Skip to main content

The Hydrogen-Oxidizing Bacteria

  • Chapter
The Prokaryotes

Abstract

The group of aerobic hydrogen-oxidizing bacteria is physiologically defined and comprises bacteria from different taxonomic units. This group is defined by the ability to utilize gaseous hydrogen as electron donor with oxygen as electron acceptor and to fix carbon dioxide; i.e., to grow chemolithoautotro-phically. These hydrogen-oxidizing bacteria sensu stricto are different from those other bacteria (Acetobacter, Azotobacter, Enterobacteriaceae, and others) that also oxidize hydrogen under aerobic conditions, but without autotrophic CO2 fixation. Furthermore, they are different from the bacteria that utilize hydrogen under anaerobic conditions, with sulfate or carbon dioxide as hydrogen acceptors (e.g., Desulfovibrio, Clostridium aceticum, Aceto-bacterium woodii, and Methanobacterium thermo-autotrophicum).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aggag, M., Schlegel, H. G. 1973. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca strain lb. I. Description and physiological characterization. Archiv für Mikrobiologie 88:299–318.

    PubMed  CAS  Google Scholar 

  • Aggag, M., Schlegel, H. G. 1974. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca lb. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase. Archives of Microbiology 100:25–39.

    PubMed  CAS  Google Scholar 

  • Aragno, M. 1975. Mise en évidence d’hydrogénobactéries corynéformes auxo-hétérotrophes pour la biotine dans l’eau d’un lac eutrophe. Annales de Microbiologie 126A:539–542.

    Google Scholar 

  • Aragno, M. 1978. Enrichment, isolation and preliminary characterization of a thermophilic, endo spore-forming hydrogen bacterium. FEMS Microbiology Letters 3:13–15.

    CAS  Google Scholar 

  • Aragno, M., Schlegel, H. G. 1977. Alcaligenes ruhlandii (Packer and Vishniac) comb, nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. International Journal of Systematic Bacteriology 27:279–281.

    Google Scholar 

  • Aragno, M., Schlegel, H. G. 1978. Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. International Journal of Systematic Bacteriology 28:112–116.

    Google Scholar 

  • Aragno, M., Walther-Mauruschat, A., Mayer, F., Schlegel, H. G. 1977. Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Archives of Microbiology 114:93–100.

    PubMed  CAS  Google Scholar 

  • Auling, G., Mayer, F., Schlegel, H. G. 1977. Isolation and partial characterization of normal and defective bacteriophages of Gram-negative hydrogen bacteria. Archives of Microbiology 115:237–247.

    PubMed  CAS  Google Scholar 

  • Auling, G., Reh, M., Lee, C. M., Schlegel, H. G. 1978. Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. International Journal of Systematic Bacteriology 28:82–95.

    Google Scholar 

  • Banerjee, A. K. 1966. Physiologische Untersuchungen an Micrococcus denitrificans Beijerinck und auxotrophen Mutanten. Isolierung auxotropher Mutanten und Spaltung des Cystathionins. Archiv für Mikrobiologie 53:107–131.

    PubMed  CAS  Google Scholar 

  • Banerjee, A. K., Schlegel, H. G. 1966. Zur Rolle des Hefeextraktes während des chemolithotrophen Wachstums von Micrococcus denitrificans. Archiv für Mikrobiologie 53:132–153.

    PubMed  CAS  Google Scholar 

  • Bartha, R., Ordal, E. J. 1965. Nickel-dependent chemolitho-trophic growth of two Hydrogenomonas strains. Journal of Bacteriology 89:1015–1019.

    PubMed  CAS  Google Scholar 

  • Baumgarten, J., Reh, M., Schlegel, H. G. 1974. Taxonomic studies on some Gram-positive coryneform hydrogen bacteria. Archives of Microbiology 100:207–217.

    CAS  Google Scholar 

  • Beijerinck, M., Minkman, D. C. J. 1910. Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 25:30–63.

    Google Scholar 

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, C, Mayer, F., Schlegel, H. G. 1976. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29. Archives of Microbiology 108:17–26.

    PubMed  CAS  Google Scholar 

  • Bojalil, L. F., Cerbon, J., Trujillo, A. 1962. Adansonianclassification of mycobacteria. Journal of General Microbiology 28:333–346.

    PubMed  CAS  Google Scholar 

  • Bone, D. H. 1960. Localization of hydrogen activating enzymes in Pseudomonas sac char ophila. Biochemical and Biophysical Research Communications 3:211–214.

    PubMed  CAS  Google Scholar 

  • Brotonegoro, S. 1974. Nitrogen fixation and nitrogenase activity in Azotobacter chroococcum. Ph. D. Thesis. University of Wageningen, The Netherlands.

    Google Scholar 

  • Buchanan, R. E., Gibbons, N. E. 1974. Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Canevascini, G., Eberhardt, U. 1975. Chemolithotrophic growth and regulation of hydrogenase formation in the coryneform hydrogen bacterium strain 11/x. Archives of Microbiology 103:283–291.

    PubMed  CAS  Google Scholar 

  • Chapelle, E. W. 1962a. Carbon monoxide metabolism. Developments in Industrial Microbiology 3:99–122.

    Google Scholar 

  • Chapelle, E. W. 1962b. Carbon monoxide oxidation by algae. Biochimica et Biophysica Acta 62:45–62.

    Google Scholar 

  • Davis, D. H., Doudoroff, M., Stanier, R. Y., Mandel, M. 1969. Proposal to reject the genus Hydro genomonas: Taxonomic implications. International Journal of Systematic Bacteriology 19:375–390.

    Google Scholar 

  • Davis, D. H., Stanier, R. Y., Doudoroff, M., Mandel, M. 1970. Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Archiv für Mikrobiologie 70:1–13.

    PubMed  CAS  Google Scholar 

  • de Bont, J. A. M., Leijten, M. W. M. 1976. Nitrogen fixation by hydrogen-utilizing bacteria. Archives of Microbiology 107:235–240.

    PubMed  Google Scholar 

  • den Dooren de Jong, L. E. 1927. Über protaminophage Bakterien. Centralblatt für Bakteriologie, Parasitenkunde and Infektionskrankheiten, Abt. 2 71:193–232.

    Google Scholar 

  • Doudoroff, M. 1940. The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila with a contribution to the problem of the direct respiration of the di-and polysaccharides. Enzymologia 9:59–72.

    CAS  Google Scholar 

  • Dworkin, M., Foster, J. W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology 75:592–603.

    PubMed  CAS  Google Scholar 

  • Eberhardt, U. 1965. Die Anreicherung von Knallgasbakterien, pp. 155–169. In: Schlegel, H. G., Kröger, E. (eds.), Anreicherungskultur und Mutantenauslese. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Eberhardt, U. 1966. Über das Wasserstoff aktivierende System von Hydro genomonas H 16. II. Abnahme der Aktivität bei heterotrophem Wachstum. Archiv für Mikrobiologie 54:115–124.

    CAS  Google Scholar 

  • Emnova, E. E., Romanova, A. K. 1977. Hydrogenase activity of thermophilic hydrogen-oxidizing bacterium Pseudomonas thermophila. [In Russian, with English summary.] Mikro-biologiya 46:619–624.

    CAS  Google Scholar 

  • Emnova, E. E., Zavarzin, G. A. 1977. Additional characteristics of a thermophilic hydrogen bacterium Hydro genomonas thermophilus. [In Russian, with English summary.] Mikro-biologiya 46:405–408.

    CAS  Google Scholar 

  • Engel, R. R., Matsen, J. M., Chapman, S. S., Schwartz, S. 1972. Carbon monoxide production from heme compounds by bacteria. Journal of Bacteriology 112:1310–1315.

    PubMed  CAS  Google Scholar 

  • Evans, H. J., Barber, L. E. 1977. Biological nitrogen fixation for food and fiber production. Science 197:332–339.

    PubMed  CAS  Google Scholar 

  • Foster, J. F., Litchfield, J. H. 1964. A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space. Biotechnology and Bioengineering 6:441–456.

    CAS  Google Scholar 

  • Gogotov, J. N., Schlegel, H. G. 1974. N2-Fixation by chemoautotrophic hydrogen bacteria. Archives of Microbiology 97:359–362.

    PubMed  CAS  Google Scholar 

  • Gordon, R. E., Barnett, D. A., Handerhan, J. E., Pang, C. H. N. 1974. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. International Journal of Systematic Bacteriology 24:54–63.

    Google Scholar 

  • Goto, E., Kodama, T., Minoda, Y. 1977. Isolation and culture conditions of thermophilic hydrogen bacteria. Agricultural and Biological Chemistry 41:685–690.

    CAS  Google Scholar 

  • Goto, E., Kodama, T., Minoda, Y. 1978. Growth and taxonomy of thermophilic hydrogen bacteria. Agricultural and Biological Chemistry 42:1305–1308.

    Google Scholar 

  • Goto, E., Suzuki, K., Kodama, T., Minoda, Y. 1977. Improvement of initial and exponential growth of hydrogen bacteria, strain 9–5. Agricultural and Biological Chemistry 41:521–525.

    CAS  Google Scholar 

  • Gray, C. T., Gest, H. 1965. Biological formation of molecular hydrogen. A “hydrogen valve” facilitates regulation of anaerobic energy metabolism in many microorganisms. Science 148:186–192.

    PubMed  CAS  Google Scholar 

  • Grohmann, G. 1924. Zur Kenntnis Wasserstoff oxydierender Bakterien. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 61:256–271.

    Google Scholar 

  • Harrigan, W. F., McCance, M. 1966. Laboratory methods in microbiology. London, New York: Academic Press.

    Google Scholar 

  • Hertzberg, S., Borch, G., Liaaen-Jensen, S. 1976. Bacterial ca-rotenoids. I. Absolute configuration of Zeaxanthin dirham-noside. Archives of Microbiology 110:95–99.

    PubMed  CAS  Google Scholar 

  • Hirsch, P. 1961. Wasserstoffaktivierung und Chemoautotrophie bei Actinomyceten. Archiv für Mikrobiologie 39:360–373.

    PubMed  CAS  Google Scholar 

  • Impey, C. S., Prescott, E. H. A. 1976. An automatic apparatus for the evacuation and filling of several anaerobic jars simultaneously. Journal of Applied Bacteriology 41:329–333.

    Google Scholar 

  • Jüttner, R. R. 1977. Autotrophe Massenkultur von Alcaligenes eutrophus Stamm H16-PHB-4 im Chemostaten. Ph. D. Thesis. University of Göttingen, Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Kelly, D. P. 1971. Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism. Annual Review of Microbiology 25:177–210.

    PubMed  CAS  Google Scholar 

  • Kistner, A. 1953. On a bacterium oxidizing carbon monoxide. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 56:443–450.

    CAS  Google Scholar 

  • Kistner, A. 1954. Conditions determining the oxidation of carbon monoxide and of hydrogen by Hydrogenomonas carboxydo-vorans. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 57:186–195.

    Google Scholar 

  • Klausmeier, R. E., Brown, L. R., Nenes, E. N., Strawinsky, R. J. 1958. Propane metabolism by a mycobacterium. Bacteriological Proceedings 1958:123.

    Google Scholar 

  • Kluyver, A. J. 1956. Life’s flexibility; microbial adaptation, pp. 93–129. In: Kluyver, A. J., van Niel, C. B. (eds.), The microbe’s contribution to biology. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Kluyver, A. J., Manten, A. 1942. Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Antonie van Leeuwenhoek Journal of Microbiology and Serology 8:71–85.

    Google Scholar 

  • Kodama, T., Goto, E., Minoda, Y. 1976. Determination of dissolved hydrogen concentration and [KLa] h2 in submerged culture vessels. Agricultural and Biological Chemistry 40:2373–2377.

    CAS  Google Scholar 

  • Kodama, T., Igarashi, Y., Minoda, Y. 1975a. Isolation and culture of a bacterium grown on hydrogen and carbon dioxide. Agricultural and Biological Chemistry 39:77–82.

    CAS  Google Scholar 

  • Kodama, T., Igarashi, Y., Minoda, Y. 1975b. Material balance and efficiency of energy conversion for the autotrophic growth of a hydrogen bacterium. Agricultural and Biological Chemistry 39:83–87.

    CAS  Google Scholar 

  • Krasilya, I. I., Kotelev, V. V., Shakun, L. A. 1973. Hydrogen bacteria strain Hydro genomonas thermophilus as a biomass producer. Cited from: Emnova, E. E., Zavarzin, G. A. 1973.

    Google Scholar 

  • Kusnezow, S. I. 1959: Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Lantzsch, K. 1922. Actinomyces oligocarbophilus (Bacillus oligocarbophilus Beij.), sein Formwechsel und seine Physiologie. Centralblatt für Baketeriologie, Parasitenkunde und Infektionskrankheiten Abt. 2 57:309–319.

    Google Scholar 

  • Leisinger, Th., Wiemken, A., Ettlinger, L. 1966. Über cellulo-sefreie Mutanten von Acetobacter xylinus. Archiv für Mikrobiologie 54:21–36.

    Google Scholar 

  • Litchfield, J. H. 1971. The mass cultivation of Hydro genomonas eutropha in submerged culture. Developments in Industrial Microbiology 13:317–331.

    Google Scholar 

  • Lukins, H. B., Foster, J. W. 1963. Utilization of hydrocarbons and hydrogen by mycobacteria. Zeitschrift für Allgemeine Mikrobiologie 3:251–264.

    PubMed  CAS  Google Scholar 

  • McGee, J. M., Brown, L. R., Tischer, R. G. 1967. A high-temperature, hydrogen-oxidizing bacterium—Hydro genomonas thermophilus, n. sp. Nature 214:715–716.

    PubMed  CAS  Google Scholar 

  • Malik, K. A. 1976. Preservation of knallgas bacteria, p. 180. In: Dellweg, H. (ed.), Abstracts of the Fifth International Fermentation Symposium Berlin, Session 9.08 Berlin: Verlag Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie.

    Google Scholar 

  • Medard, L., Angibaud, G., Barbe, C, Bergeon, J. J., Bryselbout, J., Creuse, R., Deflers, J., Feiche, C, Goardou, T., Laloe, M., David, M., Ducoux, C., Koenig, J. 1976. Allamagny, P. (ed.), Gas encyclopedia. Amsterdam: Elsevier.

    Google Scholar 

  • Meyer, O., Schlegel, H. G. 1978. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Archives of Microbiology 118:35–43.

    PubMed  CAS  Google Scholar 

  • Niklewski, B. 1910. Über die Wasserstoffoxydation durch Mikroorganismen. Jahrbücher für Wissenschaftliche Botanik 48:113–142.

    Google Scholar 

  • Nozhevnikova, A. N., Savelieva, N. D. 1972. Autotrophic assimilation of carbon dioxide by the bacterium oxidizing carbon monoxide. [In Russian, with English summary.] Mikrobiologiya 41:939–946.

    CAS  Google Scholar 

  • Nozhevnikova, A. N., Zavarzin, G. A. 1974. On the taxonomy of CO-oxidizing Gram negative bacteria. [In Russian.] Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 3: 436–439.

    Google Scholar 

  • Packer, L., Vishniac, W. 1955. Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydro genomonas ruhlandii nov. spec. Journal of Bacteriology 70:216–233.

    PubMed  CAS  Google Scholar 

  • Palleroni, N. J., Palleroni, A. V. 1978. Alcaligenes latus, a new species of hydrogen-utilizing bacteria. International Journal of Systematic Bacteriology 28:416–424.

    Google Scholar 

  • Park, S. S., DeCicco, B. T. 1974. Autotrophic growth with hydrogen of Mycobacterium gordonae and another scotochromo-genic mycobacterium. International Journal of Systematic Bacteriology 24:338–345.

    Google Scholar 

  • Park, S. S., DeCicco, B. T. 1976. Hydrogenase and ribulose diphosphate carboxylase during autotrophic, heterotrophic and mixotrophic growth of scotochromogenic mycobacteria. Journal of Bacteriology 127:731–738.

    PubMed  CAS  Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:179–189.

    Google Scholar 

  • Pfennig, N., Jannasch, H. W. 1962. Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen. Ergebnisse der Biologie 25:93–135.

    PubMed  CAS  Google Scholar 

  • Ponomarev, P. I., Gurevich, Yu. A. 1977. Characteristics of continuous cultivation of Hydro genomonas eutropha in conditions of limitation with gases. [In Russian, with English summary.] Mikrobiologiya 46:22–28.

    CAS  Google Scholar 

  • Postgate, J. R. 1972. The acetylene reduction test for nitrogen fixation, pp. 343–356. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 6B. London, New York: Academic Press.

    Google Scholar 

  • Probst, I., Schlegel, H. G. 1973. Studies on a Gram-positive hydrogen bacterium, Nocardia opaca strain 1b. II. Enzyme formation and regulation under the influence of hydrogen or fructose as growth substrates. Archiv für Mikrobiologie 88:319–330.

    PubMed  CAS  Google Scholar 

  • Ralston, E., Palleroni, N. J., Doudoroff, M. 1972. Deoxyribonucleic acid homologies of some so-called “Hydrogenomonas” species. Journal of Bacteriology 109:465–466.

    PubMed  CAS  Google Scholar 

  • Reh, M., Schlegel, H. G. 1975. Chemolithoautotrophie als eine übertragbare, autonome Eigenschaft von Nocardia opaca 1b. Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse 2 12:207–216.

    Google Scholar 

  • Repaske, R. 1966. Characteristics of hydrogen bacteria. Biotechnology and Bioengineering 8:217–235.

    CAS  Google Scholar 

  • Repaske, R., Mayer, R. 1976. Dense autotrophic cultures of Alcaligenes eutrophus. Applied and Environmental Microbiology 32:592–597.

    PubMed  CAS  Google Scholar 

  • Repaske, R., Repaske, A. C. 1976. Quantitative requirements for exponential growth of Alcaligenes eutrophus. Applied and Environmental Microbiology 32:585–591.

    PubMed  CAS  Google Scholar 

  • Richard, C. 1977. La tétrathionate-réductase (TRR) chez les bacilles à Gram négatif: Intérêt diagnostique et épidémiolo-gique. Bulletin de l’Institut Pasteur 75:369–382.

    CAS  Google Scholar 

  • Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Advances in Microbial Physiology 3:159–196.

    CAS  Google Scholar 

  • Robra, K. H., Lafferty, R. M., Schlegel, H. G. 1972. Die Gasversorgung von Wasserstoffbakterien in Submerskultur. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 127:649–664.

    CAS  Google Scholar 

  • Rudolph, V. 1968. Kulturgefässe zur Anzucht von Hydrogeno-monas Hl6 mit elektrolytischer Knallgaserzeugung. Ph. D. Thesis. University of Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Ruhland, W. 1922. Aktivierung von Wasserstoff und CO2-Assimilation durch Bakterien. Berichte der Deutschen Botanischen Gesellschaft 40:180–184.

    CAS  Google Scholar 

  • Ruhland, W. 1924. Beiträge zur Physiologie der Knallgasbakterien. Jahrbücher für Wissenschaftliche Botanik 63:321–389.

    Google Scholar 

  • Sanjieva, E. U., Zavarzin, G. A. 1971. Oxidation of carbon monoxide by Seliberia carboxydohydrogena. [In Russian.] Doklady Akademii Nauk SSSR 196:956–958.

    Google Scholar 

  • Savelieva, N. D., Zhilina, T. N. 1968. Taxonomy of hydrogen bacteria. [In Russian, with English summary.] Mikrobiologiya 37:84–91.

    Google Scholar 

  • Schatz, A., Bovell, C, Jr. 1952. Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. Journal of Bacteriology 63:87–98

    PubMed  CAS  Google Scholar 

  • Schenk, A., Aragno, M. 1979. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. Journal of General Microbiology 115:333–341.

    Google Scholar 

  • Schink, B. 1977. Die solubilisierte membrangebundene Hydrogenase yon Alcaligenes eutrophus Stamm H 16. Ph. D. Thesis. University of Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Schlegel, H. G. 1966. Physiology and biochemistry of knallgas-bacteria. Advances in Comparative Physiology and Biochemistry 2:185–236.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G. 1969. From electricity via water electrolysis to food, pp. 807–832. In: Perlman, D. (ed.), Fermentation advances. New York: Academic Press.

    Google Scholar 

  • Schlegel, H. G. 1974. Production, modification and consumption of atmospheric trace gases by microorganisms. Tellus 26: 11–20.

    CAS  Google Scholar 

  • Schlegel, H. G. 1975. Mechanisms of chemo-autotrophy, pp. 9–60. In: Kinne, O. (ed.), Marine ecology, vol. II, part 1. London: John Wiley & Sons.

    Google Scholar 

  • Schlegel, H. G. 1976. The physiology of hydrogen bacteria. The fifth A. J. Kluyver memorial lecture. Antonie van Leeuwen-hoek Journal of Microbiology and Serology 42:181–201.

    CAS  Google Scholar 

  • Schlegel, H. G., Eberhardt, U. 1972. Regulatory phenomena in the metabolism of Knallgasbacteria. Advances in Microbial Physiology 7:205–242.

    CAS  Google Scholar 

  • Schlegel, H. G., Jannasch, H. W. 1967. Enrichment cultures. Annual Review of Microbiology 21:49–70.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., Kaltwasser, H., Gottschalk, G. 1961. Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv für Mikrobiologie 38:209–222.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., Lafferty, R. M. 1971. Novel energy and carbon sources. A: The production of biomass from hydrogen and carbon dioxide. Advances in Biochemical Engineering 1: 143–168.

    CAS  Google Scholar 

  • Schlegel, H. G., Schuster, E., König, Ch. 1967. Kontinuierliche Kultur von Knallgasbakterien mit elektrolytisch erzeugtem Knallgas. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 2:73–78.

    Google Scholar 

  • Schmidt, J. 1950. Das Kohlenoxyd seine Bedeutung und Verwendung in der technischen Chemie, 2nd ed. Leipzig: Akademische Verlagsgesellschaft Geest & Portig.

    Google Scholar 

  • Schneider, K., Rudolph, V., Schlegel, H. G. 1973. Description and physiological characterization of a coryneform hydrogen bacterium, strain 14g. Archiv für Mikrobiologie 93:179–193.

    PubMed  CAS  Google Scholar 

  • Schneider, K., Schlegel, H. G. 1976. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochimica et Biophysica Acta 452:66–80.

    PubMed  CAS  Google Scholar 

  • Schneider, K., Schlegel, H. G. 1977. Localization and stability of hydrogenases from aerobic hydrogen bacteria. Archives of Microbiology 112:229–238.

    PubMed  CAS  Google Scholar 

  • Schubert, K. R., Evans, H. J. 1976. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proceedings of the National Academy of Sciences of the United States of America 73:1207–1211.

    PubMed  CAS  Google Scholar 

  • Schuster, E. 1967. Chemolithotrophes Wachstum von Hydro-genomonas HI6 im Chemostaten mit elektrolytischer Knallgaserzeugung. Ph.D Thesis. University of Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Schuster, E., Schlegel, H. G. 1967. Chemolithotrophes Wachstum von Hydro genomonas H 16 in Chemostaten mit elektrolytischer Knallgaserzeugung. Archiv für Mikrobiologie 58:380–409.

    PubMed  CAS  Google Scholar 

  • Schweizer, C, Aragno, M. 1975. Etude des hydrogénobactéries dans un petit lac (le Loclat, ou lac de Saint-Biaise). Bulletin de la Société Neuchâteloise des Sciences Naturelles 98: 79–87.

    Google Scholar 

  • Seiler, W. 1976. Conceivable perturbations of the CH4 and H2 production by “microbial energy conversion” on the cycle of atmospheric trace gases, pp. 483–514. In: Schlegel, H. G., Barnea, J. (eds.), Microbial energy conversion. Göttingen: Verlag E. Goltze.

    Google Scholar 

  • Seiler, W., Schmidt, U. 1975. The role of microbes in the cycle of atmospheric trace gases, especially of hydrogen and carbon monoxide, pp. 35–62. In: Schlegel, H. G., Gottschalk, G., Pfennig, N. (eds.), Microbial production and utilization of gases. Göttingen: Verlag E. Goltze.

    Google Scholar 

  • Shmelev-Shampanov, O. A., Redikul’tsev, Yu. V., Semenov, Ya. V., Kharitonova, E. V., Golubkovich, A. V., Revenko, S. K., Paleeva, M. A. 1976. Autotrophic growth of Hydro genomonas eutrophus with an optimum gas supply. [In Russian, with English summary.] Mikrobiologiya 45: 389–393.

    CAS  Google Scholar 

  • Siebert, D. 1969. Über propanverwertende, wasserstoffoxidierende Bakterien und die Charakterisierung eines Förderupgs-faktors. Ph. D. Thesis. University of Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Simpson, F. J., Narasimhachari, N., Westlake, D. W. S. 1963. Degradation of rutin by Aspergillus flavus. The carbon monoxide producing system. Canadian Journal of Microbiology 9:15–25.

    CAS  Google Scholar 

  • Tabillion, R., Kaltwasser, H. 1977. Energieabhängige Ni-Aufnahme bei Alcaligenes eutrophus Stamm H 1 und H 16. Archives of Microbiology 113:145–151.

    PubMed  CAS  Google Scholar 

  • Takamiya, A., Tubaki, K. 1956. A new form of Streptomyces capable of growing autotrophically. Archiv für Mikrobiologie 25:58–64.

    PubMed  CAS  Google Scholar 

  • Tausz, Ju., Donath, P. 1930. Über die Oxydation des Wasserstoffs und der Kohlenwasserstoffe mittels Bakterien. Zeitschrift für Physiologische Chemie 190:141–168.

    CAS  Google Scholar 

  • Tunail, N., Schlegel, H. G. 1974. A new coryneform hydrogen bacterium: Corynebacterium autotrophicum strain 7C. I. Characterization of the wild type strain. Archives of Microbiology 100:341–350.

    CAS  Google Scholar 

  • Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms, pp. 305–361. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London, New York: Academic Press.

    Google Scholar 

  • Verhoeven, W., Koster, A. L., van Nievelt, M. C. A. 1954. Studies on true dissimilatory nitrate reduction. III. Micrococcus denitrificans Beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Antonie van Leeuwenhoek Journal of Microbiology and Serology 20:273–284.

    CAS  Google Scholar 

  • Vishniac, W., Trudinger, P. A. 1962. Carbon dioxide fixation and substrate oxidation in the chemosynthetic sulfur and hydrogen bacteria. Bacteriological Reviews 26:168–175.

    PubMed  CAS  Google Scholar 

  • Vogt, M. 1965. Wachstumsphysiologische Untersuchungen an Micrococcus denitrificans Beij. Archiv für Mikrobiologie 50: 256–281.

    PubMed  CAS  Google Scholar 

  • Voytovich, J. V., Gitelson, I. I., Ponomaryev, P. I., Sido, F. Ya., Terskov, I. A., Trubachov, I. N. 1972. Autotrophic growth of hydrogen bacteria in continuous culture. Zeitschrift für Allgemeine Mikrobiologie 12:69–73.

    PubMed  CAS  Google Scholar 

  • Waksman, S. A., Henrici, A, T. 1948. Family II: Actino-mycetaceae Buchanan, pp. 892–928. In: Breed, R. S., Murray, E. G. D., Hitchens, P. A. (eds.), Bergey’s manual of determinative bacteriology, 6th ed. London: Baillière, Tindall & Cox.

    Google Scholar 

  • Walther-Mauruschat, A., Aragno, M., Mayer, F., Schlegel, H. G. 1977. Micromorphology of Gram-negative hydrogen bacteria. IL Cell envelope, membranes, and cytoplasmic inclusions. Archives of Microbiology 114:101–110.

    PubMed  CAS  Google Scholar 

  • Wiegel, J., Schlegel, H. G. 1976. Enrichment and isolation of nitrogen fixing hydrogen bacteria. Archives of Microbiology 107:139–142.

    PubMed  CAS  Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. G. 1978. Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. International Journal of Systematic Bacteriology 28:573–581.

    Google Scholar 

  • Wilde, E. 1961. Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Ph.D Thesis. University of Göttingen, Federal Republic of Germany.

    Google Scholar 

  • Wilde, E. 1962. Untersuchungen über Wachstum und Speicher-stoff-synthese von Hydro genomonas. Archiv für Mikrobiologie 43:109–137.

    CAS  Google Scholar 

  • Winfrey, M. R., Zeikus, J. G. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Applied and Environmental Microbiology 33:275–281.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., Nelson, D. R., Klevickis, S. C, Zeikus, J. G. 1977. Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. Applied and Environmental Microbiology 33:312–318.

    PubMed  CAS  Google Scholar 

  • Wittenberger, C. L., Repaske, R. 1958. Studies on the electron transport system in Hydro genomonas eutropha. Bacteriological Proceedings 1958:106.

    Google Scholar 

  • Zavarzin, G. A. 1976. Hydrogen and carboxydobacteria belonging to the microflora of dispersal. [In Russian, with English summary.] Mikrobiologiya 45:20–22.

    CAS  Google Scholar 

  • Zavarzin, G. A. 1978. Hydrogen bacteria and carboxydobacteria. [In Russian.] Moscow: Nauka.

    Google Scholar 

  • Zavarzin, G. A., Nozhevnikova, A. N. 1977. Aerobic carboxydobacteria. Microbial Ecology 3:305–326.

    CAS  Google Scholar 

  • Zeikus, J. G. 1977. The biology of methanogenic bacteria. Bacteriological Reviews 41:514–541.

    PubMed  CAS  Google Scholar 

  • Zorn, H. 1965. Diagnostik und Therapie der CO-Vergiftung in der Praxis. Münchener Medizinische Wochenschrift 106: 235–239.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aragno, M., Schlegel, H.G. (1981). The Hydrogen-Oxidizing Bacteria. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics