Skip to main content

Physically Based Lighting Calculations for Computer Graphics: A Modern Perspective

  • Chapter
Photorealism in Computer Graphics

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

Abstract

The light transport problem is discussed and formulated in a form convenient for Computer Graphics. Basic physical units are presented, and the rendering equation is formulated in these units. A survey of view dependent and zonal methods is presented, and the extension of these methods to non-diffuse surfaces and non-isotropically scattering media is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Airey and M. Ouh-young. Two adaptive techniques let progressive radiosity outperform the traditional radiosity algorithm. Tech Report, University of North Carolina at Chapel Hill, 1989.

    Google Scholar 

  2. J. M. Airey, J. H. Rohlf,, and F. P. Brooks. Towards image realism with interactive update rates in complex virtual building environments. ACM Workshop on Interactive Graphics, pages 41–50, 1990.

    Google Scholar 

  3. D. R. Baum, H. E. Rushmeier, and J. M. Winget. Improving radiosity solutions through the use of analytically determined form-factors. Computer Graphics,23(3):325–334, July 1989. ACM Siggraph 89 Conference Proceedings.

    Google Scholar 

  4. C. Bouville, J. L. Dubois, I. Marchal, and M. L. Viand. Monte-carlo integration applied to an illumination model. Eurographics 88, pages 483–497, 1988.

    Google Scholar 

  5. M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A progressive refinement approach to fast radiosity image generation. Computer Graphics,22(4):75–84, August 1988. ACM Siggraph 88 Conference Proceedings.

    Google Scholar 

  6. M. F. Cohen and D. P. Greenberg. The hemi-cube: a radiosity solution for complex environments. Computer Graphics, 19(3):31–40, July 1985. ACM Siggraph 85 Conference Proceedings.

    Google Scholar 

  7. M. F. Cohen, D. P. Greenberg, D. S. Immel, and P. J. Brock. An efficient radioisty approach for realistic image synthesis. IEEE Computer Graphics and Applications, 6 (2): 26–35, 1986.

    Article  Google Scholar 

  8. R. L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics, 5 (1): 51–72, January 1986.

    Article  Google Scholar 

  9. R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Computer Graphics,18(4):165174, July 1984. ACM Siggraph 84 Conference Proceedings.

    Google Scholar 

  10. W. G. Driscoll. Handbook of Optics. McGraw-Hill, New York, N.Y., 1978.

    Google Scholar 

  11. A. S. Glassner. How to derive a spectrum from an rgb triplet. IEEE Computer Graphics and Applications, 9 (7): 95–99, 1989.

    Article  Google Scholar 

  12. C. M. Goral, K. E. Torrance, and D. P. Greenberg. Modeling the interaction of light between diffuse surfaces. Computer Graphics,18(4):213–222, July 1984. ACM Siggraph 84 Conference Proceedings.

    Google Scholar 

  13. R. Hall. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, N.Y., 1988.

    Google Scholar 

  14. R. Hall and D. P. Greenberg. A testbed for realistic image synthesis. IEEE Computer Graphics and Applications, 3 (8): 10–20, 1983.

    Article  Google Scholar 

  15. D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments. Computer Graphics, 20(4):133–142, August 1986. ACM Siggraph 86 Conference Proceedings.

    Google Scholar 

  16. A. N. S. Institute. Nomenclature and definitions for illumination engineering. ANSI Report, 1986. ANSI/IES RP-16–1986.

    Google Scholar 

  17. J. T. Kajiya. The rendering equation. Computer Graphics,20(4):143–150, August 1986. ACM Siggraph 86 Conference Proceedings.

    Google Scholar 

  18. J. T. Kajiya and B. P. V. Herzen. Ray tracing volume densities. Computer Graphics,18(4):165–174, July 1984. ACM Siggraph 84 Conference Proceedings.

    Google Scholar 

  19. J. E. Kaufman, editor. The Illumination Engineering Society Lighting Handbook, Reference Volume. Waverly Press, Baltimore, MD, 1984.

    Google Scholar 

  20. R. V. Klassen. Modeling the effect of the atmosphere on light. ACM Transactions on Graphics, 6 (3): 215–237, July 1987.

    Article  Google Scholar 

  21. M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8 (3): 29–37, 1988.

    Article  Google Scholar 

  22. T. J. V. Malley. A shading method for computer generated images. Masters thesis, University of Utah, June 1988.

    Google Scholar 

  23. G. W. Meyer. Color issues in synthetic image generation. A Consumers and Developers Guide to Image Synthesis, pages 49–80, 1988. ACM Siggraph 88 Course Notes.

    Google Scholar 

  24. G. W. Meyer. Wavelength selection for synthetic image generation. Computer Vision, Graphics, and Image Processing, 41: 57–79, 1988.

    Article  Google Scholar 

  25. L. Neuman and A. Neumann. Photosimulation: Interreflection with arbitrary reflectance models and illumination. Computer Graphics Forum, 8: 21–34, 1989.

    Article  Google Scholar 

  26. E. D. Palik. Handbook of Optical Constants of Solids. Academic Press, New York, N.Y., 1985.

    Google Scholar 

  27. H. E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, Cornell University, May 1988.

    Google Scholar 

  28. H. E. Rushmeier and K. E. Torrance. The zonal method for calculating light intensities in the presence of a participating medium. Computer Graphics,21(4):293–302, July 1987. ACM Siggraph 87 Conference Proceedings.

    Google Scholar 

  29. L. G. Schultz and F. R. Tangherlini. Optical constants of silver, gold, copper, and aluminum ii. the index of refraction n. Journal of the Optical Society of America, 44 (5): 362–368, May 1954.

    Article  Google Scholar 

  30. Y. A. Screider. The Monte Carlo Method. Pergamon Press, 1966.

    Google Scholar 

  31. M.-Z. Shao, Q.-S. Peng, and Y.-D. Liang. A new radiosity approach by procedural refinements for realistic image synthesis. Computer Graphics,22(4):93–102, August 1988. ACM Siggraph 88 Conference Proceedings.

    Google Scholar 

  32. P. Shirley. A ray tracing algorithm for global illumination. Graphics Interface 90, May 1990.

    Google Scholar 

  33. P. Shirley and H. Neeman. Volume visualization at the center for supercomputing r d. Proceedings of the Chapel Hill Workshop on Volume Visualization, pages 17–20, May 1989.

    Google Scholar 

  34. F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. Computer Graphics, 23(3):335–344, July 1989. ACM Siggraph 89 Conference Proceedings.

    Google Scholar 

  35. C. Upson and M. Keeler. V-buffer: Visible volume rendering. Computer Graphics,22(4):59–64, July 1988. ACM Siggraph 88 Conference Proceedings.

    Google Scholar 

  36. J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: a synthesis of ray tracing and radiosity methods. Computer Graphics,21(4):311–320, July 1987. ACM Siggraph 87 Conference Proceedings.

    Google Scholar 

  37. J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing algorithm for progressive radiosity. Computer Graphics,23(3):335–344, July 1989. ACM Siggraph 89 Conference Proceedings.

    Google Scholar 

  38. T. Whitted. An improved illumination model for shaded display. Communications of the ACM, 23 (6): 343–349, June 1980.

    Article  Google Scholar 

  39. G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York, N.Y., 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shirley, P. (1992). Physically Based Lighting Calculations for Computer Graphics: A Modern Perspective. In: Bouatouch, K., Bouville, C. (eds) Photorealism in Computer Graphics. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09287-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09287-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08112-5

  • Online ISBN: 978-3-662-09287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics