Skip to main content

Nonholonomic Variational Problems on Three-Dimensional Lie Groups

  • Chapter
Dynamical Systems VII

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 16))

Abstract

In this chapter we consider the simplest nonholonomic variational problems. We study three-dimensional nonholonomic Lie groups, i.e. groups with a left-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct product G × (VV⊥). In Section 1.1 we show that the NG-flow on the mixed bundle is the semidirect product with base VV⊥ and fiber G. In Section 1.2 we describe left-invariant metric tensors on Lie algebras; in Section 1.3 the normal forms for the equations of nonholonomic geodesics are obtained. In Section 1.4 we study the reduced flow on VV . In the subsequent Sections (1.5–1.7) we describe local properties of the flow on the fiber; in Section 1.5 we describe the ε-wave front of the NG-flow and the ε-sphere of the nonholonomic metrics which appear to be manifolds with singularities, the same for all three-dimensional nonholonomic Lie groups. In Section 1.6 we describe their topology and in Section 1.7 their metric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrachev, A.A., Vakhrameev, S.A., Gamkrelidze, R.V. [1983]: Differential geometry and group-theoretical methods in optimal control theory. Itogi Nauki Tekh., Ser. Probl. Geom., 14, 3–56. English transl.: J. Sov. Math. 28, 145–182 (1985), Zbl.542.93045

    MathSciNet  Google Scholar 

  • Akhiezer, N.I. [1981]: The Calculus of Variations. Vishcha Shkola: Kharkov. English transl: Harwood Academic Publishers: London, 1988, Zbl.507.49001

    Google Scholar 

  • Aleksandrov, A.D. [1947a, b]: Geometry and topology in the USSR. I–II. Usp. Mat. Nauk 2, No. 4, 3–58; 2, No. 5, 9–92 (Russian), Zbl.36, 379

    Google Scholar 

  • Aleksandrov, A.D. [1958, 1959a, b]: On the principle of maximum. I–III. Izv. Vyssh. Uchebn. Zaved., Mat., 1958, No. 5, 126–157, Zbl.123,71; 1959, No. 3, 3–12; 195, No. 5, 16–32 (Russian), Zbl. 125, 59

    Google Scholar 

  • Appell, P. [1953]: Traité de Mécanique Rationnelle, T.1, 2. Gauthier-Villars: Paris, Zbl.67, 132

    Google Scholar 

  • Arnol’d, V.I. [1974]: Mathematical Methods of Classical Mechanics. Nauka: Moscow. English transl.: Graduate Texts in Math. 60. Springer-Verlag: New York-Berlin-Heidelberg, 1978, Zbl.386.70001

    MATH  Google Scholar 

  • Arnol’d, V.I. [1983]: Singularities in the calculus of variations. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 22, 3–55. English transl.: J. Sov. Math. 27, 2679–2713 (1984), Zbl.537.58012

    Google Scholar 

  • Arnol’d, V.I. [1988]: Geometrical Methods in the Theory of Ordinary Differential Equations. 2nd ed., Die Grundlehren der Math. Wissenschaften 250. Springer-Verlag: New York-Berlin-Heidelberg, Zbl.507.34003

    Google Scholar 

  • Arnol’d, V.I., Givental, A.B. [1985]: Symplectic geometry. In: Dynamical Systems IV. Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 4, 7–139. English transl. in: Encyclopaedia of Math. Sciences 4, 1–136. Springer-Verlag: Berlin-Heidelberg-New York, 1988, Zbl.592.58038

    Google Scholar 

  • Arnol’d, V.I., Kozlov, V.V., Nejshtadt, A.I. [1985]: Mathematical aspects of classical and celestial mechanics. In: Dynamical Systems III. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 3, 5–304. English transl.: Encyclopaedia of Math. Sciences 3. Springer-Verlag: Berlin-Heidelberg-New York, 1988, Zbl.612.70002

    Google Scholar 

  • Auslander, L., Green, L., Hahn, F., Markus, L. and Massey, W. [1963]: Flows on Homogeneous Spaces. Ann. Math. Stud. 53. Princeton University Press: Princeton, Zbl. 106, 368

    MATH  Google Scholar 

  • Bennequin, D. [1983]: Entrelacement et équations de Pfaff. Astérisque 107/108, 87–161, Zbl.573.58022

    MathSciNet  Google Scholar 

  • Berezin, F.A. [1974]: Hamiltonian formalism in the general Lagrange problem. Usp. Mat. Nauk 29, No. 3, 183–184 (Russian), Zbl.307.70020

    MathSciNet  MATH  Google Scholar 

  • Birkhoff, G. [1967]: Lattice Theory. Am. Math. Soc. Colloq. Publ. 25. Am. Math. Soc: Providence, Zbl. 153, 25

    Google Scholar 

  • Bishop, R.L., Crittenden, R.J. [1964]: Geometry of Manifolds. Academic Press: New York, Zbl.132, 160

    MATH  Google Scholar 

  • Boothby, W.M., Wang, H.C. [1958]: On contact manifolds. Ann. Math., II. Ser. 68, 721–734, Zbl.84, 392

    MathSciNet  MATH  Google Scholar 

  • Bourbaki, N. [1972]: Groupes et Algèbres de Lie, Ch. 1–3. Hermann: Paris. English transl.: Lie Groups and Lie Algebras. Chap. 1–3, Springer-Verlag: Berlin-Heidelberg-New York, 1981, Zbl.244.22007

    MATH  Google Scholar 

  • Brendelev, V.N. [1978]: On commutation relations in nonholonomic mechanics. Vestn. Mosk. Univ., Ser. I, 1978, No. 6, 47–54. English transl.: Mosc. Univ. Mech. Bull. 33, No. 5–6, 30–35 (1978), Zbl.401.70017

    MathSciNet  Google Scholar 

  • Bröcker, Th. [1975]: Differential Germs and Catastrophes. Cambridge University Press: Cambridge, Zbl.302.58006

    Google Scholar 

  • Brockett, R. [1982]: Control theory and singular Riemannian geometry. In: New Directions in Applied Mathematics, Pap. present. 1980 on the ocass. of the Case centen. Celebr., (Hilton, P.J., Young, C.S. (Eds.)), 11–27, Zbl.483.49035

    Google Scholar 

  • Brockett, R.W., Millman, R.S., and Sussmann, H.J. (eds) [1982]: Differential Geometric Control Theory. Progress in Math. 27, Birkhäuser: Boston-Basel-Stuttgart, Zbl.503.00014

    Google Scholar 

  • Carathéodory, C. [1909]: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386

    MathSciNet  Google Scholar 

  • Cartan E. [1926]: Les groupes d’holonomie des espaces généralisés. Acta Math. 48, 1–42, Jbuch 52, 723

    MATH  Google Scholar 

  • Cartan, E. [1935]: La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés. Hermann: Paris, Zbl. 10, 395

    MATH  Google Scholar 

  • Chaplygin S.A. [1949]: Papers on Dynamics of Nonholonomic Systems. GITTL: Moscow-Leningrad (Russian)

    Google Scholar 

  • Chow, W.L. [1939]: Systeme von linearen partiellen Differential-gleichungen erster Ordnung. Math. Ann. 117, 98–105, Zbl.22, 23

    MathSciNet  Google Scholar 

  • Cornfel’d, I.P., Fomin, S.V., Sinai, Ya.G. [1980]: Ergodic Theory. Nauka: Moscow. English transl.: Die Grundlehren der Mathematischen Wissenschaften 245. Springer-Verlag: New York-Berlin-Heidelberg 1982, Zbl.493.28007

    Google Scholar 

  • Davydov, A.A. [1985]: The attainability boundary is quasi-Hölderian. Tr. Semin. Vectorn. Tensorn. Anal., Prilozh. Geom. Mekh. Fiz. 22, 25–30. English transl.: Sel. Math. Sov. 9, No. 3, 229–234 (1990), Zbl.593.49028

    MATH  Google Scholar 

  • Dirac, P.A.M. [1964]: Lectures on Quantum Mechanics. Yeshiva University: New York

    Google Scholar 

  • Dobronravov, V.V. [1970]: Elements of Mechanics of Nonholonomic Systems. Vyssh. Shkola: Moscow (Russian), Zbl.216, 248

    Google Scholar 

  • Dubrovin, B.A., Fomenko, A.T., Novikov, S.P. [1979]: Modern Geometry. Methods and Applications I. Nauka: Moscow. English transl.: Graduate Texts in Math. 93. Springer-Verlag: New York-Berlin-Heidelberg, 1984, Zbl.433.53001

    Google Scholar 

  • Fajbusovich, L. [1988]: A Hamiltonian formalism for nonholonomic dynamical systems connected with generalized Toda flows. In: Nov. Global’nom Anal. 1988, 167–171 (Russian), Zbl.706.58058

    Google Scholar 

  • Fefferman, C., Phong, D.H. [1979]: On the lowest eigenvalue of pseudodifferential operators. Proc. Natl. Acad. Sci. USA 76, 6055–6056, Zbl.434.35071

    MathSciNet  MATH  Google Scholar 

  • Fefferman, C., Sanchez-Calle, A. [1986]: Fundamental solution for second order subelliptic operators. Ann. Math., II. Ser. 124, 247–272, Zbl.613.35002

    MathSciNet  MATH  Google Scholar 

  • Filippov, A.F. [1959]: On certain questions of the optimal control theory. Vestn. Mosk. Univ., Ser. Mat. Mech. Astron. Fiz. Chim. 14, No. 2, 25–32 English transl.: J. Soc. Ind. Appl. Math., Ser. A: Control 1 (1962), 76–84 (1964), Zbl.90, 69

    MATH  Google Scholar 

  • Folland, G.E. [1973]: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376, Zbl.256.35020

    MathSciNet  MATH  Google Scholar 

  • Folland, G.E. [1975]: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207, Zbl.312.35026

    MathSciNet  MATH  Google Scholar 

  • Folland, G.E., Stein, E.M. [1974]: Estimates for ?̄-complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522, Zbl.293.35012

    MathSciNet  MATH  Google Scholar 

  • Franklin, P., Moore, C.L.E. [1931]: Geodesics of Pfaffians. J. Math. Phys. 10, 157–190, Zbl.2, 412

    Google Scholar 

  • Gardner, R.B. [1967]: Invariants of Pfaffian systems. Trans. Am. Math. Soc. 126, 514–533, Zbl.161, 413

    MATH  Google Scholar 

  • Gardner, R.B. [1983]: Differential geometric methods interfacing control theory. In: Differential Geometric Control Theory. Proc. Conf. Mich. Technol. Univ. 1982, Prog. Math. 27, 117–180, Zbl.522.49028

    Google Scholar 

  • Gaveau, B. [1976]: Systèmes dynamiques associés à certains opérateurs hypoelliptiques. Bull. Sci. Math. II. Ser. 102, 203–229, Zbl.391.35019

    MathSciNet  Google Scholar 

  • Gaveau, B. [1977]: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139, 95–153, Zbl.366.22010

    MathSciNet  MATH  Google Scholar 

  • Gaveau, B., Greiner, P., Vantier, J. [1985]: Intégrales de Fourier quadratiques et calcul symbolique exact sur le groupe d’Heisenberg. J. Funt. Anal. 68, 248–272, Zbl.609.43007

    Google Scholar 

  • Gaveau, B., and Vauthier, J. [1986]: The Dirichlet problem on the Heisenberg group III. Can. J. Math. 38, No. 3, 666–671, Zbl.603.22003

    MathSciNet  MATH  Google Scholar 

  • Gel’fand, I.M., Fomin, S.V. [1961]: Variational Calculus. Fizmatgiz: Moscow. English transl.: Prentice Hall: Englewood Cliffs, N.J., 1965, 3rd ed., Zbl.127, 54

    Google Scholar 

  • Gershkovich, V.Ya. [1984a]: Two-sided estimates of metrics generated by absolutely non-holonomic distributions on Riemannian manifolds. Dokl. Akad. Nauk SSSR 278, No. 5, 1040–1044. English transl.: Sov. Math., Dokl. 30, 506–510 (1984), Zbl.591.53033

    MathSciNet  Google Scholar 

  • Gershkovich, V.Ya. [1984b]: A variational problem with nonholonomic constraints on SO(3). Geometriya i Topologiya v Global’nykh Nelinejnykh Zadachakh, Nov. Global’nom Anal. 1984, 149–152, Zbl.554.58021

    Google Scholar 

  • Gershkovich, V.Ya. [1985]: The method of penalty metrics in problems with nonholonomic constraints. In: Applications of Topology in Modern Analysis, 138–145. Voronezh University: Voronezh (Russian)

    Google Scholar 

  • Gershkovich, V. [1988]: On normal form of distribution jets. In: Topology and Geometry, Rokhlin Semin. 1984–1986, Lect. Notes Math. 1346 (Viro, O.Ya. (Ed.)), 77–98. Zbl.649.58004

    Google Scholar 

  • Gershkovich, V. [1989]: Short time hypoelliptic diffusion. Proc. of the 5th Internat. Conf. on Probability Theory, Vilnius, Vol. 3, 130–131

    Google Scholar 

  • Gershkovich, V. [1990]: Estimates of nonholonomic ε-balls. In: Lect. Notes Math. 1543 (Borisovich, Yu.G. Gliklikh, Yu.E. (Eds.))

    Google Scholar 

  • Gershkovich, V., Vershik, A. [1988]: Nonholonomic manifolds and nilpotent analysis. J. Geom. Phys. 5, No. 3, 407–452, Zbl.693.53006

    MathSciNet  MATH  Google Scholar 

  • Gibbs, J.W. [1873]: Graphical methods in the thermodynamics of fluids. Trans. Connec. Acad. 2, 309–342, Jbuch 5, 585

    Google Scholar 

  • Godbillon, C. [1969]: Géométrie Différentielle et Mécanique Analytique. Collection Méthodes. Hermann: Paris, Zbl. 174, 246

    Google Scholar 

  • Golubitsky, M., Guillmin, V. [1973]: Stable Mappings and their Singularities. Graduate Texts in Mathematics 14. Springer-Verlag: New York, Berlin-Heidelberg Zbl.294.58004

    MATH  Google Scholar 

  • Gorbatenko, E.M. [1985]: Differential geometry of nonholonomic manifolds (after V.V. Vagner). Geom. Sbornik, 31–43, Tomsk University: Tomsk

    Google Scholar 

  • Goursat, E. [1922]: Leçons sur le problème de Pfaff. Hermann: Paris, Jbuch 48, 538

    MATH  Google Scholar 

  • Gray, J.W. [1959]: Some global properties of contact structures. Ann. Math., II. Ser. 69, No. 2, 421–450, Zbl.92, 393

    MATH  Google Scholar 

  • Griffiths, P.A. [1983]: Exterior Differential Systems and the Calculus of Variations. Progress in Math. 25. Birkhäuser: Boston-Basel-Berlin, Zbl.512.49003

    MATH  Google Scholar 

  • Grigoryan, A.T., Fradlin, B.N. [1977]: Mechanics in USSR. Nauka: Moscow (Russian)

    Google Scholar 

  • Grigoryan, A.T., Fradlin, B.N. [1982]: A History of Mechanics of the Rigid Body. Nauka: Moscow (Russian)

    Google Scholar 

  • Gromoll, D., Klingenberg, W., Meyer, W. [1968]: Riemannsche Geometrie im Grossen. Lect. Notes Math. 55, Zbl. 155, 307

    MathSciNet  Google Scholar 

  • Gromov, M. [1981a]: Groups of polynomial growth and expanding maps. Publ. Math., Inst. Hautes Etud. Sci. 53, 53–78, Zbl.474.20018

    MathSciNet  MATH  Google Scholar 

  • Gromov, M. [1981b]: Structures métriques pour les variétés Riemanniennes. Redigé par J. Lafontaine et P. Pansu. Textes Mathématiques, 1. Cedic/Nathan. VII: Paris, Zbl.509.53034

    MATH  Google Scholar 

  • Günter, N.M. [1941]: Lectures on the Calculus of Variations. ONTI: Leningrad-Moscow (Russian)

    Google Scholar 

  • Hartman, P. [1964]: Ordinary Differential Equations. J. Wiley & Sons: New York-London-Sydney, Zbl.125, 321

    MATH  Google Scholar 

  • Haynes, G.W., Hermes, H. [1970]: Nonlinear controllability via Lie theory. SIAM J. Control Optimization, 8, 450–460, Zbl.229.93012

    MathSciNet  MATH  Google Scholar 

  • Helffer, B., Nourrigat, J. [1985]: Hypoellipticité Maximale pour des Opérateurs Polynômes de Champs de Vecteurs. Progress in Math. 58. Birkhäuser: Basel-Boston-Stuttgart, Zbl.568.35003

    MathSciNet  Google Scholar 

  • Helgason, S. [1978]: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press: New York-London, Zbl.451.53038

    MATH  Google Scholar 

  • Hertz, H.R. [1894] Die Prinzipien der Mechanik. Gesammelte Werke, Bd. 2. J.A. Barth: Leipzig, Jbuch 25, 1310

    Google Scholar 

  • Hörmander, L. [1967]: Hypoelliptic second order differential equations. Acta Math. 119, 147–171, Zbl.156, 107

    MathSciNet  MATH  Google Scholar 

  • Hörmander, L., Melin, A. [1978]: Free systems of vector fields. Ark. Mat. 16, 83–88, Zbl.383.35013

    MathSciNet  MATH  Google Scholar 

  • Hueber, H., Müller, D. [1989]: Asymptotics for some Green kernels of the Heisenberg group and the Martin boundary. Math. Ann. 283, 97–119, Zbl.639.31005

    MathSciNet  MATH  Google Scholar 

  • Hulanicki, A. [1976]: The distribution of energy in the Brownian motion in Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group. Stud. Math. 56, 165–173, Zbl.336.22007

    MathSciNet  MATH  Google Scholar 

  • Jakubczyk, B., Przytycki, F. [1984]: Singularities of k-tuples of vector fields. Diss. Math. 213, Zbl.565.58007

    MathSciNet  Google Scholar 

  • Judjevic V., Sussmann, H.J. [1972]: Controllability of nonlinear systems. J. Differ. Equations 12, 95–116, Zbl.242.49040

    MATH  Google Scholar 

  • Kannai, Y. [1977]: Off diagonal short time asymptotics for fundamental solutions of diffusion equations. Commun. Partial Differ. Equations 2, 781–830, Zbl.381.35039

    MathSciNet  Google Scholar 

  • Karapetyan, A.V. [1981]: On realization of nonholonomic constraints by viscous friction forces and celtic stones stability. Prikl. Mat. Mekh. 45, 542–51. English transl.: J. Appl. Math. Mech. 45, 30–36 (1982), Zbl.493.70008

    Google Scholar 

  • Kobyashi, S., Nomizu, K. [1963, 1969]: Foundations of Differential Geometry, Vol. 1, 2. Interscience Publ.: New York-London, Zbl.119, 375, Zbl.175, 485

    Google Scholar 

  • Kozlov, V.V. [1982a]: Dynamics of systems with non-integrable constraints. I. Vestn. Mosk. Univ., Ser. I, No. 3, 92–100. English transl., Mosc. Univ. Mech. Bull. 37, No. 3–4, 27–34 (1982), Zbl.501.70016

    Google Scholar 

  • Kozlov, V.V. [1982b]: Dynamics of systems with non-integrable constraints. II. Vestn. Mosk. Univ., Ser. I, No. 4, 70–76. English transl. Mosc. Univ. Mech. Bull. 37, No. 3–4, 74–80 (1982), Zbl.508.70012

    Google Scholar 

  • Kozlov, V.V. [1983]: Dynamics of systems with constraints. III. Vestn. Mosk. Univ., Ser. I, No. 3, 102–111. English transl.: Mosc. Univ. Mech. Bull. 38, No. 3, 40–51 (1983), Zbl.516.70017

    Google Scholar 

  • Kumpera, A., Ruisz, C. [1982]: Sur l’équivalence locale des systèmes de Pfaffen drapeau. In: Monge-Ampère Equations and Related Topics. Proc. Semin., Firenze, 1980, 201–248, Zbl.516.58004

    Google Scholar 

  • Lanczos, C. [1949]: The Variational Principles of Mechanics. Univ. Toronto Press: Toronto, Zbl.37, 399

    MATH  Google Scholar 

  • Laptev, G.F. [1953]: Differential geometry of embedded manifolds. Tr. Mosk. Mat. O-va 2, 275–382 (Russian), Zbl.53, 428

    MathSciNet  MATH  Google Scholar 

  • Lefshetz, S. [1957]: Differential Equations. Geometric Theory. Interscience Publishers: New York-London-Sydney, Zbl.80, 64

    Google Scholar 

  • Levitt, N., Sussmann, H.J. [1975]: On controllability by means of two vector fields. SIAM J. Control Optimization, 13, No. 6, 1271–1281, Zbl.313.93006

    MathSciNet  MATH  Google Scholar 

  • Lobry, C. [1973]: Dynamical polysystems and control theory. In: Geom. Methods Syst. Theory, Proc. NATO Adv. Study Inst. London, 1–42, Zbl.279.93012

    Google Scholar 

  • Lumiste Yu.G. [1966]: Connections in homogeneous bundles. Mat. Sb., Nov. Ser. 69 (111), 434–469. English transl.: Am. Math. Soc., Transl., II. Ser. 92, 231–274 (1970), Zbl.143, 446

    MathSciNet  Google Scholar 

  • Lutz, R. [1974]: Structures de contact en codimension quelconque. In: Géométrie Différentielle, Colloque, Santiago de compostella, Lect. Notes Math. 392 (Vidal, E. (Ed.)), 23–29, Zbl.294.5303

    Google Scholar 

  • Manin, Yu.I. [1984]: Gauge Field Theory and Complex Geometry. Nauka: Moscow. English transl.: Die Grundlehren der Mathematischen Wissenschaften 289. Springer-Verlag: New York-Berlin-Heidelberg, 1988, Zbl.576.53002

    Google Scholar 

  • Martinet, I. [1971]: Formes de contact sur les variétés de dimension 3. In: Proc. Liverpool Singularities-Symp. II, Lect. Notes Math. 209 (Wall, C.T.C. (Ed.)), 142–163, Zbl.215, 230

    Google Scholar 

  • Melin, A. [1983]: Parametrix constructions for right invariant differential operators on nilpotent groups. Ann. Global Anal. Geom. 1, No. 1, 79–130, Zbl.524.58044

    MathSciNet  MATH  Google Scholar 

  • Menikoff, A., Sjøstrand, J. [1978]: On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235, 55–85, Zbl.375.35014

    MathSciNet  MATH  Google Scholar 

  • Métivier, G. [1976]: Fonction spectrale et valeurs propres d’opérateurs non elliptiques. C. R. Acad. Sci. Paris, Ser. A283, 453–456, Zbl.337.35057

    MathSciNet  MATH  Google Scholar 

  • Milnor, J. [1963]: Morse Theory. Ann. Math. Studies 51. Princeton Univ. Press: Princeton N. J., Zbl.108, 104

    Google Scholar 

  • Mitchell, J. [1985]: On Carnot-Caratheodory metrics. J. Differ. Geom. 21, 35–45, Zbl.554.53023

    MATH  Google Scholar 

  • Mormul, P. [1988]: Singularities of vector fields in 4. Institute of Math. of the Polish Academy of Sciences, Preprint No. 420: Warszawa

    Google Scholar 

  • Nachman, A. [1982]: The wave equation on the Heisenberg group. Commun. Partial Differ. Equations 7, 675–714, Zbl.524.35065

    MathSciNet  MATH  Google Scholar 

  • Nagano, T. [1966]: Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan. 18, No. 4, 398–404, Zbl.147,235

    MathSciNet  MATH  Google Scholar 

  • Nagel, A., Stein, E.M., Wainger, S. [1985]: Balls and metrics defined by vector field. I. Acta Math. 155, No. 1–2, 103–147, Zbl.578.32044

    MathSciNet  Google Scholar 

  • Nejmark, Yu.L., Fufaev, N.A. [1967]: Dynamics of Nonholonomic Systems. Nauka: Moscow (Russian), Zbl. 171, 455

    Google Scholar 

  • Pansu, P. [1983]: Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory Dyn. Syst. 3, 415–445, Zbl.509.53040

    MathSciNet  MATH  Google Scholar 

  • Rashevsky, P.K. [1938]: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta. Ser. Phys. Math., Vol. 2, 83–94 (Russian)

    Google Scholar 

  • Rashevsky, P.K. [1947]: A Geometric Theory of Partial Differential Equations. ONTI: Moscow-Leningrad (Russian), Zbl. 36, 64

    Google Scholar 

  • Rashevsky, P.K. [1954]: Linear differential geometrical objects. Dokl. Akad. Nauk SSSR 97, 606–611 (Russian), Zbl.57, 134

    Google Scholar 

  • Rotschild, L., Stein, E.M. [1976]: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320, Zbl.346.35030

    MathSciNet  Google Scholar 

  • Routh, E.G. [1905]: Dynamics of a System of Rigid Bodies, Vol. 1. McMillan & Co: London, Jbuch. 36, 749

    MATH  Google Scholar 

  • Rund, H. [1959]: Differential Geometry of Finsler Spaces. Die Grundlehren der Math. Wissenschaften 101. Springer-Verlag: New York-Berlin-Heidelberg, Zbl.87, 366

    Google Scholar 

  • Sanchez-Calle, A. [1984]: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78, 143–160, Zbl.582.58004

    MathSciNet  MATH  Google Scholar 

  • Shcherbakov, R.N. [1980]: Twenty issues of Geometricheski Sbornik (a bibliography). In: Geom. Sb. 21, 79–90 (Russian)

    Google Scholar 

  • Schoenberg, I. [1931]: Notes on geodesics in higher spaces. Bull. Am. Math. Soc. 37, No. 5, 345, Jbuch 57, 967

    MATH  Google Scholar 

  • Schouten, J.A. [1928]: On nonholonomic connections. Proc. Amsterdam, Nederl. Akad. Wetensch., Ser. A, 31, No. 3, 291–299, Jbuch 54, 758

    MATH  Google Scholar 

  • Schouten, J.A., van Kampen, E.R. [1930]: Zur Einbettung und Krümmungstheorie nichtholonomer Gebilde. Math. Ann. 103, 752–783, Jbuch 56, 635

    MathSciNet  MATH  Google Scholar 

  • Schouten, J.A., Kulk, V.D. [1949]: Pfaff’s Problem and its Generalization. Clarendon Press: Oxford, Zbl.33, 369

    Google Scholar 

  • Sidorov, A.F., Shapeev, V.P., Yanenko, N.N. [1984]: Method of Differential Constraints and its Applications to Gas Dynamics. Nauka: Moscow (Russian), Zbl.604.76062

    Google Scholar 

  • Sintsov, D.M. [1972]: Papers on Nonholonomic Geometry. Vischa Shkola: Kiev (Russian)

    Google Scholar 

  • Smirnov, V.I. [1957]: Lectures on Higher Mathematics, Vol. 4 (3rd edition). GITTL: Moscow. German transl.: Berlin (1958), Zbl.44, 320

    Google Scholar 

  • Solov’ev, A. [1982]: Second fundamental form of a distribution. Math. Zametki 31, No. 1, 139–146. English transl.: Math. Notes 31, 71–75 (1982), Zbl.492.53028

    Google Scholar 

  • Solov’ev, A. [1984]: Curvature of a distribution. Mat. Zametki 35, 111–124. English transl.: Math. Notes 35, 61–68 (1984), Zbl.553.53017

    MathSciNet  Google Scholar 

  • Solov’ev, A. [1988]: On Pontryagin classes of completely geodesic subbundle. Sib. Mat. Zh. 29, No. 3, 216–219. English transl.: Sib. Math. J. 29, 510–512 (1988), Zbl.654.57012

    MATH  Google Scholar 

  • Stein E.M. [1987]: Problems in harmonic analysis related to curvature and oscillatory integrals. Proc. Int. Congr. Math., Berkeley, USA 1986, Vol. 1, 196–221, Zbl.718.42012

    Google Scholar 

  • Sternberg, S. [1964]: Lectures on Differential Geometry. Prentice Hall: Englewood Cliffs, Zbl. 129, 131

    MATH  Google Scholar 

  • Strichartz, R.S. [1978]: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263, Zbl.609.53021

    MathSciNet  Google Scholar 

  • Suslov, D.K. [1946]: Theoretical Mechanics. ONTI: Moscow-Leningrad (Russian)

    Google Scholar 

  • Sussmann, H.J. [1973]: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 280, 171–188, Zbl.274.58002

    MathSciNet  Google Scholar 

  • Sussmann, H.J. [1983]: Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J. Control, Optimization 21, 686–713, Zbl.523.49026

    MathSciNet  MATH  Google Scholar 

  • Synge, J.L. [1927]: On geometry of dynamics. Philos. Trans. R. Soc. Lond., Ser. A, 226, No. 2, 31–107

    Google Scholar 

  • Synge, J.L. [1928]: Geodesics in non-holonomic geometry. Math. Ann. 99, 738–751, Jbuch 54, 758

    MathSciNet  MATH  Google Scholar 

  • Synge, J.L. [1936]: Tensorial Methods in Dynamics. Toronto University Press: Toronto, Zbl. 17, 41

    MATH  Google Scholar 

  • Taylor, M. [1984]: Noncommutative Microlocal Analysis. Part I. Mem. Am. Math. Soc. No. 313. Am. Math. Soc: Providence, Zbl.554.35025

    Google Scholar 

  • Taylor, M. [1986]: Noncommutative Harmonic Analysis. Mathematical Surveys Monographs, No. 22. Am. Math. Soc: Providence, Zbl.604.43001

    MATH  Google Scholar 

  • Taylor, T.J.S. [1989a]: Some aspects of differential geometry associated with hypoelliptic second order operators. Pac. J. Math. 136, No. 2, 355–378, Zbl.698.35041

    MATH  Google Scholar 

  • Taylor, T.J.S. [1989b]: Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemannian geometry. Pac. J. Math. 136 (2), 379–399, Zbl.692.35011

    MATH  Google Scholar 

  • Treves, F. [1980]: Introduction to Pseudodifferential and Fourier Integral Operators. Plenum Press: New York-London, Zbl.453.47027

    MATH  Google Scholar 

  • Ulam, S.M. [1960]: A Collection of Mathematical Problems. Interscience Publ.: New York-London, Zbl.86, 241

    MATH  Google Scholar 

  • Vagner, V.V. [1935]: Differential geometry of nonholonomic manifolds. Tr. Semin. Vectora. Tenzorn. Anal. 213, 269–314 (Russian), Zbl.12, 318

    Google Scholar 

  • Vagner, V.V. [1940]: Differential geometry of nonholonomic manifolds. In: The VIII-th International Competition for the N.I. Lobatschewski Prize. Report. The Kazan Physico-Mathematical Society: Kazan

    Google Scholar 

  • Vagner, V.V. [1941]: A geometric interpretation of nonholonomic dynamical systems. Tr. Semin. Vectora. Tenzorn. Anal. 5, 301–327

    MathSciNet  MATH  Google Scholar 

  • Vagner, V.V. [1965]: Geometria del calcolo delle variazioni, Vol. 2. C.I.M.E.: Roma

    Google Scholar 

  • Varchenko, A.N. [1981]: On obstructions to local equivalence of distributions. Mat. Zametki 29, No. 6, 939–947. English transl.: Math. Notes 29, 479–484 (1981), Zbl.471.58004

    MathSciNet  MATH  Google Scholar 

  • Varopoulos, N.Th. [1986]: Analysis on nilpotent Lie groups. J. Funct. Anal. 66, No. 3, 406–431, Zbl.595.22008

    MathSciNet  MATH  Google Scholar 

  • Varopoulos, N.Th. [1986]: Analysis on Lie groups. J. Funct. Anal. 76, No. 2, 346–410, Zbl.634.22008

    MathSciNet  Google Scholar 

  • Varopoulos, N.Th. [1988]: Estimations du noyau de la chaleur sur une variété. C. R. Acad. Sci., Paris, Ser. I 307, 527–529, Zbl.649.58032

    MathSciNet  MATH  Google Scholar 

  • Varopoulos, N.T. [1988]: Estimations gaussiennes du noyau de la chaleur sur les variétés. C. R. Acad. Sci., Paris, Ser. I 307, 861–863, Zbl.671.58039

    MathSciNet  MATH  Google Scholar 

  • Vasil’ev, A.M., Efimov, N.N., Rashevsky, P.K. [1967]: The studies of differential geometry in Moscow University in the Soviet period. Vestn. Mosk. Univ., Ser I 22, No. 5, 12–23 (Russian), Zbl. 155, 9

    MATH  Google Scholar 

  • Vershik, A.M. [1984]: Classical and nonclassical dynamics with constraints. In: Geometriya: Topologiya v Global’nykh Nelinejnykh Zadachakh, Nov. Global’nom Anal. 1984, 23–48. English transl.: Lect. Notes Math. 1108, 278–301 (1984), Zbl.538.58012

    Google Scholar 

  • Vershik, A., Berestouski, V. [1992]: Manifolds with intrinsic metrics and non-holonomic spaces. Advances in Soviet Math. 9, 255–267

    Google Scholar 

  • Vershik, A.M., Chernyakov, A.G. [1982]: Fields of convex polyhedra and the Pareto-Smale optimum. Optimizatsiya 28 (45), 112–146 (Russian), Zbl.498.90065

    MathSciNet  Google Scholar 

  • Vershik, A.M., Faddeev, L.D. [1972]: Differential geometry and Lagrangian mechanics with constraints. Dokl. Akad Nauk SSSR 202, No. 3, 555–557. English transl.: Sov. Phys. Dokl. 17, 34–36 (1972), Zbl.243.70014

    Google Scholar 

  • Vershik, A.M., Faddeev, L.D. [1975]: Lagrangian mechanics in invariant form. In: Probl. Theor. Phys., Vol. II, 129–141. English transí.: Sel. Math. Sov. 1, 339–350, Zbl.518.58015

    Google Scholar 

  • Vershik, A.M., Gershkovich, V.Ya. [1986a]: Nonholonomic problems and geometry of distributions. In: Griffiths, P.A. Exterior differential systems and the calculus of variations (Russian translation), 317–349. MIR: Moscow. English transl.: Acta Appl. Math. 12, No. 2, 181–209, 1988, Zbl.666.58004

    Google Scholar 

  • Vershik, A.M., Gershkovich, V.Ya. [1986b]: Geodesic flows on SL2ℝ with nonholonomic constraints. Zap. Nauchn. Semin. Leningr., Otd. Mat. Inst. Steklova 155, 7–17. English transl.: J. Sov. Math. 41, No. 2, 891–898 (1988), Zbl.673.58034

    Google Scholar 

  • Vershik, A., Gershkovich, V. [1987]: The geometry of the nonholonomic sphere of three-dimensional Lie groups. In: Geometriya i Teoriya Osobennosej v Nelinnejnykh Uravneniyakh, Nov. Global’nom Anal. 1987, 61–75. English transl.: Lect. Notes Math. 1334 (Borisovich, Yu.G., Gliklikh, Yu.E. (Eds.)), 309–331 (1988), Abl.637.53061

    Google Scholar 

  • Vershik, A., Gershkovich, V. [1988]. Determination of the functional dimension of the orbit space of generic distributions. Mat. Zametki 44, 596–603. English transl.: Math. Notes 44, 806–810 (1988), Zbl.694.58005

    MathSciNet  MATH  Google Scholar 

  • Vershik, A., Gershkovich, V. [1989]: A nilpotent Lie algebra bundle over a nonholonomic manifold (Nilpotentization). Zap. Nauchn. Semin. Leningr., Otd. Mat. Inst. Steklova 172, 21–40 (Russian), Zbl.705.58004

    Google Scholar 

  • Vershik, A., Granichina, O. [1991]: Reduction of nonholonomic variational problems to the iso-perimetric problems and connections in principal bundles. Mat. Zametki 49, 37–44

    MathSciNet  Google Scholar 

  • Veselov, A.P., Veselova, L.E. [1986]: Flows on Lie groups with nonholonomic constraints and integrable non-Hamiltonian systems Funkts. Anal. Prilozh. 20, No. 4, 65–66. English transl: Funct. Anal. Appl. 20, 308–309, Zbl.621.58024

    MathSciNet  Google Scholar 

  • Veselov, A., Veselova, L. [1988]: Integrable nonholonomic systems on Lie groups. Math. Zametki 44, No. 5, 604–619. English transl.: Math. Notes 44, No. 5, 810–819 (1988), Zbl.662.58020

    MathSciNet  MATH  Google Scholar 

  • Vinogradov, A.M., Krasil’shchik, I.S., Lychagin, V.V. [1981]: Introduction to the Geometry of Nonlinear Differential Equations. Nauka: Moscow. English transl.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach Publ.: New York, 1986, Zbl.592.35002, Zbl.722.35001

    Google Scholar 

  • Vosilyus, R.V. [1983]: A contravariant theory of differential prolongation in a model of a space with connection. Itogi Nauki Tekh. Ser. Probl. Geom. 14, 101–176. English transl.: J. Sov. Math. 28, 208–256 (1985), Zbl.528.58039

    MathSciNet  Google Scholar 

  • Vranceanu, G. [1931]: Parallèlisme et courbure dans une variété non holonome. Atti del Congresso Internaz. dei Matematici, Bologna 1928, No. 5., 63–75. Zanichelli: Bologna

    Google Scholar 

  • Whittaker, E.T. [1937]: A Treatise on the Analytical Dynamics of Rigid Bodies. Cambridge Univ. Press: Cambridge, Zbl.61, 418

    MATH  Google Scholar 

  • Young, L.C. [1969]: Lectures on the Calculus of Variations and Optimal Control Theory. W.B. Saunders Co: Philadelphia-London-Toronto, Zbl. 177, 378

    MATH  Google Scholar 

  • Zhitomirsky, M. (= Zhitomirskij, M.) [1990]: Normal forms of two-dimensional distribution germs in 4. Mat. Zametki 48 (Russian)

    Google Scholar 

Download references

Authors

Editor information

V. I. Arnol’d S. P. Novikov

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnol’d, V.I., Novikov, S.P. (1994). Nonholonomic Variational Problems on Three-Dimensional Lie Groups. In: Arnol’d, V.I., Novikov, S.P. (eds) Dynamical Systems VII. Encyclopaedia of Mathematical Sciences, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06796-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06796-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05738-0

  • Online ISBN: 978-3-662-06796-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics