Skip to main content

Aromatic Hydrocarbon Dioxygenases

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

Since the initial discovery of toluene dioxygenase (TDO) by David Gibson and coworkers (Yeh et al. 1977; Subramanian et al. 1979), aromatic hydrocarbon dioxygenases have been reported to catalyze the initial reaction in the bacterial biodegradation of a diverse array of aromatic and polyaromatic hydrocarbons, aromatic acids, chlorinated aromatic, and heterocyclic aromatic compounds. To date, more than 100 aromatic compound dioxygenases have been described in the literature based on biological activity or nucleotide sequence identity. These enzymes are cofactor-requiring multicomponent heteromultimeric proteins (EC 1.14.12) that catalyze the initial activation through reductive dihydroxylation of their substrates, and are distinct from aromatic ring-cleavage (or ring-fission) dioxygenases (EC 1.13.11), which act on the catechol intermediates in many of the same catabolic pathways. This chapter will focus primarily on the aromatic ringhydroxylating dioxygenases (Rieske non-heme iron dioxygenases; EC 1.14.12), which initiate an attack on aromatic hydrocarbons, heterocycles and related compounds carrying various substituents (Cl, NO2). The aspects described will relate to dioxygenase discovery, classification, enzymology, structure, electron transport, mechanism and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen CCR, Boyd DR, Dalton H, Sharma ND, Haughey SA, McMordie RAS, McMurray BT, Sheldrake GN, Sproule K (1995) Sulfoxides of high enantiopurity from bacterial dioxygenase-catalyzed oxidation. J Chem Soc Chem Commun: 119–120

    Google Scholar 

  • An D, Gibson DT, Spain JC (1994) Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. J Bacteriol 176: 7462–7467

    CAS  Google Scholar 

  • Barriault D, Plante M-M, Sylvestre M (2002) Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. J Bacteriol 184: 3794–3800

    Article  CAS  Google Scholar 

  • Barriault D, Simard C, Chatel H, Sylvestre M (2001) Characterization of hybrid biphenyl dioxygenases obtained by recombining Burkholderia sp. strain LB400 bphA with the homologous gene of Comamonas testosteroni B-356. Can J Microbiol 47: 1025–1032

    CAS  Google Scholar 

  • Batie CJ, Ballou DP, Corell CC (1991) Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, pp 543–556

    Google Scholar 

  • Beil S, Mason JR, Timmis KN, Pieper DH (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180: 5520–5528

    CAS  Google Scholar 

  • Bernhardt F-H, Kuthan H (1981) Dioxygen activation by putidamonooxin: the oxygen species formed and released under uncoupling conditions. Eur J Biochem 120: 547–555

    Article  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Modyanova LV, Carroll JG, Malone JF, Allen CCR, Hamilton JTG, Gibson DT, Parales RE, Dalton H (2002) Dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems. Can J Chem 80: 589–600

    Article  CAS  Google Scholar 

  • Boyd DR, Sheldrake GN (1998) The dioxygenase-catalysed formation of vicinal cisdiols. Nat Prod Rep 15: 309–324

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18: 85–90

    Article  CAS  Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ringhydroxylating dioxygenases. Adv Microbial Physiol 38: 47–84

    Article  CAS  Google Scholar 

  • Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) Substrate binding site of naphthalene 1,2dioxygenase: functional implications of indole binding. J Mol Biol 296: 701–712

    Article  CAS  Google Scholar 

  • Chebrou H, Hurtubise Y, Barriault D, Sylvestre M (1999) Catalytic activity toward chlorobiphenyls of purified recombinant His-tagged oxygenase component of Rhodococcus globerulous strain P6 biphenyl dioxygenase and of chimeras derived from it and their expression in Escherichia coli and in Pseudomonas putida. J Bacteriol 181: 4805–4811

    CAS  Google Scholar 

  • Colbert CL, Couture MM-J, Eltis LD, Bolin JT (2000) A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins. Structure 8: 1267–1278

    Article  CAS  Google Scholar 

  • Correll CC, Batie CJ, Ballou DP, Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-25]. Science 258: 1604–1610

    Article  CAS  Google Scholar 

  • Eaton RW, Chapman PJ (1995) Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol 177: 6983–6988

    CAS  Google Scholar 

  • Ensley BD, Gibson DT (1983) Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol 155: 505–511

    CAS  Google Scholar 

  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167–169

    Article  CAS  Google Scholar 

  • Erickson BD, Mondello FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59: 3858–3862

    CAS  Google Scholar 

  • Furukawa K (2000) Engineering dioxygenases for efficient degradation of environmental pollutants. Curr Opin Biotechnol 11: 244–249

    Article  CAS  Google Scholar 

  • Furukawa K, Hirose J, Hayashida S, Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol 176: 2121–2123

    CAS  Google Scholar 

  • Gassner GT, Ballou DP, Landrum GA, Whittaker JW (1993) Magnetic circular dichroism studies on the mononuclear ferrous active site of phthalate dioxygenase from Pseudomonas cepacia show a change of ligation state on substrate binding. Biochemistry 32: 4820–4825

    Article  CAS  Google Scholar 

  • Gibson DT (1976) Initial reactions to the bacterial degradation of aromatic hydrocarbons. Zentralbl Bakt Hyg I Abt Orig B 162: 157–168

    CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11: 236–243

    Article  CAS  Google Scholar 

  • Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE (1995) Desaturation, dioxygenation and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816–4. J Bacteriol 177: 2615–2621

    CAS  Google Scholar 

  • Gray KA, Richardson TH, Robertson DE, Swanson PE, Subramanian MV (2003) Soil-based gene discovery: a new technology to accelerate and broaden biocatalytic applications. Adv Appl Microbiol 52: 1–27

    Article  CAS  Google Scholar 

  • Haddock JD, Horton JR, Gibson DT (1995) Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol 177: 20–26

    CAS  Google Scholar 

  • Haigler BE, Gibson DT (1990a) Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol 172: 465–468

    CAS  Google Scholar 

  • Haigler BE, Gibson DT (1990b) Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol 172: 457–464

    CAS  Google Scholar 

  • Harayama S, Rekik M, Timmis KN (1986) Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate 1,2-dioxygenase, encoded by TOL plasmid pWWO of Pseudomonas putida. Mol Gen Genet 202: 226–234

    Article  CAS  Google Scholar 

  • Haro MA, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85: 103–113

    Article  CAS  Google Scholar 

  • Hirose J, Suyama A, Hayashida S, Furukawa K (1994) Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases. Gene 138: 27–33

    Article  CAS  Google Scholar 

  • Hopkins GD, McCarty PL (1995) Field evaluation of in-situ aerobic cometabolism of trichloroethene and three dichloroethene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29: 1628–1637

    Article  CAS  Google Scholar 

  • Hudlicky T, Gonzalez D, Gibson DT (1999) Enzymatic dihydroxylation of aromatics in enantioselective synthesis: Expanding asymmetric methodology. Aldrichim Acta 32: 35–62

    Google Scholar 

  • Hurtubise Y, Barriault D, Sylvestre M (1996) Characterization of active recombinant His-tagged oxygenase component of Comamonas testosteroni B-356 biphenyl dioxygenase. J Biol Chem 271: 8152–8156

    Article  CAS  Google Scholar 

  • Hurtubise Y, Barriault D, Sylvestre M (1998) Involvement of the terminal oxygenase ß subunit in the biphenyl dioxygenase reactivity pattern toward chlorobiphenyls. J Bacteriol 180: 5828–5835

    CAS  Google Scholar 

  • Jiang H, Parales RE, Lynch NA, Gibson DT (1996) Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J Bacteriol 178: 3133–3139

    CAS  Google Scholar 

  • Jiang H, Parales RE, Gibson DT (1999) The a subunit of toluene dioxygenase from Pseudomonas putida F1 can accept electrons from reduced ferredoxinTOL but is catalytically inactive in the absence of the ß subunit. Appl Environ Microbiol 65: 315–318

    CAS  Google Scholar 

  • Karlsson A, Beharry ZM, Eby M, Coulter ED, Neidle EL, Kurtz DMJ, Eklund H, Ramaswamy S (2002) X-ray crystal structure of benzoate 1,2-dioxygenase reductase from Acinetobacter sp. strain ADP1. J Mol Biol 318: 261–272

    Article  CAS  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: Side-on binding of dioxygen to iron. Science 299: 1039–1043

    Google Scholar 

  • Kauppi B (1997) PhD, Thesis. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6: 571–586

    Article  CAS  Google Scholar 

  • Kikuchi Y, Nagata Y, Hinata M, Kimbara K, Fukuda M, Yano K, Takagi M (1994) Identification of the bphA4 gene encoding ferredoxin reductase involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol 176: 1689–1694

    CAS  Google Scholar 

  • Kim E, Zylstra GJ (1999) Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23: 294–302

    Article  Google Scholar 

  • Kimura N, Nishi A, Goto M, Furukawa K (1997) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 179: 3936–3943

    CAS  Google Scholar 

  • Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water- insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43: 454–457

    CAS  Google Scholar 

  • Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37: 45–50

    Article  CAS  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16: 663–666

    Article  CAS  Google Scholar 

  • Lange CC, Wackett LP (1997) Oxidation of aliphatic olefins by toluene dioxygenase:enzyme rates and product identification. J Bacteriol 179: 3858–3865

    CAS  Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16: 929–933

    Article  CAS  Google Scholar 

  • Lange SJ, Que LJ (1998) Oxygen activating nonheme iron enzymes. Curr Opin Chem Biol 2: 159–172

    Article  CAS  Google Scholar 

  • Lee K (1998) Involvement of electrostatic interactions between the components of toluene dioxygenase from Pseudomonas putida F1. J Microbiol Biotechnol 8: 416–421

    CAS  Google Scholar 

  • Lee K (1999) Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J Bacteriol 181: 27192725

    Google Scholar 

  • Lee K, Brand JM, Gibson DT (1995) Stereospecific sulfoxidation by toluene and naphthalene dioxygenases. Biochem Biophys Res Commun 212: 9–15

    Article  CAS  Google Scholar 

  • Li S, Wackett LP (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Commun 185: 443–451

    Article  CAS  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48: 371–399

    Article  CAS  Google Scholar 

  • Maeda T, Takahashi Y, Suenaga H, Suyama A, Goto M, Furukawa K (2001) Functional analyses of Bph-Tod hybrid dioxygenase, which exhibits high degradation activity toward trichloroethylene. J Biol Chem 276: 29833–29838

    Article  CAS  Google Scholar 

  • Minshull J (1995) Cleaning up our own back yard: developing new catabolic pathways to degrade pollutants. Curr Biol 2: 775–780

    CAS  Google Scholar 

  • Mondello FJ, Turcich MP, Lobos JH, Erickson BD (1997) Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol 63: 3096–3103

    CAS  Google Scholar 

  • Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141: 485–495

    Article  CAS  Google Scholar 

  • Nam J-W, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T (2001) New classification for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem 65: 254–263

    Article  CAS  Google Scholar 

  • Nam J-W, Nojiri H, Noguchi H, Uchimura H, Yoshida T, Habe H, Yamane H, Omori T (2002) Purification and characterization of carbazole 1,9a-dioxygenase, a three component dioxygenase system of Pseudomonas resinovorans strain CA10. Appl Environ Microbiol 68: 5882–5890

    Article  CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53: 949–954

    CAS  Google Scholar 

  • Parales JV, Parales RE, Resnick SM, Gibson DT (1998a) Enzyme specificity of 2nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the a subunit of the oxygenase component. J Bacteriol 180: 1194–1199

    CAS  Google Scholar 

  • Parales RE, Emig MD, Lynch NA, Gibson DT (1998b) Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180: 2337–2344

    CAS  Google Scholar 

  • Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J Bacteriol 181: 1831–1837

    CAS  Google Scholar 

  • Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000a) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182: 1641–1649

    Article  CAS  Google Scholar 

  • Parales RE, Resnick SM, Yu CL, Boyd DR, Sharma ND, Gibson DT (2000b) Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cisdihydroxylation: control by phenylalanine 352 in the a subunit. J Bacteriol 182: 5495–5504

    Article  CAS  Google Scholar 

  • Pavel EG, Martins LJ, Ellis WRJ, Solomon EI (1994) Magnetic circular dichroism studies of exogenous ligand and substrate binding to the non-heme ferrous active site in phthalate dioxygenase. Chem Biol 1: 173–183

    Article  CAS  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11: 262–270

    Article  CAS  Google Scholar 

  • Pieper DH, Timmis KN, Ramos JL (1996) Designing bacteria for the degradation of nitro-and chloroaromatic pollutants. Naturwissenschaften 83: 201–213

    Article  CAS  Google Scholar 

  • Que LJ (2000) One motif-many different reactions. Nat Struct Biol 7: 182–184

    Article  CAS  Google Scholar 

  • Que LJ, Ho RYN (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 96: 2607–2624

    Article  CAS  Google Scholar 

  • Resnick SM, Gibson DT (1993) Biotransformation of anisole and phenetole by aerobic hydrocarbon-oxidizing bacteria. Biodegradation 4: 195–203

    Article  CAS  Google Scholar 

  • Resnick SM, Torok DS, Lee K, Brand JM, Gibson DT (1994) Regiospecific and stereos-elective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase. Appl Environ Microbiol 60: 3323–3328

    CAS  Google Scholar 

  • Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Ind Microbiol 17: 438–457

    Article  CAS  Google Scholar 

  • Sakamoto T, Joern JM, Arisawa A, Arnold FH (2001) Laboratory evolution of toluene dioxygenase to accept 4-picoline as a substrate. Appl Environ Microbiol 67: 3882–3887

    Article  CAS  Google Scholar 

  • Schlichting I, Berendzen J, Chu K, Stock AM, Mayes SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287: 1651

    Article  Google Scholar 

  • Senda T, Yamada T, Sakurai N, Kubota M, Nishizaki T, Masai E, Fukuda M, Mitsui Y (2000) Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase. J Mol Biol 304: 397–410

    Article  CAS  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W-C, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816–4. Gene 127: 31–37

    Article  CAS  Google Scholar 

  • Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57: 3200–3205

    CAS  Google Scholar 

  • Subramanian V, Liu T-N, Yeh W-K, Gibson DT (1979) Toluene dioxygenase: purification of an iron-sulfur protein by affinity chromatography. Biochem Biophys Res Commun 91: 1131–1139

    Article  CAS  Google Scholar 

  • Suen W-C, Gibson DT (1993) Isolation and preliminary characterization of the subunits of the terminal component of naphthalene dioxygenase from Pseudomonas putida NCIB 9816–4. J Bacteriol 175: 5877–5881

    CAS  Google Scholar 

  • Suen W-C, Gibson DT (1994) Recombinant Escherichia coli strains synthesize active forms of naphthalene dioxygenase and its individual a and /3 subunits. Gene 143: 67–71

    Article  CAS  Google Scholar 

  • Suenaga H, Goto M, Furukawa K (200la) Emergence of multifunctional oxygenase activities by random priming recombination. J Biol Chem 276: 22500–22506

    Google Scholar 

  • Suenaga H, Mitsuoka M, Ura Y, Watanabe T, Furukawa K (200 lb) Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes. J Bacteriol 183: 5441–5444

    Google Scholar 

  • Tan H-M, Cheong C-M (1994) Substitution of the ISPa subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity. Biochem Biophys Res Commun 204: 912–917

    Article  CAS  Google Scholar 

  • Timmis KN, Rojo F, Ramos JL (1989) Design of new pathways for the catabolism of environmental pollutants. Adv Appl Biotechnol 4: 61–82

    Google Scholar 

  • Timmis KN, Steffan RJ, Unterman R (1994) Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 48: 525–557

    Article  CAS  Google Scholar 

  • Torok DS, Resnick SM, Brand JM, Cruden DL, Gibson DT (1995) Desaturation and oxygenation of 1,2-dihydronaphthalene by toluene and naphthalene dioxygenase. J Bacteriol 177: 5799–5805

    CAS  Google Scholar 

  • Tsang H-T, Batie CJ, Ballou PD, Penner-Halm JE (1989) X-ray absorption spectroscopy of the [2Fe-251 Reiske cluster in Pseudomonas cepacia phthalate dioxygenase:determination of core dimentions and iron ligand. Biochemistry 28: 7233–7240

    Article  CAS  Google Scholar 

  • Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54: 1703–1708

    CAS  Google Scholar 

  • Wackett LP, Kwart LD, Gibson DT (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry 27: 1360–1367

    Article  CAS  Google Scholar 

  • Wackett LP, Sadowsky MJ, Newman LM, Hur H-G, Li S (1994) Metabolism of poly-halogenated compounds by a genetically engineered bacterium. Nature 368: 627–629

    Article  CAS  Google Scholar 

  • Werlen C, Kohler H-P, van der Meer JR (1996) The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem 271: 4009–4016

    Article  CAS  Google Scholar 

  • Wolfe MD, Lipscomb JD (2003) Hydrogen peroxide-coupled cis-diol formation catalyzed by naphthalene 1,2-dioxygenase. J Biol Chem 278: 829–835

    Article  CAS  Google Scholar 

  • Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) Singe turnover chemistry and regulation of 02 activation by the oxygenase component of naphthalene dioxygenase. J Biol Chem 276: 1945–1953

    Article  CAS  Google Scholar 

  • Yeh W-K, Gibson DT, Liu T-N (1977) Toluene dioxygenase: a multicomponent enzyme system. Biochem Biophys Res Commun 78: 401–410

    Article  CAS  Google Scholar 

  • Yu C-L, Parales RE, Gibson DT (2001) Multiple mutations at the active site of naphthalene dioxygenase affect regioselectivity and enatioselectivity. J Ind Microbiol Biotechnol 27: 94–103

    Article  CAS  Google Scholar 

  • Zhang N, Stewart BG, Moore JC, Greasham RL, Robinson DK, Buckland BC, Lee C (2000) Directed evolution of toluene dioxygenase from Pseudomonas putida for improved selectivity toward cis-indandiol during indene bioconversion. Metab Eng 2: 339–348

    Article  CAS  Google Scholar 

  • Zhao H, Arnold FH (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res 6: 1307–1308

    Article  Google Scholar 

  • Zielinski M, Backhaus S, Hofer B (2002) The principle determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase a subunit. Microbiology 148: 2439–2448

    CAS  Google Scholar 

  • Zylstra GJ, Kim E, Goyal AK (1997) Comparative molecular analysis of genes for poly-cyclic aromatic hydrocarbon degradation. Genet Eng 19: 257–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

We dedicate this chapter to Professor David T. Gibson, whose pioneering efforts have advanced our understanding of aromatic hydrocarbon dioxygenases.

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parales, R.E., Resnick, S.M. (2004). Aromatic Hydrocarbon Dioxygenases. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics