Google Scholar 

  • Holzbaur E, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155: 626–633

    Article  PubMed  CAS  Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212

    Article  PubMed  CAS  Google Scholar 

  • Huoponen K, Ollikka P, Kalin M, Walther I, Mantsala P, Reiser J (1990) Characterisation of lignin peroxidase-encoding genes from lignin-degrading basidiomy-cetes. Gene 89:145–150

    Article  PubMed  CAS  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001a) Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 55:563–565

    Article  PubMed  CAS  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001b) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570

    Article  PubMed  CAS  Google Scholar 

  • Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538

    PubMed  CAS  Google Scholar 

  • Jeffers MR, McRoberts WC, Harper DB (1997) Identification of a phenolic 3-O-methyltransferase in the lignin-degrading fungus Phanerochaete chrysosporium. Microbiol Reading 143:1975–1981

    Article  CAS  Google Scholar 

  • Johansson T (1994) Manganese (II) peroxidase and lignin peroxidase from the white-rot fungus Trametes versicolor. Department of Biochem Univ Lund, Lund, p 130

    Google Scholar 

  • Johansson T, Nyman PO (1993) Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. I. Isolation of enzyme forms and characterization of physical and catalytic properties. Arch Biochem Biophys 300:49–56

    Article  PubMed  CAS  Google Scholar 

  • Johansson T, Nyman PO (1995) The gene from the white-rot fungus Trametes versicolor encoding the lignin peroxidase isozyme LP7. Biochim Biophys Acta 1263:71–74

    Article  PubMed  Google Scholar 

  • Johansson T, Nyman P (1996) A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38

    Article  PubMed  CAS  Google Scholar 

  • Johansson T, Nyman PO, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol 68:2077–2080

    Article  PubMed  CAS  Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci USA 96:1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Johnson T, Li JK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291:371–378

    Article  PubMed  CAS  Google Scholar 

  • Johnson T, Pease E, Li J, Tien M (1992) Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 296: 660–666

    Article  PubMed  CAS  Google Scholar 

  • Johnston CG, Aust SD (1994) Transcription of ligninase H8 by Phanerochaete chrysosporium under nutrient nitrogen sufficient conditions. Biochem Biophys Res Commun 200:108–112

    Article  PubMed  CAS  Google Scholar 

  • Jonsson L, Nyman P (1992) Characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochimie 74:177–182

    Article  PubMed  CAS  Google Scholar 

  • Jonsson L, Nyman P (1994) Tandem lignin peroxidase genes from the fungus Trametes versicolor. Biochim Biophys Acta 218:408–412

    Google Scholar 

  • Jonsson L, Becker H, Nyman P (1994) A novel type of peroxidase gene from the white-rot fungus Trametes versicolor. Biochim Biophys Acta 1207:255–259

    Article  PubMed  CAS  Google Scholar 

  • Jonsson LJ, Saloheimo M, Penttila M (1997) Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet 32:425–430

    Article  PubMed  CAS  Google Scholar 

  • Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119

    Article  PubMed  CAS  Google Scholar 

  • Karahanian E, Corsini G, Lobos S, Vicuna R (1998) Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443:65–74

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic β-1 lignin substructure and model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1989) Oxidation of methoxylated benzyl alcohols by laccase of Coriolus versicolor in the presence of syringaldehyde. Wood Res 76:10–16

    CAS  Google Scholar 

  • Kawai S, Asukai M, Ohya N, Okita K, Ito T, Ohashi H (1999) Degradation of non-phenolic β-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxyben-zotriazole. FEMS Microbiol Lett 170:51–57

    CAS  Google Scholar 

  • Kelley RL, Reddy CA (1986) Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 166:269–274

    PubMed  CAS  Google Scholar 

  • Kempken F, Kuck U (1998) Transposons in filamentous fungi—facts and perspectives. BioEssays 20:652–659

    Article  PubMed  CAS  Google Scholar 

  • Kersten P (1990) Glyoxal oxidase of Phanerochaete chrysosporium; Its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87: 2936–2940

    Article  PubMed  CAS  Google Scholar 

  • Kersten P, Cullen D (1993) Cloning and characterization of a cDNA encoding glyoxal oxidase, a peroxide-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 90:7411–7413

    Article  PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Witek C, Vanden Wymelenberg A, Cullen D (1995) Phanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization and heterologous expression of glxl and glx2. J Bacteriol 177:6106–6110

    PubMed  CAS  Google Scholar 

  • Khindaria A, Nie G, Aust SD (1997) Detection and characterization of the lignin peroxidase compound liveratryl alcohol cation radical complex. Biochemistry 36:14181–14185

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    PubMed  CAS  Google Scholar 

  • Kim K, Leem Y, Choi HT (2002) Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration. FEMS Microbiol Lett 209:273–276

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Tien M, Johnsrud SC, Eriksson KE (1986) Lignin degrading activity of Phanerochaete chrysosporium: comparison of cellulase-negative and other strains. Enzyme Microb Technol 8:75–80

    Article  CAS  Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford HB, Gold MH (1994) Mechanism of manganese peroxidase compound II reduction: effect of organic acid chelators and pH. Biochemistry 33:8694–8701

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Hildebrand DP, Küsters VSM, Gettemy J, Mauk AG, Gold MH (1997) Site-directed mutations at phenylalanine-190 of manganese peroxidase: effects on stability, function, and coordination. Biochemistry 36:4268–4277

    Article  PubMed  CAS  Google Scholar 

  • Koduri RS, Tien M (1994) Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry 33:4225–4230

    Article  PubMed  CAS  Google Scholar 

  • Koduri RS, Tien M (1995) Oxidation of guaiacol by lignin peroxidase: role of veratryl alcohol. J Biol Chem 270: 22254–22258

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, Kita Y (1990) Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 256:15224–15230

    Google Scholar 

  • Kondo R, Iimori T, Imamura H, Nishida T (1990) Polymerization of DHP and depolymerization of DHP-glucoside by lignin oxidizing enzymes horseradish peroxidase, Phanerochaete chrysosporium lignin-peroxidase, commercial and Coriolus versicolor laccase; lignin degradation. J Biotechnol 13:181–188

    Article  CAS  Google Scholar 

  • Koths K, Halenbeck R, Moreland M (1992) Synthesis of the antibiotic cortalcerone from D-glucose using pyranose 2-oxidase and a novel fungal enzyme, aldos-2-ulose dehydratase. Carbohydr Res 232:59–75

    Article  PubMed  CAS  Google Scholar 

  • Krejci R, Homolka L (1991) Genetic mapping in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 57:151–156

    PubMed  CAS  Google Scholar 

  • Kuan IC, Tien M (1989) Phosphorylation of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem 264:20350–20355

    PubMed  CAS  Google Scholar 

  • Kuan I-C, Tien M (1993a) Glyoxylate-supported reactions catalyzed by Mn peroxidase of Phanerochaete chrysosporium: activity in the absence of added hydrogen peroxide. Arch Biochem Biophys 302:447–454

    Article  PubMed  CAS  Google Scholar 

  • Kuan I-C, Tien M (1993b) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Kullman SW, Matsumura F (1997) Identification of a novel cytochrome P-450 gene from the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 63:2741–2746

    PubMed  CAS  Google Scholar 

  • Kupfer DM, Reece CA, Clifton SW, Roe BA, Prade RA (1997) Multicellular ascomycetous fungal genomes contain more than 8000 genes. Fungal Genet Biol 21:364–372

    Article  PubMed  CAS  Google Scholar 

  • Kurek B, Kersten PJ (1995) Physiological regulation of glyoxal oxidase from Phanerochaete chrysosporium by peroxidase systems. Enzyme Microb Technol 17: 751–756

    Article  CAS  Google Scholar 

  • Kurihara H, Wariishi H, Tanaka H (2002) Chemical stress-responsive genes from the lignin-degrading fungus Phanerochaete chrysosporium exposed to dibenzo-p-dioxin. FEMS Microbiol Lett 212:217–220

    Article  PubMed  CAS  Google Scholar 

  • Kusters VSM, Kishi K, Lundell T, Gold MH (1995) The manganese binding site of manganese peroxidase: characterization of an Aspl79Asn site-directed mutant protein. Biochemistry 34:10620–10627

    Article  Google Scholar 

  • Kusters-van Someren M, Kishi K, Ludell T, Gold M (1995) The manganese binding site of manganese peroxidase: characterization of an Aspl79Asn site-directed mutant protein. Biochemistry 34:10620–10627

    Article  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Kwon SI, Anderson AJ (2001) Catalase activities of Phanerochaete chrysosporium are not coordinately produced with ligninolytic metabolism: catalases from a white-rot fungus. Curr Microbiol 42:8–11

    Article  PubMed  CAS  Google Scholar 

  • Larraya LM, Perez G, Penas MM, Baars JJ, Mikosch TS, Pisabarro AG, Ramirez L (1999) Molecular karyotype of the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 65:3413–3417

    PubMed  CAS  Google Scholar 

  • Larraya LM, Perez G, Ritter E, Pisabarro AG, Ramirez L (2000) Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 66:5290–5300

    Article  PubMed  CAS  Google Scholar 

  • Larraya LM, Idareta E, Arana D, Ritter E, Pisabarro AG, Ramirez L (2002) Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus os t rea tus. Appl Environ Microbiol 68:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Larrondo LF, Lobos S, Stewart P, Cullen D, Vicuna R (2001) Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiop-sis subvermispora and Phanerochaete chrysosporium. Appl Environ Microbiol 67:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Larrondo L, Salas L, Melo F, Vicuna R, Cullen D (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol 69:6257–6263

    Article  PubMed  CAS  Google Scholar 

  • Leisola MSA, Schmidt B, Thanei Wyss U, Fiechter A (1985) Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett 189:260–270

    Article  Google Scholar 

  • Leisola MSA, Kozulic B, Meussdoerffer F, Fiechter A (1987) Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262: 419–424

    PubMed  CAS  Google Scholar 

  • Leisola MSA, Haemmerli SD, Waldner R, Schoemaker HE, Schmidt HWH, Fiechter A (1988) Metabolism of a lignin model compound, 3,4-dimethoxybenzyl alcohol by Phanerochaete chrysosporium. Cellulose Chem Technol 22:267–277

    CAS  Google Scholar 

  • Lewis NG, Sarkanen S (1998) Lignin and lignan biosynthesis. ACS symposium series 697. ACS, Washington, DC, p436

    Book  Google Scholar 

  • Li B, Nagalla SR, Renganathan V (1996) Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol 62:1329–1335

    PubMed  CAS  Google Scholar 

  • Li B, Nagalla SR, Renganathan V (1997) Cellobiose dehydrogenase from Phanerochaete chrysosporium is encoded by two allelic variants. Appl Environ Microbiol 63:796–799

    PubMed  CAS  Google Scholar 

  • Li B, Rotsaert FA, Gold MH, Renganathan V (2000) Homologous expression of recombinant cellobiose dehydrogenase in Phanerochaete chrysosporium. Biochem Biophys Res Commun 270:141–146

    Article  PubMed  CAS  Google Scholar 

  • Li D, Alic M, Gold M (1994) Nitrogen regulation of lignin peroxidase gene transcription. Appl Environ Microbiol 60:3447–3449

    PubMed  CAS  Google Scholar 

  • Li D, Youngs HL, Gold MH (2001) Heterologous expression of a thermostable manganese peroxidase from Dichomitus squalens in Phanerochaete chrysosporium. Arch Biochem Biophys 385:348–356

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Li JK, Lam HY (1997) Improved heterologous expression of the white-rot fungal ligninase H8 by crossover linker mutagenesis. Appl Biochem Biotechnol 66:269–279

    Article  PubMed  CAS  Google Scholar 

  • Lobos S, Larrondo L, Salas L, Karahanian E, Vicuna R (1998) Cloning and molecular analysis of a cDNA and the Cs-mnpl gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene 206:185–193

    Article  PubMed  CAS  Google Scholar 

  • Lundquist K, Kirk TK (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry 17:1676

    Article  CAS  Google Scholar 

  • Ma B, Mayfield MB, Gold MH (2001) The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol 67:948–955

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Mayfield M, Gold MH (2003) Homologous expression of Phanerochaete chrysosporium manganese peroxidase using bialaphos resistance as a dominant selectable marker. Curr Genet 43:407–414

    Article  PubMed  CAS  Google Scholar 

  • Machida Y, Nakanishi T (1984) Purification and properties of pyranose oxidase from Coriolus versicolor. Agric Biol Chem 48:2463

    Article  CAS  Google Scholar 

  • Maeda Y, Kajiwara S, Ohtaguchi K (2001) Manganese peroxidase gene of the perennial mushroom Elfvingia applanata: cloning and evaluation of its relationship with lignin degradation. Biotechnol Lett 23:103–109

    Article  CAS  Google Scholar 

  • Malmström BG, Andréasson L-E, Reinhammer B (1975) The enzymes. Academic Press, New York

    Google Scholar 

  • Marquez L, Wariishi H, Dunford HB, Gold MH (1988) Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem 263:10549–10552

    PubMed  CAS  Google Scholar 

  • Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  CAS  Google Scholar 

  • Marzullo L, Cannio R, Giardina P, Santini MT, Sannia G (1995) Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J Biol Chem 270:3823–3827

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • Mayfield MB, Katsuyuki K, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60:4303–4309

    PubMed  CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  PubMed  CAS  Google Scholar 

  • Mester T, Tien M (2001) Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochem Biophys Res Commun 284:723–728

    Article  PubMed  CAS  Google Scholar 

  • Mino Y, Wariishi H, Blackburn NJ, Loehr TM, Gold MH (1988) Spectral characterization of manganese peroxidase, and extracellular heme enzyme from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. J Biol Chem 263:7029–7036

    PubMed  CAS  Google Scholar 

  • Miyazaki C, Takahashi H (2001) Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2. FEBS Lett 509: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Moukha SM, Dumonceaux TJ, Record E, Archibald FS (1999) Cloning and analysis of Pycnoporus cinnabarinus cellobiose dehydrogenase. Gene 234:23–33

    Article  PubMed  CAS  Google Scholar 

  • Muheim A, Leisola MSA, Schoemaker HE (1990) Aryl-alcohol-oxidase and lignin-peroxidase from the white-rot fungus Bjerkandera adusta comparison with Phanerochaete chrysosporium lignin-peroxidase for reactivity with veratryl alcohol, homoveratric acid and alpha-benzyl veratryl alcohol. J Biotechnol 13:159–167

    Article  CAS  Google Scholar 

  • Nie G, Reading NS, Aust SD (1998) Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem Biophys Res Commun 249:146–150

    Article  PubMed  CAS  Google Scholar 

  • Nie G, Reading NS, Aust SD (1999) Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 365: 328–334

    Article  PubMed  CAS  Google Scholar 

  • Nishimura I, Okada K, Koyama Y (1996) Cloning and expression of pyranose oxidase cDNA from Coriolus versicolor in E. coli. J Biotechnol 52:11–20

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan J, O’Brien M, McClean K, Dobson A (2002) Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29:55–59

    Article  PubMed  CAS  Google Scholar 

  • Odier E, Mozuch MD, Kalyanaraman B, Kirk TK (1988) Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose:quinone oxidoreductase. Biochemie 70:847–852

    Article  CAS  Google Scholar 

  • Orth A, Rzhetskaya M, Cullen D, Tien M (1994) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase genes. Gene 148:161–165

    Article  PubMed  CAS  Google Scholar 

  • Otterbein L, Record E, Longhi S, Asther M, Moukha S (2000) Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus 1–937 and expression in Pichia pastoris. Eur J Biochem 267:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Ozturk R, Bozkaya LA, Atav E, Saglam N, Tarhan L (1999) Purification and characterization of superoxide dismutase from Phanerochaete chrysosporium. Enzyme Microb Technol 25:392–399

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  PubMed  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B, Crawford RL (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–41

    Article  CAS  Google Scholar 

  • Paszczynski A, Huynh VB, Crawford R (1986) Comparison of ligninase I and peroxidase M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    Article  PubMed  CAS  Google Scholar 

  • Pease EA, Tien M (1991) Lignin-degrading enzymes from the filamentous fungus Phanerochaete chrysosporium. In: Dordick JS (ed) Biocatalysts for industry. Plenum Press, New York, pp 115–135

    Chapter  Google Scholar 

  • Pease E, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chry-sosporium. J Bacterid 174:3532–3540

    CAS  Google Scholar 

  • Pease E, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from complementary DNA sequence. J Biol Chem 264:13531–13535

    PubMed  CAS  Google Scholar 

  • Pease E, Aust SD, Tien M (1991) Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 179:897–903

    Article  PubMed  CAS  Google Scholar 

  • Perie FH, Sheng D, Gold MH (1996) Purification and characterization of two manganese peroxidase isozymes from the white-rot basidiomycete Dichomitus squalens. Biochim Biophys Acta 1297:139–148

    Article  PubMed  Google Scholar 

  • Piontek K, Glumoff T, Winterhalter K (1993) LowpH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett 315:119–124

    Article  PubMed  CAS  Google Scholar 

  • Podgornik H, Stegu M, Zibert E, Perdih A (2001) Laccase production by Phanerochaete chrysosporium—an artifact caused by Mn(III)? Lett Appl Microbiol 32: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. J Biol Chem 264:5036–5040

    PubMed  CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Raeder U, Thompson W, Broda P (1989a) Genetic factors influencing lignin peroxidase activity in Phanerochaete chrysosporium ME446. Mol Microbiol 3:919–924

    Article  PubMed  CAS  Google Scholar 

  • Raeder U, Thompson W, Broda P (1989b) RFLP-based genetic map of Phanerochaete chrysosporium ME446: lignin peroxidase genes occur in clusters. Mol Microbiol 3:911–918

    Article  PubMed  CAS  Google Scholar 

  • Raices M, Paifer E, Cremata J, Montesino R, Stahlberg J, Divne C, Szabo IJ, Henriksson G, Johansson G, Pettersson G (1995) Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett 369:233–238

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663

    PubMed  CAS  Google Scholar 

  • Randall T, Reddy CA (1992) The nature of extra-chromosomal maintenance of transforming plasmids in the filamentous basidiomycete Phanerochaete chrysosporium. Curr Genet 21:255–260

    Article  PubMed  CAS  Google Scholar 

  • Randall T, Rao TR, Reddy CA (1989) Use of a shuttle vector for the transformation of the white-rot basidiomycete, Phanerochaete chrysosporium. Biochem Biophys Res Commun 161:720–725

    Article  PubMed  CAS  Google Scholar 

  • Randall T, Reddy CA, Boominathan K (1991) A novel extra-chromosomally maintained transformation vector for the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 173:776–782

    PubMed  CAS  Google Scholar 

  • Reading NS, Aust SD (2000) Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability. Biotechnol Prog 16:326–333

    Article  PubMed  CAS  Google Scholar 

  • Reading NS, Aust SD (2001) Role of disulfide bonds in the stability of recombinant manganese peroxidase. Biochemistry 40:8161–8168

    Article  PubMed  CAS  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  PubMed  CAS  Google Scholar 

  • Reiser J, Walther I, Fraefel C, Fiechter A (1993) Methods to investigate the expression of lignin peroxidase genes by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:2897–2903

    PubMed  CAS  Google Scholar 

  • Renganathan V, Gold MH (1986) Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25:1626–1631

    Article  CAS  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, a hydrogen peroxide-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch Biochem Biophys 241:304–314

    Article  PubMed  CAS  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1986) Role of molecular oxygen in lignin peroxidase reactions. Arch Biochem Biophys 246:155–161

    Article  PubMed  CAS  Google Scholar 

  • Rieble S, Joshi DK, Gold MH (1994) Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J Bacteriol 176:4838–4844

    PubMed  CAS  Google Scholar 

  • Ritch TG, Gold MH (1992) Characterization of a highly expressed lignin peroxidase-encoding gene from the basidiomycete Phanerochaete chrysosporium. Gene 118:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ritch TG, Nipper NV, Akileswaran L, Smith AJ, Pribnow DG, Gold MH (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 107:119–126

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez S, Longo MA, Cameselle C, Sanroman A (1999) Production of manganese peroxidase and laccase in lab oratory-scale bioreactors by Phanerochaete chrysosporium. Bioproc Eng 20:531–535

    CAS  Google Scholar 

  • Rothschild N, Hadar Y, Dosoretz C (1997) Lignin peroxidase isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl Environ Microbiol 63:857–861

    PubMed  CAS  Google Scholar 

  • Rothschild N, Levkowitz A, Hadar Y, Dosoretz C (1999) Extracellular mannose-6-phosphatase of Phanerochaete chrysosporium: a lignin peroxidase-modifying enzyme. Arch Biochem Biophys 372:107–111

    Article  PubMed  CAS  Google Scholar 

  • Rotsaert FA, Li B, Renganathan V, Gold MH (2001) Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase. Arch Biochem Biophys 390:206–214

    Article  PubMed  CAS  Google Scholar 

  • Ruelius HW, Kerwin RM, Janssen FW (1968) Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. I. Isolation and purification. Biochim Biophys Acta 167: 493–500

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116–122

    Article  PubMed  CAS  Google Scholar 

  • Ruttimann C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white rot basid-iomycetes Phlebia brevispora and Ceriporiopsis sub-vermispora. Biotechnol Appl Biochem 16:64–76

    CAS  Google Scholar 

  • Ruttimann-Johnson C, Cullen D, Lamar R (1994) Manganese peroxidases of the white-rot fungus Phanerochaete sordida. Appl Environ Microbiol 60:599–605

    PubMed  CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola M (1991) Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Biol Technology 9:987–990

    Article  CAS  Google Scholar 

  • Saloheimo M, Barajas V, Nikupaavola ML, Knowles JKC (1989) A lignin peroxidase-encoding cDNA from the white-rot fungus Phlebia radiata—characterization and expression in Trichoderma reesei. Gene 85:343–351

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Bieg S, Huwig A, Kohring Gert W, Giffhorn F (1996) Purification by immunoaffinity chromatography, characterization, and structural analysis of a thermostable pyranose oxidase from the white rot fungus Phlebiopsis gigantea. Appl Environ Microbiol 62:2586–2592

    PubMed  Google Scholar 

  • Schalch H, Gaskell J, Smith TL, Cullen D (1989) Molecular cloning and sequences of lignin peroxidase genes of Phanerochaete chrysosporium. Mol Cell Biol 9:2743–2747

    PubMed  CAS  Google Scholar 

  • Schick ZL, Tien M (1997) The roles of veratryl alcohol and oxalate in fungal lignin degradation. J Biotechnol 53: 93–102

    Article  Google Scholar 

  • Schoemaker HE (1990) On the chemistry of lignin biodegradation. Recl Trav Chim Pays-Bas 109:255–272

    Article  CAS  Google Scholar 

  • Shimada M, Nakatsubo F, Kirk TK, Higuchi T (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch. Microbiol 129:321–324

    Article  CAS  Google Scholar 

  • Smith M, Shnyreva A, Wood DA, Thurston CF (1998) Tandem organization and highly disparate expression of the two laccase genes led and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144: 1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Smith TL, Schalch H, Gaskell J, Covert S, Cullen D (1988) Nucleotide sequence of a ligninase gene from Phanerochaete chrysosporium. Nucleic Acids Res 16:1219

    Article  PubMed  CAS  Google Scholar 

  • Soden DM, Dobson AD (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763

    PubMed  CAS  Google Scholar 

  • Sollewijn Gelpke MD, Mayfield-Gambill M, Lin Cereghino GP, Gold MH (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674

    Google Scholar 

  • Sollewijn Gelpke MD, Sheng D, Gold MH (2000) Mnll is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2. Arch Biochem Biophys 381:16–24

    Article  CAS  Google Scholar 

  • Sollewijn Gelpke MD, Lee J, Gold MH (2002) Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171 A, and F267L. Biochemistry 41:3498–3506

    Article  CAS  Google Scholar 

  • Sollewijn GMD, Moenne LP, Gold MH (1999) Arginine 177 is involved in Mn(II) binding by manganese peroxidase. Biochemistry 38:11482–11489

    Article  CAS  Google Scholar 

  • Srebotnik E, Messner KE (1991) Immunoelectron microscopical study of the porosity of brown rot wood. Holzforschung 45:95–101

    Article  Google Scholar 

  • Srebotnik E, Messner K, Foisner R, Petterson B (1988) Ultrastructural localization of ligninase of Phanerochaete chrysosporium by immunogold labeling. Curr Microbiol 16:221–227

    Article  CAS  Google Scholar 

  • Srinivasan C, D’Souza T, Boominathan K, Reddy CA (1995) Demonstration of laccase in the white rot basid-iomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61:4274–4277

    PubMed  CAS  Google Scholar 

  • Staszczak M, Zdunek E, Leonowicz A (2000) Studies on the role of proteases in the white-rot fungus Trametes versicolor: effect of PMSF and chloroquine on ligninolytic enzymes activity. J Basic Microbiol 40:51–63

    Article  PubMed  CAS  Google Scholar 

  • Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432

    PubMed  CAS  Google Scholar 

  • Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992) The lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation, and the identification of a second dimorphic chromosome. J Bacteriol 174:5036–5042

    PubMed  CAS  Google Scholar 

  • Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62:860–864

    PubMed  CAS  Google Scholar 

  • Stewart P, Gaskell J, Cullen D (2000) A homokaryotic derivative of a Phanerochaete chrysosporium strain and its use in genomic analysis of repetitive elements. Appl Environ Microbiol 66:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam SS, Nagalla SR, Renganathan V (1999) Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile. Arch Biochem Biophys 365:223–230

    Article  PubMed  CAS  Google Scholar 

  • Sunagawa M, Magae Y (2002) Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment. FEMS Microbiol Lett 211:143–146

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold M, Poulas T (1994a) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06Å resolution. J Biol Chem 269:32759–32767

    PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994b) Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol 238:845–848

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272:17574–17580

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GRJ, Aust SD (1996) The effects of calcium on the thermal stability and activity of manganese peroxidase. Arch Biochem Biophys 332:128–134

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GRJ, Aust SD (1997) Thermodynamics of binding of the distal calcium to manganese peroxidase. Biochemistry 36:8567–8573

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GRJ, Zapanta LS, Tien M, Aust SD (1997) Role of calcium in maintaining the heme environment of manganese peroxidase. Biochemistry 36:3654–3662

    Article  PubMed  CAS  Google Scholar 

  • Taguchi T, Ohwaki K, Okuda J (1985) Glucose 2-oxidase (Coriolus versicolor) and its application to D-glucose colorimetry. J Appl Biochem 7:289–295

    CAS  Google Scholar 

  • Tello M, Corsini G, Larrondo LF, Salas L, Lobos S, Vicuna R (2000) Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1490:137–144

    Article  PubMed  CAS  Google Scholar 

  • Temp U, Zierold U, Eggert C (1999) Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236:169–177

    Article  PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete, Phanerochaete chrysosporium. Science 221:661–663

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique hydrogen peroxide-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Tu C-PD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520–523

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium. J Biol Chem 261:1687–1693

    PubMed  CAS  Google Scholar 

  • Timofeevski SL, Aust SD (1997) Kinetics of calcium release from manganese peroxidase during thermal inactivation. Arch Biochem Biophys 342:169–175

    Article  PubMed  CAS  Google Scholar 

  • Timofeevski SL, Nie G, Reading NS, Aust SD (1999) Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochem Biophys Res Commun 256:500–504

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Kawai S, Yokota S, Higuchi T (1986) Aromatic ring cleavage of various beta-O-4 lignin model dimers by Phanerochaete chrysosporium. Wood Res 73:8–17

    CAS  Google Scholar 

  • Urzua U, Kersten PJ, Vicuna R (1998a) Kinetics of Mn3+-oxalate formation and decay in reactions catalyzed by manganese peroxidase of Ceriporiopsis subvermis-pora. Arch. Biochem Biophys 360:215–222

    Article  CAS  Google Scholar 

  • Urzua U, Kersten PJ, Vicuna R (1998b) Manganese peroxidase dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64:68–73

    PubMed  CAS  Google Scholar 

  • Vallim MA, Janse BJ, Gaskell J, Pizzirani-Kleiner AA, Cullen D (1998) Phanerochaete chrysosporium cellobiohy-drolase and cellobiose dehydrogenase transcripts in wood. Appl Environ Microbiol 64:1924–1928

    PubMed  CAS  Google Scholar 

  • Varela E, Martinez AT, Martinez MJ (1999) Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngiij an enzyme involved in lignin degradation. Biochem J 341:113–117

    Article  PubMed  CAS  Google Scholar 

  • Varela E, Bockle B, Romero A, Martinez AT, Martinez MJ (2000a) Biochemical characterization, cDNA cloning and protein crystallization of aryl-alcohol oxidase from Pleurotus pulmonarius. Biochim Biophys Acta 1476:129–138

    Article  PubMed  CAS  Google Scholar 

  • Varela E, Martinez AT, Martinez MJ (2000b) Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. J Biotechnol 83: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Varela E, Martinez JM, Martinez AT (2000c) Aryl-alcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases. Biochim Biophys Acta 1481:202–208

    Article  PubMed  CAS  Google Scholar 

  • Varela E, Guillen F, Martinez AT, Martinez MJ (2001) Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim Biophys Acta 1546:107–113

    Article  PubMed  CAS  Google Scholar 

  • Volc J, Erikksson K-E (1988) Pyranose 2-oxidase from Phanerochaete chrysosporium. Methods Enzymol 161: 316–322

    Article  CAS  Google Scholar 

  • Volc J, Kubatova E, Sedmera P, Daniel G, Gabriel J (1991) Pyranose oxidase and pyranosone dehydratase: enzymes responsible for conversion of D-glucose to cortalcerone by the basidiomycete Phanerochaete chrysosporium. Arch Microbiol 156:297–301

    Article  CAS  Google Scholar 

  • Volc J, Kubatova E, Daniel G, Prikrylova V (1996) Only C-2 specific glucose oxidase activity is expressed in ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium. Arch Microbiol 165:421–424

    CAS  Google Scholar 

  • Volc J, Leitner C, Sedmera P, Halada P, Haltrich D (1999) Enzymatic formation of dicarbonyl sugars: C-2 oxidation of 1,6 disaccharides gentiobiose, isomaltose and melibiose by pyranose 2-oxidase from Trametes multicolor. J Carbohydr Chem 18:999–1007

    Article  CAS  Google Scholar 

  • Wahleithmer JA, Xu F, Brown K, Brown S, Golightly E, Halkier T, Kauppinen S, Pederson A, Schneider P (1995) The identification and characterization of four laccase genes from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Article  Google Scholar 

  • Walther I, Kaelin M, Reiser J, Suter F, Fritsche B, Saloheimo M, Leisola M, Teeri T, Knowles JKC, Fiechter A (1988) Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene 70:127–137

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin peroxidase compound III: mechanism of formation and decomposition. J Biol Chem 265:2070–2077

    PubMed  CAS  Google Scholar 

  • Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27:5365–5370

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Dunford HB, Macdonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium: transient state kinetics and reaction mechanism. J Biol Chem 264:3335–3340

    PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro depoly-merization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271:681–687

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274:36226–36232

    Article  PubMed  CAS  Google Scholar 

  • Whitwam R, Gazarian I, Tien M (1995) Expression of fungal Mn peroxidase in E. coli and refolding to yield active enzyme. Biochem Biophys Res Commun 216:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry 36:9766–9773

    Article  PubMed  CAS  Google Scholar 

  • Whitwam RE, Koduri RS, Natan M, Tien M (1999) Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium. Biochemistry 38:9608–9616

    Article  PubMed  CAS  Google Scholar 

  • Worral JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Article  Google Scholar 

  • Yanai K, Yonekura K, Usami H, Hirayama M, Kajiwara S, Yamazaki T, Shishido K, Adachi T (1996) The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Biosci Biotechnol Biochem 60:472–475

    Article  PubMed  CAS  Google Scholar 

  • Yaver D, Golightly E (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 181:95–102

    Article  PubMed  CAS  Google Scholar 

  • Yaver D, Xu F, Golightly E, Brown K, Brown S, Rey M, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) The purification, characterization, molecular cloning and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    PubMed  CAS  Google Scholar 

  • Yaver DS, Overjero MD, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S (1999) Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase led. Appl Environ Microbiol 65:4943–4948

    PubMed  CAS  Google Scholar 

  • Youn H, Hah Y, Kang S (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188

    Article  CAS  Google Scholar 

  • Youngs HL, Gelpke MDS, Li D, Sundaramoorthy M, Gold MH (2001) The role of Glu39 in Mnll binding and oxidation by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry 40:2243–2250

    Article  PubMed  CAS  Google Scholar 

  • Zapanta LS, Hattori T, Rzetskaya M, Tien M (1998) Cloning of Phanerochaete chrysosporium leu2 by complementation of bacterial auxotrophs and transformation of fungal auxotrophs. Appl Environ Microbiol 64:2624–2629

    PubMed  CAS  Google Scholar 

  • Zolan M (1995) Chromosome-length polymorphisms in fungi. Microbiol Rev 59:686–698

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cullen, D., Kersten, P.J. (2004). Enzymology and Molecular Biology of Lignin Degradation. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics