Skip to main content

Formation of Clay Minerals in Hydrothermal Environments

  • Chapter

Abstract

Formation of clay minerals under hydrothermal influence is the result of rock alteration by circulating hot water in the Earth’s crust. A pre-existing rock-forming mineral assemblage is altered to a new set of minerals which are more stable under the hydrothermal conditions of temperature, pressure, and fluid composition. The interaction of hot water and rocks forms a spatially and temporally regular zonal pattern of new clay minerals, as the fluid with cooling temperature moves through the surrounding rock mass. This chapter discusses the formation of clay minerals in such dynamic processes of hydrothermal alteration. The approach is one of clay-mineral facies formed under conditions of massive alteration in the rocks. The chemical and mineralogical changes which occur on the scale of a rock or rock mass are considered to have been dealt with in the preceding chapter. The exact process of change via local, vein-influenced exchange processes is ignored for simplicity (see Chap. 6).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard P, Helgeson HC (1983) Activity/composition relations among silicates and aqueous solutions. II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays. Clays Clay Min 31: 207–217

    Google Scholar 

  • Aja SU, Rosenberg PE, Kittrick JA (1991) Illite equilibria in solutions. I. Phase relationships in the system K20-Al203-Si02-H20 between 25° and 250 °C. Geochim Cosmochim Acta 55: 1353–1364

    Google Scholar 

  • Alt JC, Jiang WT (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology 19: 570–573

    Google Scholar 

  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust. Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. J Geophys Res 91: 10309–10335

    Google Scholar 

  • Anderson AT, Newman S, Williams S, Druitt T, Skirius C, Stolper E (1989) H20, C02, CI and gas in the Plinian and ash-flow Bishop rhyolite. Geology 17: 221–225

    Google Scholar 

  • Andrews AJ (1980) Saponite and celadonite in layer 2 basalts, DSDP Leg 37. Contrib Mineral Petrol 73: 323–340

    Google Scholar 

  • Arnorsson S, Gronvold K, Sigurdsson S (1978) Aquifer chemistry of four high-temperature geothermal systems of Iceland. Geochim Cosmochim Acta 42: 523–536

    Google Scholar 

  • Bacon CR, Newman S, Stolper E (1992) Water, C02, CI, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon. Am Mineral 77: 1021–1030

    Google Scholar 

  • Bailey SW, Brown BE (1962) Chlorite polytypism. I. Regular and semi-random one-layer structures. Am Mineral 47: 819–850

    Google Scholar 

  • Bailey SW, Brindley GW, Kodama H, Martin RT (1982) Nomenclature for regular interstratifications. Clays Clay Min 30: 76–78

    Google Scholar 

  • Bargar KE, Beeson MH (1981) Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming. Am Mineral 66: 473–490

    Google Scholar 

  • Beane RE (1982) Hydrothermal alteration in silicate rocks, 117–137. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, Tucson, pp 117–137

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na20K20-Ca0-Fe0-Fe203-Al203-Si02-Ti02-H20–C02. J Petrol 29: 442–522

    Google Scholar 

  • Bethke CM, Vergo N, Altaner SP (1986) Pathways of smectite illitization. Clays Clay Min 34: 125–135

    Google Scholar 

  • Bettison LA, Schiffman P (1989) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. Am Miner 73: 62–76

    Google Scholar 

  • Bettison-Varga L, Mackinnon IDR, Schiffman P (1991) Integrated TEM, XRD, and electron microprobe investigation of mixed layered chlorite/smectite from Point Sal ophiolite, California. J Metamorph Geol 9: 697–710

    Google Scholar 

  • Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calc-silicate mineralization in active geothermasl systems. Econ Geol 79: 671–695

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1985) An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am J Sci 285: 725–763

    Google Scholar 

  • Bowers TS, Jackson KJ, Helgeson HC (1984) Equilibrium activity diagrams for coexisting minerals and aqueous solutions at pressures and temperatures to 5kb and 600 °C. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brigatti MF, Poppi L (1984) Crystal chemistry of corrensite: a review. Clays Clay Min 32: 391–399

    Google Scholar 

  • Brindley GW (1956) Allevardite. Am Mineral 41: 91–103

    Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6: 229–250

    Google Scholar 

  • Brusewitz AM (1986) Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden. Clays Clay Min 34: 442–54

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Min 23: 471–485

    Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer, the Los Azufres ( Mexico) geothermal system. Contrib Mineral Petrol 91: 235–244

    Google Scholar 

  • Chang HK, Mackenzie FT, Schoonmaker J (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Min 34: 407–423

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702–1703

    Google Scholar 

  • Creasey SC (1959) Some phase relations in hydrothermally altered rock of porphyry copper deposits. Econ Geol 54: 351–373

    Google Scholar 

  • Devine JD, Sigurdsson H, Davis AN, Self S (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climate effects. J Geophys Res 89: 6309–6325

    Google Scholar 

  • Eberl DD, Hower J (1976) Kinetics of illite formation. Geol Soc Am Bull 87: 161–172

    Google Scholar 

  • Eberl DD, Srodon J, Lee M, Nadeau PH, Northrop HR (1987) Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. Am Mineral 72: 914–934

    Google Scholar 

  • Elders WA, Hoagland JR McDowell SD, Cobo JM (1979) Hydrothermal mineral zones in the Cerro Prieto geothermal field of Baja California, Mexico. Geothermics 8: 201–209

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, New York

    Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414-A, Washington, DC, 22 pp

    Google Scholar 

  • Fournier RO (1985) The behavior of silica in hydrothermal solutions. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2: 45–61

    Google Scholar 

  • Fournier RO (1987) Conceptual models of brine evolution in magmatic hydrothermal systems. US Geol Surv Prof Pap 1350: 1487–1506

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37: 1255–1275

    Google Scholar 

  • Garrels RM (1984) Montmorillonite/illite stability diagrams. Clays Clay Min 32: 161–166

    Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44: 2021–2032

    Google Scholar 

  • Giggenbach WF (1981) Geothermal mineral equilibria. Geochim Cosmochim Acta 45: 393–410

    Google Scholar 

  • Giggenbach WF (1984) Mass transfer in hydrothermal alteration systems-a conceptual approach. Geochim Cosmochim Acta 48: 2639–2711

    Google Scholar 

  • Giggenbach WF (1985) Construction of thermodynamic stability diagrams involving dioctahedral clayminerals. Chem Geol 49: 231–242

    Google Scholar 

  • Giggenbach WF (1988) geothermal solute equilibria: derivation of Na-K-Mg-Ca geo-indicators. Geochim Cosmochim Acta 52: 2749–2765

    Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grim RE, Guven N (1978) Bentonites: geology, mineralogy, properties and uses. Elsevier, Amsterdam

    Google Scholar 

  • Guidotti CV (1984) Micas in metamorphic rocks, 357–456, In: Bailey SW (ed) Micas. Reviews in mineralogy 13. Mineralogical Society of America, Washington

    Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposits at El Salvador, Chile. Econ Geol 70: 857–912

    Google Scholar 

  • Hajash A, Chandler GW (1981) An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Contrib Mineral Petrol 78: 240–254

    Google Scholar 

  • Hall WE, Friedman I, Nash JT (1974) Fluid inclusion and light stable isotope study of the Climax molybdenum deposits, Colorado. Econ Geol 69: 884–901

    Google Scholar 

  • Hayashi M (1973) Hydrothermal alteration in the Otake geothermal area, Kyushu. J Jpn Geotherm Energy Assoc 10: 9–46

    Google Scholar 

  • Hayba DO, Bethke PM, Heald P, Foley NK (1985) Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2: 129–167

    Google Scholar 

  • Hayes JB (1970) Polytypism of chlorite in sedimentary rocks. Clays Clay Min 18: 285–306

    Google Scholar 

  • Heald P, Foley NK, Hayba DO (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Econ Geol 82: 1–26

    Google Scholar 

  • Hedenquist JW (1987) Volcanic-related hydrothermal systems in the circum-Pacific Basin and their potential for mineralization. Mining Geol Jpn 37: 347–364

    Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80: 1640–1668

    Google Scholar 

  • Helgeson HC (1979) Mass transfer among minerlas and hydrothermal solutions. In: Barnes HL (ed) Geochemistry of hydrothermal solutions. John Wiley Sons, New York, pp 568–610

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sei 278-A

    Google Scholar 

  • Helmold RP, van der Kamp PC (1984) Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. Am Assoc Petrol Geol Mem 37: 239–276

    Google Scholar 

  • Hemley JJ, Montoya JW, Marinenko JW, Luce RW (1980) Equilibria in the system Al20-Si02- H20 and some general implications for alteration/mineralization processes. Econ Geol 75: 210–228

    Google Scholar 

  • Henley RW (1985) The geothermal framework of epithermal deposits. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2: 1–24

    Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sei Rev 19: 1–50

    Google Scholar 

  • Henley RW, Truesdell AH, Barton PB Jr (1984) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 1 Soc Econ Geol, El Paso

    Google Scholar 

  • Higashi S (1980) Mineralogical studies of hydrothermal dioctahedral mica minerals. Mem Facult Sei Kochi Univ El: 1–39

    Google Scholar 

  • Higashi S (1982) Tobelite, a new ammonium dioctahedral mica. Mineral J 11: 138–146

    Google Scholar 

  • Higashi S (1990) Li-tosudite in Tobe pottery stone. J Mineral Soc Jpn Spec Issue 19: 3–9

    Google Scholar 

  • Higashi S, Okazake K, Makamura T, Masaki K (1991) Mineralogical features of sericite comprising Roseki clay deposits in the Chugoku province of western Japan, with special reference to interlayer NH4 composition, mica/smectite interstratification, 2M2 polytype and thermal behavior. Mining Geol Jpn 41: 351–366

    Google Scholar 

  • Honnorez J (1981) The ageing of the oceanic crust at low temperature. In: Emiliani C (ed) The oceanic lithosphere. The sea, vol 7. John Wiley, New York, pp 525–587

    Google Scholar 

  • Horton DG (1985) Mixed-layer illite/smectite as a paleotemperature indicator in the Ametheyst vein system, Creede district, Colorado, USA. Contrib Mineral Petrol 91: 171–179

    Google Scholar 

  • Howard KJ, Fisk MR (1988) Hydrothermal alumina-rich clays and boehmite on the Gorda Ridge. Geochim Cosmochim Acta 53: 2269–2279

    Google Scholar 

  • Hower J, Mowatt TC (1966) The mineralogy of illite and mixed-layer illite-montmorillonites. Am Mineral 51: 825–854

    Google Scholar 

  • Huang WL (1990) Illitic clay formation during experimental diagenesis of arkoses. Abstr Annu Meet 27th Clay Minerals Conf, Columbia MO, 62 pp

    Google Scholar 

  • Hulen JB, Nielson DL (1988) Hydrothermal brecciation in the Jemez fault zone, Valles calldera, New Mexico: results from continental scientific drilling program core hole VC-1. J Geophys Res 93: 6077–6090

    Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42: 107–125

    Google Scholar 

  • Imai N, Otsuka R (1984) Sepiolite and palygorskite in Japan, 211–232. In: Singer A, Galan E (eds) Palygorskite-sepiolite: occurrences, genesis and uses. Develop Sediment 37. Elsevier, Amsterdam

    Google Scholar 

  • Inoue A (1985) Chemistry of corrensite: a trend in composition of trioctahedral chlorite/smectite during diagenesis. J Coll Arts Sci Chiba Univ B-18: 69–82

    Google Scholar 

  • Inoue A (1986) Morphological change in a continuous smectite-to-illite conversion series by scanning and transmission electron microscope. J Coll Arts Sci Chiba Univ B-19: 23–33

    Google Scholar 

  • Inoue A (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations in the Hokuroku Kuroko mineralization area, northest Japan. Proc 8th Int Clay Conf, Denver, pp 158–164

    Google Scholar 

  • Inoue A, Kitagawa R (1994) Morphological characteristics of illitic clay minerals from a hydrothermal system. Am Mineral 79: 700–711

    Google Scholar 

  • Inoue A, Utada M (1983) Further investigations of a conversion series of dioctahedral mica/ smectites in the Shinzan hydrothermal alteration area, northeast Japan. Clays Clay Min 31: 401–412

    Google Scholar 

  • Inoue A, Utada M (1989) Mineralogy and genesis of hydrothermal aluminous clays containing sudoite, tosudite, and rectorite in a drill hole near the Kamikita Kuroko ore deposit, northern Honshu, Japan. Clay Sci 7: 193–217

    Google Scholar 

  • Inoue A, Utada M (1991a) Hydrothermal alteration in the Kamikita Kuroko mineralization area, northern Honshu, Japan. Mining Geol Jpn 41: 203–218

    Google Scholar 

  • Inoue A, Utada M (1991b) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am Mineral 76: 628–640

    Google Scholar 

  • Inoue A, Utada M (1991c) Hudrothermal alteration related to Kuroko mineralization in the Kamikita area, northern Honshu, Japan, with special reference to the acid-sulfate alteration. Geol Surv Jpn Rep 277: 39–48

    Google Scholar 

  • Inoue A, Utada M (1991d) Pumpellyite and related minerals from hydrothermally altered rocks at the Kamikita area, northern Honshu, Japan. Can Mineral 29: 255–270

    Google Scholar 

  • Inoue A, Minato H, Utada M (1978) Mineralogical properties and occurrence of illite/ montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga Omono district. Clay Sci 5: 123–136

    Google Scholar 

  • Inoue A, Utada M, Kusakabe H (1984a) Clay mineral composition and their exchangeable interlayer cation composition from altered rocks around the Kuroko deposits in the Matsumine-Shakanai-Matsuki area of the Hokuroku district, Japan. J Clay Sci Soc Jpn 24: 69–77

    Google Scholar 

  • Inoue A, Utada M, Nagata H, Watanabe T (1984b) Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita Prefecture, Japan. Clay Sci 6: 103–116

    Google Scholar 

  • Inoue A, Kohyama N, Kitagawa R, Watanabe T (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Min 35: 111–120

    Google Scholar 

  • Inoue A, Velde B, Meunier A, Touchard G (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73: 1325–2334

    Google Scholar 

  • Inoue A, Bouchet A, Velde B, Meunier A (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays Clay Min 37: 227–234

    Google Scholar 

  • Inoue A, Watanabe T, Kohyama N, Brusewitz AM (1990) Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden. Clays Clay Min 34: 241–249

    Google Scholar 

  • Inoue A, Utada M, Wakita K (1992) Smectite-to-illite conversion in natural hydrothermal systems. Appl Clay Sci 7: 131–145

    Google Scholar 

  • Iwao S (1970) Clays and silica deposits of volcanic affinity in Japan, 267–283. In: Tatsumi T (ed) Volcanism and ore genesis. University of Tokyo Press, Tokyo

    Google Scholar 

  • Izawa S (1986) Clays minerals in epithermal deposits. J Mineral Soc Jpn Spec Issue 17: 17–24

    Google Scholar 

  • Jennings S, Thompson GR (1986) Diagenesis in Plio-Pleistocene sediments in the Colorado River delta, southern California. J Sediment Petrol 56: 89–98

    Google Scholar 

  • Kalgeropoulos SI, Scott SD (1983) Mineralogy and geochemistry of tuffaceous exhalites (Tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Econ Geol Monogr 5: 412–432

    Google Scholar 

  • Keller WD, Reynolds RC, Inoue A (1986) Morphology of clay minerals in the smectite-to-illite conversion by scanning electron microscopy. Clays Clay Min 34: 187–197

    Google Scholar 

  • Kimbara K (1983) Hydrothermal rock alteration and geothermal systems in the eastern Hachimantai geothermal area, Iwate Prefecture, northern Japan. J Jpn Assoc Miner Petrol Econ Geol 78: 479–490

    Google Scholar 

  • Kimbara K, Ohkubo T (1978) Hydrothermal altered rocks found in an exploration bore-hole (No. SA-1), Satsunan geothermal area, Japan. J Jpn Assoc Miner Petrol Econ Geol 73: 125–136

    Google Scholar 

  • Kodama H (1966) The nature of the component layers of rectorite. Am Mineral 51: 1035–1055

    Google Scholar 

  • Kohyama N, Sudo T (1975) Hisingerite occurring as a weathering product of iron-rich saponite. Clays Clay Min 23: 215–218

    Google Scholar 

  • Kohyama N, Shimoda S, Sudo T (1973) Iron-rich saponite (ferrous and ferric forms). Clays Clay Min 21: 229–237

    Google Scholar 

  • Korzhinskii DS (1959) Physico-chemical bases of the analysis of the paragenesis of minerals. Consultants Bureau, New York (translated in English from Russian )

    Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291: 473–506

    Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res 89: 4009–4025

    Google Scholar 

  • Lichtner PC (1991) The quasi-stationary state approximation to fluid/rock reaction: local equilibrium revisited. In: Ganguly J (ed) Diffusion, atomic ordering, and mass transport. Adv Phys Geochem 8. Springer Berlin Heidelberg, New York, pp 452–560

    Google Scholar 

  • Liou JG (1971) Stilbite-laumontite equilibrium. Contrib Mineral Petrol 31: 171–177

    Google Scholar 

  • Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys J R Ast Soc 39: 465–509

    Google Scholar 

  • Lonker SW, FitzGerald JD, Hedenquist JW, Walshe JL (1990) Mineral-fluid interactions in the Broadlands-Ohaki geothermal system, New Zealand. Am J Sci 290: 995–1068

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65: 373–408

    Google Scholar 

  • Marumo K, Matsuhisa Y, Nagasawa K (1982) Hydrogen and oxygen isotopic compositions of kaolin minerals. In: Jpn Proc Int Clay Conf, Development in Sedimentology 35. Elsevier, Amsterdam, pp 315–320

    Google Scholar 

  • Matsuda T (1984) Mineralogical study on regularly interstratified dioctahedral mica-smectites. Clay Sci 6: 117–148

    Google Scholar 

  • McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74: 293–310

    Google Scholar 

  • McNabb A, Henley RW (1979) Water-rock interaction during reinjection of geothermal waste water. Proc NZ Geothermal Worksh, Univ Auckland, pp 68–71

    Google Scholar 

  • Merceron T, Velde B (1991) Application of Cantor’s dust method for fractal analysis of fractures in the Toyoha mine. Jpn J Geophys Res 96: 16641–16650

    Google Scholar 

  • Merceron T, Inoue A, Bouchet A, Meunier A (1988) Lithium-bearing donbassite and tosudite from Echassieres, Massif Central France. Clays Clay Min 36: 31–39

    Google Scholar 

  • Merceron T, Vieillard P, Fouillac AM, Meunier A (1992) Hydrothermal alterations in the Echassieres granitic cupola ( Massif Central France ). Contrib Mineral Petrol 112: 279–292

    Google Scholar 

  • Meunier A, Velde B (1990) Solid solutions in I/S mixed-layer minerals and illite. Am Mineral 74: 1106–1112

    Google Scholar 

  • Meunier A, Inoue A, Beaufort D (1991) Chemiographic analysis of trioctahedral smectite-tochlorite conversion series from the Ohyu caldera, Japan. Clays Clay Min 39: 409–415

    Google Scholar 

  • Meyer C, Hemley JJ (1969) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 166–235

    Google Scholar 

  • Miyaji K, Tsuzuki Y (1988) Hydrothermal alteration genetically related to the Mannen and Uebi pottery stone deposits in Tobe district, Ehime Prefecture. J Clay Sci Soc Jpn 28: 183–199

    Google Scholar 

  • Mizawa E (1986) Clay minerals in epithermal deposits. J Mineral Soc Jpn Spec Issue 17: 17–24

    Google Scholar 

  • Montoya JW, Hemley JJ (1975) Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ Geol 70: 577–594

    Google Scholar 

  • Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at midoceanic ridges. Bull Geol Soc Am 94: 161–180

    Google Scholar 

  • Mukaiyama H (1970) Volcanic sulphur deposits in Japan. In: Tatsumi T (ed) Volcanism and ore genesis. University of Tokyo Press, Tokyo, pp 285–294

    Google Scholar 

  • Nadeau PH (1985) The physical dimensions of fundamental clay particles. Clay Min 20: 499–514

    Google Scholar 

  • Nagasawa K (1978) Kaolin minerals. In: Sudo T, Shimoda S (eds) Clays and clay minerals in Japan. Development in Sedimentology 26. Elsevier, Amsterdam, pp 189–219

    Google Scholar 

  • Nagasawa K, Shirozu H, Nakamura T (1976) Clay minerals as constituents of hydrothermal metallic vein-type deposits. Mining Geol Jpn Spec Issue 7: 75–84

    Google Scholar 

  • Newman ACD, Brown G (1987) The chemical constitution of clays. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society, London, pp 1–128

    Google Scholar 

  • Nishiyama T, Shimoda S (1981) Ca-bearing rectorite from Toho mine, Japan. Clays Clay Min 29: 236–240

    Google Scholar 

  • Norton D, Cathles L (1979) Thermal aspects of ore deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley, New York, pp 611–631

    Google Scholar 

  • Ohmoto H, Skinner RJ (1983) The Kuroko and related volcanogenic massive sulfide deposits: introduction and summary of new findings. Econ Geol Monogr 5: 1–8

    Google Scholar 

  • Otsuki K (1989) Reconstruction of Neogene tectonic stress fields of northeast Honshu Arc from metalliferous veins. Mem Geol Soc Jpn 32: 281–304

    Google Scholar 

  • Ramseyer K, Boles JR (1986) Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California. Clays Clay Mineral 34: 115–124

    Google Scholar 

  • Reed MH, Spycher NF (1985) Boiling, cooling, and oxidation in epithermal systems: a numerical modelling approach. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2, Society Economic Geologists, El Paso, pp 249–272

    Google Scholar 

  • Rettke RC (1981) Probable burial diagenesis and provenance effects on Dakota Group clay mineralogy, Denver basin. J Sediment Petrol 51: 541–551

    Google Scholar 

  • Reynolds RC (1980) Interstratified clay minerals. In: Brindley GW, Brown G (eds) Crystal Structures of Clay Minerals and their X-ray identification. Mineralogical Society, London, pp 249–303

    Google Scholar 

  • Roedder E (1984) Fluid Inclusions. Reviews in Mineralogy 12. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Rona PA, Bostrom K, Laubier L, Smith KL Jr (1983) Hydrothermal processes at seafioor spreading centers. Plenum Press, New York

    Google Scholar 

  • Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley, New York, pp 173–235

    Google Scholar 

  • Rosenbauer RJ, Bischoff JL (1983) Uptake and transport of heavy metals by heated seawater: a summary of the experimental results. In: Rona PA, Bostrom K, Laubier L, Smith KL Jr (eds) Hydrothermal processes at seafioor spreading centers. Plenum Press, New York, pp 177–197

    Google Scholar 

  • Rye RO, Haffty J (1969) Chemical composition of the hydrothermal fluids responsible for the lead-zinc deposits at Providencia, Zacatecas, Mexico. Econ Geol 64: 629–643

    Google Scholar 

  • Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87: 225–262

    Google Scholar 

  • Sato T, Fujii M, Watanabe T, Otsuka R (1990) Properties of expandable layer in illitization of smectite. J Mineral Soc Jpn Spec Issue 19: 17–22

    Google Scholar 

  • Sawai O, Okada T, Itaya T (1989) K-Ar ages of sericite in hydrothermally altered rocks around the Toyoha deposits, Hokkaido, Japan. Mining Geol Jpn 39: 191–204

    Google Scholar 

  • Schiffman P, Fridleifsson GO (1991) The smectite-chlorite transition in drill hole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. J Metamorphic Geol 9: 679–696

    Google Scholar 

  • Schiffman P, Bird DK, Elders WA (1985) Hydrothermal mineralogy of calcareous sandstones fro the Colorado River delta in the Cerro Prieto geothermal system, Baja California, Mexico. Min Mag 49: 435–449

    Google Scholar 

  • Schultz LG (1963) Clay minerals in the Triassic rocks of the Colorado Plateau. US Geol Surv Bull 1147-C: 1–71

    Google Scholar 

  • Seyfried WE, Bischoff JL (1979) Low temperature basalt alteration by seawater: an experimental study at 70 °C and 150 °C. Geochim Cosmochim Acta 43: 1937–1947

    Google Scholar 

  • Shau YH, Peacor DR, Essene EJ (1990) Corrensite and mixed layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM. EMPA, XRD, and optical studies. Contrib Mineral Petrol 105: 123–142

    Google Scholar 

  • Shikazono N (1976) Chemical composition of Kuroko ore forming solution. J Jpn Assoc Miner Petrol Econ Geol 71: 201–215

    Google Scholar 

  • Shikazono N (1985) Gangue minerals from Neogene vein-type deposits in Japan and an estimate of their C02fugacity. Econ Geol 80: 754–768

    Google Scholar 

  • Shikazono N (1988) Hydrothermal alteration associated with epithermal veintype deposits in Japan: a review. Mining Geol Jpn Spec Issue 12: 47–55

    Google Scholar 

  • Shikazono N, Kawahata H (1987) Compositional differences in chlorite from hydrothermally altered rocks and hydrothermal ore deposits. Can Mineral 25: 465–474

    Google Scholar 

  • Shimoda S (1978) Interstratified minerals. In: Sudo T, Shimoda S (eds) Clays and clay minerals of Japan, Development in Sedimentology 26. Elsevier, Amsterdam, pp 265–322

    Google Scholar 

  • Shimoda S (1980) A Li-bearing tosudite and some mineralogical problems of tosudite found in Japan. Sei Rep Inst Geosci Univ Tsukuba Bl: 97–105

    Google Scholar 

  • Shinohara H (1991) Geochemistry of magmatic hydrothermal system. J Jpn Geochem Soc 25: 27–38

    Google Scholar 

  • Shirozu H (1974) Clay minerals in altered wall rocks of the Kuroko-type deposits. Mining Geol Jpn Spec Issue 6: 303–310

    Google Scholar 

  • Shirozu H (1978) Chlorite minerals. In: Sudo T, Shimoda S (eds) Clays and clay minerals of Japan. Development in Sedimentology 26. Elsevier, Amsterdam, pp 243–264

    Google Scholar 

  • Shirozu H (1985) Formation of clay minerals by hydrothermal action and their mineralogical properties. J Clay Sei Soc Jpn 25: 113–118

    Google Scholar 

  • Shirozu H, Iwasaki T (1980) Clay minerals in alteration zones of Kuroko deposits, with special reference to montmorillonite. J Jpn Assoc Mineral Petrol Econ Geol Spec Issue 2: 115–121

    Google Scholar 

  • Shirozu H, Sakasegawa T, Katsumoto N, Ozaki M (1975) Mg-chlorite and interstratified Mgchlorite/saponite associated with Kuroko deposits. Clay Sei 4: 305–321

    Google Scholar 

  • Small JS, Hamilton DL, Habesch S (1992) Experimental simulation of clay precipitation within reservoir sandstones 2: mechanism of illite formation and controls on morphology. J Sediment Petrol 62: 520–529

    Google Scholar 

  • Srodon J (1980) Precise identification of illite/smectite interstratification by X-ray powder diffraction. Clays Clay Min 28: 401–411

    Google Scholar 

  • Srodon J (1981) X-ray identification of randomly interstratified illite-smectites in mixtures with discrete illite. Clay Min 16: 297–304

    Google Scholar 

  • Srodon J, Eberl DD (1984) Illite. In: Bailey SW (ed) Micas. Reviews in Mineralogy 13, Mineralogical Society of America, Washington, DC, pp 495–544

    Google Scholar 

  • Srodon J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Min 34: 368–378

    Google Scholar 

  • Srodon J, Elsass F, McHardy WJ, Morgan DJ (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Min 27: 137–158

    Google Scholar 

  • Steefel CI, Lasaga AC (1992) Putting transport into water-rock interaction models. Geology 20: 680–684

    Google Scholar 

  • Steiner A (1968) Clay minerals in hydrothermally altered rocks in Wairakei, New Zealand. Clays Clay Min 16: 193–213

    Google Scholar 

  • Stoffregen R (1987) Genesis of acid sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ Geol 82: 1575–1591

    Google Scholar 

  • Sudo T, Takahashi H (1971) The chlorites and interstratified minerals. In: Gard JA (ed) Electron Optical Investigation of Clays. Mineralogical Society London, pp 277–300

    Google Scholar 

  • Sverjensky DA, Hemley JJ, D’Angelo WM (1991) Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim Cosmochim Acta 55: 989–1004

    Google Scholar 

  • Tamura M (1982) Alteration minerals and mineralization in the Shakanai Kuroko deposit, Akita Prefecture. Mining Geol Jpn 32: 379–390

    Google Scholar 

  • Taylor HP Jr (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69: 843–883

    Google Scholar 

  • Thompson G (1983) Basalt-seawater interaction. In: Rona PA, Bostrom K, Laubier L, Smith KJ Jr (eds) Hydrothermal processes at seafioor spreading centers. Plenum Press, New York, pp 225–278

    Google Scholar 

  • Thompson JB Jr (1955) The thermodynamic basis for the mineral facies concept. Am J Sci 253: 65–103

    Google Scholar 

  • Tomasson J, Kristmannsdottir H (1972) High temperature alteration minerals and thermal brines, Reykjanes, Iceland, Contrib. Mineral Petrol 36: 123–134

    Google Scholar 

  • Tomita K, Takahashi H, Watanabe T (1988) Quantification curves for mica/smectite interstratifications by X-ray powder diffraction. Clays Clay Min 36: 258–262

    Google Scholar 

  • Uno Y, Takeshi H (1979) Exchange cations and structural formulae of montmorillonites in the Nakajo acid clay deposit, Niigata Prefecture. J Mineral Soc Jpn Spec Issue 14: 90–103

    Google Scholar 

  • Uno Y, Takeshi H (1982) Rock alteration and formation of clay minerals in the Ugusu silica deposit, Izu Peninsula, Japan. Clay Sci 6: 9–42

    Google Scholar 

  • Urabe T, Scott SD, Hattori K (1983) A comparison of footwall-rock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol Monogr 5: 345–364

    Google Scholar 

  • Utada M (1980) Hydrothermal alteration related to igneous acidity in Cretaceous and Neogene formations of Japan. Mining Geol Jpn Spec Issue 8: 67–83

    Google Scholar 

  • Utada M (1988) Hydrothermal alteration envelop relating to Kuroko-type mineralization: a review. Mining Geol Jpn Spec Issue 12: 79–92

    Google Scholar 

  • Utada M, Ishikawa T (1973) Alteration zones surrounding “Kuroko-type” ore deposits in Nishiaizu district-Especially the analcime zone for an indicator of exploration of the ore deposits. Mining Geol Jpn 23: 213–226

    Google Scholar 

  • Utada M, Aoki M, Inoue A, Kusakabe H (1988) A hydrothermal alteration envelope and alteration minerals in the Shinzan mineralized area, Akita Prefecture, northeast Japan. Mining Geol Jpn Spec Issue 12: 67–77

    Google Scholar 

  • Velde B (1965) Experimental determination of muscovite polymorph stabilities. Am Mineral 50: 436–449

    Google Scholar 

  • Velde B (1985) Clay Minerals: A physico-chemical explanation of their occurrence. Development in Sedimentology 40, Elsevier, Amsterdam

    Google Scholar 

  • Velde B (1992) The stability of clays. In: Price GD, Ross NL (eds) The Stability of Minerals. Chapman and Hall, London, pp 329–351

    Google Scholar 

  • Velde B, Brusewitz AM (1986) Compositional variation in component layers in natural illite/smectite. Clays Clay Min 34: 651–657

    Google Scholar 

  • Velde B, Vasseur G (1992) Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am Mineral 77: 967–976

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant M, Waiden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim Cosmochim Acta 49: 2197–2220

    Google Scholar 

  • Watanabe T (1981) Identification of illite/montmorillonite interstratifications by X-ray powder diffraction. J Mineral Soc Jpn Spec Issue 15: 32–41

    Google Scholar 

  • Watanabe T (1988) The structural model of illite/smectite interstratified minerals and the diagram for its identification. Clay Sei 7: 97–114

    Google Scholar 

  • Watanabe Y (1986) Neogene regional stress field inferred from the pattern of ore veins in Hokkaido, Japan. Mining Geol Jpn 36: 209–218

    Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Development in Sedimentology 15, Elsevier, Amsterdam

    Google Scholar 

  • Weir AH, Nixon, HL, Wood RD (1962) The thickness of dispersed clay flakes. Clays Clay Min 9: 419–423

    Google Scholar 

  • Weir AH, Ormerod EG, ElMansey IMI (1975) Clay mineralogy of sediments of the western Nile delta. Clay Min 10: 369–386

    Google Scholar 

  • White DE (1957) Thermal waters of volcanic origin. Bull Geol Soc Am 68: 1637–1658

    Google Scholar 

  • Whitney G (1990) Role of water in the smectite-to-illite reaction. Clays Clay Min 38: 343–350

    Google Scholar 

  • Whitney G, Northrop HR (1988) Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics. Am Mineral 73: 77–90

    Google Scholar 

  • Wohletz K, Heiken G (1992) Volcanology and Geothermal Energy. University of California Press, Berkeley

    Google Scholar 

  • WoldeGabriel G, Goff F (1989) Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico. Geology 17: 986–989

    Google Scholar 

  • WoldeGabriel G, Goff F (1992) K/Ar dates of hydrothermal clays from core hole VC-2B, Valles Caldera, New Mexico and their relation to alteration in a large hydrothermal system. J Volcano Geotherm Res 50: 207–230

    Google Scholar 

  • Yagi M (1992) Characteristics of hydrothermal alteration and its effects on oil reservoirs related to Miocene volcanism in the Yurihara oil and gas field, northern Honshu, Japan. Res Rep JAPEX Res Cent 8: 27–79

    Google Scholar 

  • Yamamoto T (1967) Mineralogical studies of sericite associated with Poseki ores in the western part of Japan. Mineral J 5: 77–97

    Google Scholar 

  • Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8: 225–280

    Google Scholar 

  • Yoneda T (1989) Chemical composition of chlorite with special reference to the iron vs. manganses variation, from some hydrothermal vein deposits, Japan. Mining Geol Jpn 39: 393–401

    Google Scholar 

  • Zen E-An (1962) Problem of the thermodynamic status of the mixed-layer minerals. Geochim Cosmochim Acta 26: 1055–1067

    Google Scholar 

  • Zen E-An (1967) Mixed-layer minerals as one-dimensional crystals. Am Mineral 52: 635–659

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inoue, A. (1995). Formation of Clay Minerals in Hydrothermal Environments. In: Velde, B. (eds) Origin and Mineralogy of Clays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12648-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12648-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08195-8

  • Online ISBN: 978-3-662-12648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics