Skip to main content

Signal Transduction and Environmental Stress in Control of Pseudomonas Aeruginosa Virulence

  • Chapter
Signal Transduction and Bacterial Virulence

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Pseudomonas aeruginosa causes life threatening infections in several classes of patients with compromised natural defense systems. Among notorious examples are the systemic infections in severely burned patients and chronic respiratory infections in individuals with cystic fibrosis. Expression of virulence factors in this organism is controlled by several tiers of regulatory elements. Many of these regulatory factors belong to the superfamily of signal transduction systems originally termed bacterial two-component systems. For example, synthesis of the pill, two phospholipases, and the exopolysaccharide alginate are controlled by bona fide members of this superfamily of regulatory elements. In addition to these communication modules there are other sensory pathways which sometimes cooperate with the classical phosphotransfer response regulator/sensor systems. For instance, production of the alginate capsule-like protective coating and flagellin and pilin synthesis are controlled by alternative sigma factors. RNA polymerase a subunits are frequently subject to control by negative regulators which suppress their activity unless growth conditions demand expression of their subordinate genes. In case of the alternative sigma factor agu (σE), which controls alginate production and certain other aspects of bacterial stress responses, a permanent loss of this negative regulation causes conversion to mucoid, alginate overproducing P. aeruginosa forms, frequently encountered in cystic fibrosis lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iglewski B. Probing Pseudomonas aeruginosa, and opportunistic pathogen, ASM News 1989; 55: 303–307.

    Google Scholar 

  2. Nicas TI, Iglewski B. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol 1985; 31: 387–392.

    Article  PubMed  CAS  Google Scholar 

  3. Wick MJ, Frank DW, Storey DG et al. Structure, function and regulation of Pseudomonas aeruginosa exotoxin A. Annu Rev Microbiol 1990; 44: 335–363.

    Article  PubMed  CAS  Google Scholar 

  4. Prince RW, Cox CD, Vasil ML. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 1993; 175: 2589–2598.

    PubMed  CAS  Google Scholar 

  5. Woods DE, Strauss DC, Johansom Jr WG et al. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 1980; 29: 1146–1151.

    PubMed  CAS  Google Scholar 

  6. Simpson DA, Ramphal RR, Lory S. Genetic analysis of Pseudomonas aeruginosa adherence: distinct genetic loci control attachment to epithelial cells and mucins. Infect Immun 1992; 60: 3771–3779.

    PubMed  CAS  Google Scholar 

  7. Galloway D. Pseudomonas aeruginosa elastase and elastolysis: recent developments. Mol Microbiol 1991; 5:2315–2321.

    Article  PubMed  CAS  Google Scholar 

  8. Toder DS, Ferrell SJ, Nezezon JL et al. lasA and lasB genes of P. aeruginosa: analysis of transcription and gene product activity. Infect Immun 1994; 62: 1320–1327.

    PubMed  CAS  Google Scholar 

  9. Okuda K, Morihara K, Atsumi Y et al. Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa IFO 3455. Infect Immun 1990; 58: 4083–4088.

    PubMed  CAS  Google Scholar 

  10. Britigan BE, Rasmussen GT, Cox CD. Pseudomonas siderophore pyochelin enhances neutrophil-mediated endothelial cell injury. Am J Physiol 1994; 266: 192–198.

    Google Scholar 

  11. Britigan BE, Roeder TL, Rasmussen GT et al. Interaction of the Pseudomonas aeruginosa secretory product pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonasassociated injury. J Clin Invest 1992; 90: 2187–2196.

    Article  PubMed  CAS  Google Scholar 

  12. Cryz SJ Jr, Pitt TL, Furer E et al. Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa. Infect Immun 1984; 44: 508–513.

    PubMed  CAS  Google Scholar 

  13. Ostroff RM, Vasil AI, Vasil ML. Molecular characterization of a nonhemolytic and hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 1990; 172: 5915–5923.

    PubMed  CAS  Google Scholar 

  14. Poole K, Krebes K, McNally C et al. Multiple antibiotic resistance in Pseudo-monas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175: 7363–7372.

    PubMed  CAS  Google Scholar 

  15. Li X-Z, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of P. aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994; 38: 1732–1741.

    Article  PubMed  CAS  Google Scholar 

  16. Collins FS. Cystic fibrosis: molecular biology and therapeutic implications. Science 1992; 256: 774–779.

    Article  PubMed  CAS  Google Scholar 

  17. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol Rev. 1991; 4: 35–51.

    PubMed  CAS  Google Scholar 

  18. Govan JRW. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis. In: Griffiths E, Donachie W, Stephen J, eds. Bacterial infections of respiratory and gastrointestinal mucosae. Oxford: IRL Press, 1988: 67–96.

    Google Scholar 

  19. Gacesa P, Russell NJ. The structure and properties of alginate. In: Gacesa P, Russell NJ, eds. Pseudomonas infections and alginates: biochemistry, genetics and pathology. London: Chapman & Hall, Ltd, 1990: 29–49.

    Chapter  Google Scholar 

  20. Simpson JA, Smith SE, Dean RT. Scavenging by alginate of free radicals released by macrophages. Free Radical Biol Med 1989; 6: 347–353.

    Article  CAS  Google Scholar 

  21. Learn DB, Brestel EP, Seetharama S. Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infect Immun 1987; 55: 1813–1818.

    PubMed  CAS  Google Scholar 

  22. Pier GB, Small GJ, Warren HB. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science 1990; 249: 537–540.

    Article  PubMed  CAS  Google Scholar 

  23. Deretic V, Gill JF, Chakrabarty AM. Gene algD coding for GDPmannose deydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 1987; 169: 351–358.

    PubMed  CAS  Google Scholar 

  24. Franklin MJ, Chitnis CE, Gacesa P et al. Pseudomonas aeruginosa AIgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 1994; 176: 1821–1830.

    PubMed  CAS  Google Scholar 

  25. Schiller NL, Monday SR, Boyd CM et al. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia cob. J Bacteriol 1993; 175: 4780–4789.

    PubMed  CAS  Google Scholar 

  26. Franklin MJ, Ohman DE. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 1993; 175: 5057–5065.

    PubMed  CAS  Google Scholar 

  27. Shinabarger D, Berry A, May T et al. Purification and characterization of phosphomannose isomerase-guanosine phospho-D-mannose pyrophosphorylase: a bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 1991; 266: 2080 2088.

    Google Scholar 

  28. Coyne MJ, Russell KS, Coyle CL et al. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol 1994; 176: 3500–3507.

    PubMed  CAS  Google Scholar 

  29. Ye RW, Zielinski NA, Chakrabarty AM. Purification and characterization of phospho manu mutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J Bacteriol 1994; 176: 4851–4857.

    PubMed  CAS  Google Scholar 

  30. Chitnis CE, Ohman DE. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence for an operonic structure. Mol Microbiol 1993; 8: 563–590.

    Article  Google Scholar 

  31. Deretic V, Schurr MJ, Boucher JC et al. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 1994; 176: 2773–2780.

    PubMed  CAS  Google Scholar 

  32. Deretic V, Diksit R, Konyecsni WM et al. The algR gene which regulates mucoidy in Pseudomonas aeruginosa belongs to a class of environmentally responsive genes. J Bacteriol 1989; 171: 1278–1283.

    PubMed  CAS  Google Scholar 

  33. Wozniak DJ, Ohman DE. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol 1991; 173: 1406–1413.

    PubMed  CAS  Google Scholar 

  34. Miller JF, Mekalanos JJ, Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 1989; 243: 916–922.

    Article  PubMed  CAS  Google Scholar 

  35. Mohr CD, Hibler NS, Deretic V. AIgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J Bacteriol 1991; 173: 5136–5143.

    PubMed  CAS  Google Scholar 

  36. Stock AM, Mottonen JM, Stock JB et al. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 1989; 337: 745–749.

    Article  PubMed  CAS  Google Scholar 

  37. Deretic V, Leveau JHJ, Mohr CD et al. In vitro phosphorylation of AIgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol Microbiol 1992; 6: 2761–2767.

    Article  PubMed  CAS  Google Scholar 

  38. Deretic V, Konyecsni WM. Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 1989; 171: 3680–3688.

    PubMed  CAS  Google Scholar 

  39. Venturi V, Ottevanger C, Leong J et al. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Mol Microbiol 10: 63–73.

    Google Scholar 

  40. Mohr CD, Leveau JHJ, Krieg DP et al. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol 1992; 174: 66246633.

    Google Scholar 

  41. Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 1989; 171: 2312–2317.

    PubMed  CAS  Google Scholar 

  42. Mohr CD, Martin DW, Konyecsni WM et al. Role of the Far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 1990; 172: 6576–6580.

    PubMed  CAS  Google Scholar 

  43. Mohr CD, Sonsteby SK, Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy algR. Mol Gen Genet 1994; 242: 177–184.

    Article  PubMed  CAS  Google Scholar 

  44. Goldberg JB, Dahnke T. Pseudomonas aeruginosa AIgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol 1992; 6: 59–66.

    Article  PubMed  CAS  Google Scholar 

  45. Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26: 71–112.

    Article  PubMed  CAS  Google Scholar 

  46. Weiss DS, Batut J, Klose KE et al. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 1991; 67: 155–167.

    Article  PubMed  CAS  Google Scholar 

  47. Martin DW, Holloway BW, Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AIgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993; 175: 1153–1164.

    PubMed  CAS  Google Scholar 

  48. Martin DW, Schurr MJ, Mudd MH et al. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 1993; 9: 495–506.

    Google Scholar 

  49. Martin DW, Schurr MJ, Mudd MH et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci USA 1993; 90: 8377–8381.

    Article  PubMed  CAS  Google Scholar 

  50. Martin DW, Schurr MJ, Yu H et al. Analysis of promoters controlled by the putative sigma factor AIgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to aE and stress response. J Bacteriol 1994; 176.

    Google Scholar 

  51. Erickson JW, Gross CA. Identification of the subunit of Escherichia cou RNA polymerase: a second alternative factor involved in high-temperature gene expression. Genes Dev 1989; 3: 1462–1471.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson K, Charles I, Dougan G et al. The role of stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 1991; 5: 401–407.

    Article  PubMed  CAS  Google Scholar 

  53. Sato H, Okinaga K, Saito H. Role of pili in the pathogenesis of Pseudomonas aeruginosa burn infection. Microbiol Immunol 1988; 32: 131–139.

    PubMed  CAS  Google Scholar 

  54. Drake D, Montie TC. Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J Gen Microbiol 1988; 134: 43–52.

    PubMed  CAS  Google Scholar 

  55. Nunn D, Lory S. Component of the protein-excretion apparatus of P. aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad. Sci USA 1992: 89: 47–51.

    Article  CAS  Google Scholar 

  56. Schmitt CK, Darnell SC, Tesh VL et al. Mutation of flgM attenuates virulence of Salmonella typhimurium, and mutation of AA represses the attenuated phenotype. J Bacteriol 1994; 176: 368–377.

    PubMed  CAS  Google Scholar 

  57. Shortridge VD, Lazdunski A, Vasil ML. Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 1992; 6: 863–871.

    Article  PubMed  CAS  Google Scholar 

  58. Anba J, Bidaud M, Vasil ML et al. Nucleotide sequence of the Pseudomonas

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deretic, V. (1995). Signal Transduction and Environmental Stress in Control of Pseudomonas Aeruginosa Virulence. In: Signal Transduction and Bacterial Virulence. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22406-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22406-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22408-3

  • Online ISBN: 978-3-662-22406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics