Skip to main content

Ceramide, a Mediator of Cytosine Arabinoside Induced Apoptosis

  • Chapter
Sphingolipid-Mediated Signal Transduction

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Many diseases including cancer arise from alterations in signaling pathways. The cellular machinery controlling whether a cell is quiescent, proliferates, differentiates, or dies is no longer “correctly” regulated in transformed cells.1 However, some cancer cells retain the ability to undergo differentiation and cell death (primarily those cells of the hematopoietic and immune systems). The signaling mechanisms by which current anticancer agents induce differentiation and cell death are not completely understood. However, because of their central role in controlling cell growth and differentiation these signaling pathways are attractive targets for the improvement of therapy regimens and the development of new drugs.2,3 It is our aim to determine the signaling pathways in response to chemotherapeutic agents with the goal of developing more effective drugs and new combinations of existing drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pawson T, Hunter T. Signal transduction and growth control in normal and cancer cells. Curr Opinion in Gen and Dev 1994; 4: 1–4.

    Article  CAS  Google Scholar 

  2. Powis G, Workman P. Signalling targets for the development of cancer drugs. Anti-Cancer Drug Design 1994; 9: 263–277.

    CAS  PubMed  Google Scholar 

  3. Powis G. Signalling pathways as targets for anticancer drug design. Pharmac and Thera 1994; 62: 57–95.

    Article  CAS  Google Scholar 

  4. Wyllie AH. Apoptosis: cell death in tissue regulation. J Pathol 1987; 153: 313.

    Article  CAS  PubMed  Google Scholar 

  5. Solary E, Bertrand R, Pommier Y. Apoptosis of human leukemic HL-60 cells induced to differentiate by phorbol ester treatment. Leukemia 1994; 8: 792–797.

    CAS  PubMed  Google Scholar 

  6. Compton MM. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 1992; 11: 105–119.

    Article  CAS  PubMed  Google Scholar 

  7. Darzynkiewicz Z. Apoptosis in antitumor strategies: Modulation of cell cycle or differentiation. J Cell Biochem 1995; 58: 151–159.

    Article  CAS  PubMed  Google Scholar 

  8. Wyllie AH. Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, ed. Cell Death in Biology and Pathology. London, New York: Chapman and Hall, 1981: 9–34.

    Chapter  Google Scholar 

  9. Gerschenson LE, Rotello RJ. Apoptosis, a different type of cell death. FASEB J 1992; 6: 2450–2455.

    CAS  PubMed  Google Scholar 

  10. Kerr J, Searle S. Shrinkage necrosis: a distinct mode of cell death. J Pathol 1972; 105: 13–18.

    Article  Google Scholar 

  11. McKonkey D, Orrenius S. Signal transduction pathways to apoptosis. Trends in Cell Biology 1994; 4: 370–374.

    Article  Google Scholar 

  12. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunology Today 1994; 15: 7–10.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H-G, Millan JA, Cox AD et al. R-Ras promotes apoptosis caused by growth factor deprivation via a Bd-2 suppressible mechanism. J Cell Biol 1995; 129: 1103–1114.

    Article  CAS  PubMed  Google Scholar 

  14. Tartaglia LA, Ayres TM, Wong GH et al. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993; 74: 845–853.

    Article  CAS  PubMed  Google Scholar 

  15. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregualted with the receptor of tumor necrosis factor. J Exp Med 1989; 169: 1747–1746.

    Article  CAS  PubMed  Google Scholar 

  16. Trauth BC, Klas C, Peters AM et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989; 245: 301–305.

    Article  CAS  PubMed  Google Scholar 

  17. Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993; 268: 10932–10937.

    CAS  PubMed  Google Scholar 

  18. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endonuclease activation. Nature 1980; 284: 554–556.

    Article  Google Scholar 

  19. Schulze-Osthoff K, Walczak H, Droge W et al. Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 1994; 127: 15–20.

    Article  CAS  PubMed  Google Scholar 

  20. Nunez G, Clarke MF. The Bd-2 family of proteins: Regulators of cell death and survival. Trends in Cell Biology 1994; 4: 399–403.

    Article  CAS  PubMed  Google Scholar 

  21. Thornberry NA, Bull HG, Calaycay JR et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768–774.

    Article  CAS  PubMed  Google Scholar 

  22. Miura M, Zhu H, Rotello R et al. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993; 78: 653–660.

    Article  Google Scholar 

  23. Gagliardini V. Prevention of neuronal cell death by the crmA gene. J Biol Chem 1994; 268: 826–828.

    Google Scholar 

  24. Evan GI, Wyllie AH, Gilbert CS et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Article  CAS  PubMed  Google Scholar 

  25. Evan G, Harrington E, Fanidi A et al. Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 1994; 345: 269–275.

    Article  CAS  PubMed  Google Scholar 

  26. Bissonnette RP, McGahon A, Mahboubi A et al. Functional Myc-Max heterodimer is required for activation-induced apoptosis in T cell hybridomas. J Exp Med 1994; 180: 2413–2418.

    Article  CAS  PubMed  Google Scholar 

  27. Greenblatt MS, Bennett WP, Hollstein M et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    CAS  PubMed  Google Scholar 

  28. Kastan MB, Onyekwere O, Sidransky D et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    CAS  PubMed  Google Scholar 

  29. Kuerbitz SJ, Plunkett BS, Walsh WV et al. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 74917495.

    Google Scholar 

  30. Kastan MB, Zhan Q, el-Deiry WS et al. A mammalian cell cycle check point pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  CAS  PubMed  Google Scholar 

  31. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  32. Clarke AR, Gledhill S, Hooper ML et al. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 1994; 9: 1767–1773.

    CAS  PubMed  Google Scholar 

  33. Chen Y-R, Meyer CF, Tan T-H. Persistent activation of c-Jun N-terminal kinase (JNK 1) by y radiation-induced apoptosis. J Biol Chem 1996; 271: 631–634.

    Article  CAS  PubMed  Google Scholar 

  34. Sawai H, Okazaki T, Yamamoto H et al. Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem 1995; 270: 27326–27331.

    Article  CAS  PubMed  Google Scholar 

  35. Colotta F, Polentarutti N, Sironi M et al. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor depreivation in lymphoid cell lines. J Biol Chem 1992; 267: 18278–18283.

    CAS  PubMed  Google Scholar 

  36. Hozumi M. Fundamentals of chemotherapy of myeloid leukemia by induction of leukemia cell differentiation. Adv Cancer Res 1983; 38: 121–169.

    Article  CAS  PubMed  Google Scholar 

  37. Hassan HT. Differentiation induction therapy of acute myelogenous leukemia. Haematologia 1988; 21: 141–150.

    CAS  PubMed  Google Scholar 

  38. Koeffler HP. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 1983; 62: 709–721.

    CAS  PubMed  Google Scholar 

  39. Collins SJ. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 1987; 70: 1233–1244.

    CAS  PubMed  Google Scholar 

  40. Tonetti DA, Horio M, Collart FR et al. Protein kinase C beta gene expression is associated with susceptibility of human promyelocytic leukemia cells to phorbol ester-induced differentiation. Cell Growth and Diff 1992; 3: 739–745.

    CAS  Google Scholar 

  41. Tonetti DA, Henning-Chubb Yamanishi DT et al. Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem 1994; 269: 2323023235.

    Google Scholar 

  42. Macfarlane DE, Manzel L. Activation of (3-isozyme of protein kinase C (PKCj3) is necessary and sufficient for phorbol-ester-induced differentiation of HL-60 promyelocytes. J Biol Chem 1994; 269: 4327–4331.

    CAS  PubMed  Google Scholar 

  43. Kharbanda S, Saleem A, Emoto Y et al. Activation of Raf-1 and mitogen-activated protein kinase during monocytic differentiation of human myeloid leukemic cells. J Biol Chem 1994; 269: 872–878.

    CAS  PubMed  Google Scholar 

  44. Adams PD, Parker PJ. TPA-induced activation of MAP kinase. FEBS Letters 1991; 290: 77–82.

    Article  CAS  PubMed  Google Scholar 

  45. Rapp UR. Role of Raf-1 serine/threonine protein kinase in growth factor signal transduction. Oncogene 1991; 6: 495–500.

    CAS  PubMed  Google Scholar 

  46. Haimovitz-Friedman A, Balaban M, McLoughlin M et al. Protein kinase C mediates basic fibroblastic growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 1994; 54: 2591–2597.

    CAS  PubMed  Google Scholar 

  47. Ganong BR, Loomis CR, Hannun YA et al. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci USA 1986; 83: 1184–1188.

    Article  CAS  PubMed  Google Scholar 

  48. Blumberg PM, Acs G, Areces LB et al. Protein kinase C in signal transduction and carcinogenesis. In: Spitzer HL, Ed. Receptor-mediated biological processes: Implications for evaluating carcinogenesis. New York: Wiley-Liss, Inc, 1994: 3–19.

    Google Scholar 

  49. Blobe GC, Obeid LM, Hannun YA. Regulation of protein kinase C and role in cancer biology. Cancer Metastasis Rev 1994; 13: 411–431.

    Article  CAS  PubMed  Google Scholar 

  50. Asaoka Y, Nakamura S, Yoshida K et al. Protein kinase C, calcium, and phospholipid degradation. TIBS 1992; 17: 414–417.

    CAS  PubMed  Google Scholar 

  51. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 261: 693–698.

    Article  Google Scholar 

  52. Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  CAS  PubMed  Google Scholar 

  53. Hubermann E, Callaham MF. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci USA 1979; 76: 1293–1297.

    Article  Google Scholar 

  54. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9: 484–496.

    CAS  PubMed  Google Scholar 

  55. Okazaki T, Bell RM, Hannun YA. Sphingomyelin turnover by vitamin D3 in HL-60 cells: role in cell differentiation. J Biol Chem 1989; 264: 19076–19080.

    CAS  PubMed  Google Scholar 

  56. Okazaki T, Bielawska A, Bell RM et al. Role of ceramide as a lipid mediator of la-25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 1990; 265: 15823–15831.

    CAS  PubMed  Google Scholar 

  57. Dbaibo GS, Obeid LM, Hannun YA. Tumor necrosis factor alpha (TNFa) signal transduction through ceramide. J Biol Chem 1993; 268: 17762–17766.

    CAS  PubMed  Google Scholar 

  58. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 31253128.

    Google Scholar 

  59. Kim M-Y, Linardic C, Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma interferon. J Biol Chem 1991; 266: 484–489.

    CAS  PubMed  Google Scholar 

  60. Mathias S, Younes A, Kan C-C et al. Activation of the sphingomyelin signalling pathway in intact EL4 cells and in a cell free system by IL-1ß. Science 1993; 259: 519–522.

    Article  CAS  PubMed  Google Scholar 

  61. Jayadev S, Liu B, Bielawaska AE et al. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–2052.

    Article  CAS  PubMed  Google Scholar 

  62. Bielawska A, Crane HM, Liotta D et al. Selectivity of ceramide mediated biology. Lack of activity of erthryo-dihydroceramide. J Biol Chem 1993; 268: 2622626232.

    Google Scholar 

  63. Bielawaska A, Linardic CM, Hannun YA. Modulation of cell growth and differentiation by ceramide. FEBS Letters 1992; 307: 211–214.

    Article  Google Scholar 

  64. Obeid LM, Hannun YA. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem 1995; 58: 191–198.

    Article  CAS  PubMed  Google Scholar 

  65. Jarvis WD, Grant S, Kolesnick RN. Ceramide and the induction of apoptosis. Clinical Cancer Res 1996; 2: 1–6.

    CAS  Google Scholar 

  66. Obeid LM, Linardic CM, Karolak LA et al. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Article  CAS  PubMed  Google Scholar 

  67. Jarvis WD, Kolesnick RN, Fornari FA et al. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 1994; 91: 73–77.

    Article  CAS  PubMed  Google Scholar 

  68. Kolesnick RN, Friedman-Haimovitz A, Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol 1994; 72: 471–474.

    Article  CAS  PubMed  Google Scholar 

  69. Kolesnick RN, Fuks Z. Ceramide: a signal for apoptosis or mitogenesis. J Expt Med 1995; 181: 1949–1952.

    Article  CAS  Google Scholar 

  70. Wolff RA, Dobrowsky RT, Bielawska A et al. Role for ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 1994; 269: 19605–19609.

    CAS  PubMed  Google Scholar 

  71. Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor a activates the sphingomyelin signal transduction pathway in a cell free system. J Biol Chem 1993; 268: 20520–20523.

    Google Scholar 

  72. Mathias S, Dressler KA, Kolesnick RN. Characterization of a ceramide-activated protein kinase. Proc Natl Acad Sci USA 1991; 88: 10009–10013.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Mathias S, Yang Z et al. Renaturation and tumor necrosis factor-a stimulation of a 97-kDa ceramide activated protein kinase. J Biol Chem 1994; 269: 3047–3052.

    CAS  PubMed  Google Scholar 

  74. Yao B, Zhang Y, Delikat S et al. Ceramide activated protein kinase is a Raf kinase. Nature 1995; 378: 307–310.

    Article  CAS  PubMed  Google Scholar 

  75. Raines MA, Kolesnick RN, Golde DW. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem 1993; 268: 14572–14575.

    CAS  PubMed  Google Scholar 

  76. Chen CY, Faller DV. Direction of p2lrasgenerated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 1995; 11: 1487–1498.

    CAS  PubMed  Google Scholar 

  77. Lozano JB, Municio E MM, Diaz-Meco MT et al. Protein kinase C isoform is critical for KB-dependent promoter activation by sphingomyelinase. J Biol Chem 1994; 269: 19200–19202.

    CAS  PubMed  Google Scholar 

  78. Diaz-Meco MT, Berra F, Munico MM et al. A dominant negative protein kinase C zeta subspecies blocks NF-KB activation. Mol Cell Bio 1993; 13: 4770–4775.

    CAS  Google Scholar 

  79. Betts JC, Agranoff AB, Nabel GJ et al. Dissociation of endogenous cellular ceramide from NF-KB activation. J Biol Chem 1994; 269: 8455–8458.

    CAS  PubMed  Google Scholar 

  80. Westwick JK, Bielawaska AE, Dbaibo G et al. Ceramide activates the stress-activated protein kinases. J Biol Chem 1995; 270: 22689–22692.

    Article  CAS  PubMed  Google Scholar 

  81. Ballou LR, Chao CP, Holness MA et al. Interleukin-l-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem 1992; 267: 20044–20050.

    CAS  PubMed  Google Scholar 

  82. Venable ME, Bielawska A, Obeid LM. Ceramide inhibits phospholipase D in a cell-free system. J Biol Chem 1996; 271: 24794–24799.

    Article  Google Scholar 

  83. Grant S. Biochemical modulation of cytosine arabinoside. Pharmac Ther 1990; 48: 29–44.

    Article  Google Scholar 

  84. Bergmann W, Feeney R. Contributions to the study of marine products XXXII. The arabinosides of sponges. J Org Chem 1951; 16: 981–987.

    Article  CAS  Google Scholar 

  85. Mayer RJ, Davis RB, Schiffer CA et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. New Eng J Med 1994; 331: 895–903.

    Google Scholar 

  86. Kufe DW, Major PP, Egan EM et al. Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 1980; 255: 8997–9000.

    CAS  PubMed  Google Scholar 

  87. Kufe DD, Spriggs EM, Munroe D. Relationships among ara-CTP pools, formation of (ara-C)DNA, and cytotoxicity of human leukemia cells. Blood 1984; 64: 54–58.

    CAS  PubMed  Google Scholar 

  88. Furth JJ, Cohen SS. Inhibition of mammalian DNA polymerase by the 5’-triphosphate of 143-D-arabinofuranosylcytosine and the 5’-triphosphate of 9-(3-Darabinofuranosyladenine. Cancer Res 1968; 28: 2061–2067.

    CAS  PubMed  Google Scholar 

  89. Gale RP. Advances in the treatment of acute myelogenous leukemia. New Engl J Med 1979; 300: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  90. Fram RJ, Kufe DW. DNA strand breaks caused by inhibitors of DNA synthesis: 1–3-D-arabinofuranosylcytosine and aphidicolin. Cancer Res 1982; 42: 40504053.

    Google Scholar 

  91. Gunji H, Kharbanda S, Kufe D. Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-B-D-arabinofuranosylcytosine. Cancer Res 1991; 51: 741–743.

    CAS  PubMed  Google Scholar 

  92. Collins SJ, Bodner A, Ting R et al. Induction of morphological and functional differentiation of human promyelocytic leukemia cells (HL-60) by compounds which induce differentiation of murine leukemia cells. Int J Cancer 1980; 25: 213–218.

    Article  CAS  PubMed  Google Scholar 

  93. Kharbanda S, Datta R, Kufe D. Regulation of c-jun gene expression in HL-60 leukemia cells by 1-(3-D-arabinofuranosylcytosine. Potential involvement of a protein kinase C-dependent mechanism. Biochemistry 1991; 30: 7947–7951.

    Article  CAS  PubMed  Google Scholar 

  94. Kharbanda S, Emoto Y, Kisaki H et al. 1–13-D-arabinofuranosylcytosine activates serine/threonine protein kinase and c-jun gene expression in phorbol-ester-resistant myeloid leukemia cells. Mole Pharm 1994; 46: 67–72.

    CAS  Google Scholar 

  95. Kharbanda SM, Sherman ML, Kufe DW. Transcriptional regulation of c-jun gene expression by arabinofuranosylcytosine in human myeloid leukemia cells. J Clin Invest 1990; 11: 1517–1523.

    Article  Google Scholar 

  96. Emoto Y, Kisaki H, Manome Y et al. Activation of protein kinase C delta in human myeloid leukemia cells treated with 1-beta-D-arabinofuranosylcytosine. Blood 1996; 87: 1990–1996.

    CAS  PubMed  Google Scholar 

  97. Whitman SP, Civoli F, Daniel LW. 1-(3D-arabinofuranosylcytosine stimulates antagonistic signalling pathways in HL-60 cells. Manuscript submitted

    Google Scholar 

  98. Strum JC, Small GW, Pauig SB et al. 1-ßD-arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 1994; 269: 15493–15497.

    CAS  PubMed  Google Scholar 

  99. Kucera GL, Capizzi RL. 1–13-D-arabinofuranosylcytosine-diphosphate choline is formed by the reversal of cholinephosphotransferase and not via cytidylyltransferase. Cancer Res 1992; 52: 38863891.

    Google Scholar 

  100. Sasvari-Szekely M, Spasokukotskaja T, Sooki-Toth A et al. Deoxycytidine is salvaged not only into DNA but also into phospholipid precursors. II. Ara-C does not inhibit the later process in lymphoid cells. Biochem Biophys Res Comm 1989; 163: 1158–1167.

    Article  CAS  PubMed  Google Scholar 

  101. Jarvis WD, Fornari FA, Browning JL et al. Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem 1994; 269: 31685–31692.

    CAS  PubMed  Google Scholar 

  102. Daniel LW. Ether lipids in experimentalcancer chemotherapy. In: Hickman JA, Tritton TR, eds. Cancer Chemotherapy. Oxford: Blackwell, 1991: 146–178.

    Google Scholar 

  103. Marasco CJ, Piantadosi C, Mayer KL et al. Synthesis and biological activity of novel quaternary ammonium derivatives of alkylglycerol derivatives of alkylglycerols as potent inhibitors of protein kiase C. J Med Chem 1990; 33: 985–992.

    Article  CAS  PubMed  Google Scholar 

  104. Araki S, Tsuna I, Kaji K et al. Programmed cell death in response to alkyllysophospholipids in endothelial cells. J Biochem 1994; 115: 245–247.

    CAS  PubMed  Google Scholar 

  105. Diomede L, Colotta F, Piovani B et al. Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl2-methyl-rac-glycero-3-pho sphocholine. A possible mechanism for its selective action. J Cancer 1993; 53: 124–130.

    CAS  Google Scholar 

  106. Diomede L, Piovani B, Re F et al. The induction of apoptosis is a common feature of the cytotoxic action of ether-linked glycerophospholipids in human leukemic cells. Int J Cancer 1994; 57: 645–649.

    Article  CAS  PubMed  Google Scholar 

  107. Mollinedo F, Martinez-Dalmau R, Modolell M. Early and selective induction of apoptosis in human leukemic cells by the alkyl-lysophospholipid ET18–OCH3. Biochem Biophys Res Comm 1993; 192: 603–609.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Alter N, Reed JC et al. Bd-2 interrupts the ceramide-mediated pathway of cell death. PNAS, USA 1996; 93: 5325–5328.

    Article  CAS  Google Scholar 

  109. May WS, Tyler PG, Armstrong DK et al. Role for serine phosphorylation of Bc1–2 in an anti-apoptotic signaling pathway triggered by IL-3, erythropoietin, and bryostatin 1. Blood 1993; 82: 1738.

    Google Scholar 

  110. Blagosklonny MV, Schulte T, Nguyen P et al. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 1996; 56: 1851–1854.

    CAS  PubMed  Google Scholar 

  111. Delia D, Aiello A, Soligo D et al. Bc1–2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood 1992; 79: 1291–1298.

    CAS  PubMed  Google Scholar 

  112. Chen M, Quintans J, Fuks Z et al. Suppression of Bd-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor a, and ceramide. Cancer Res 1995; 55: 991–994.

    CAS  PubMed  Google Scholar 

  113. Grant S, Turner AJ, Bartimole TM et al. 1–13-D-arabinofuranosyl cytosine-induced apoptosis in human myeloid leukemia cells by staurosporine and other pharmacological inhibitors of protein kinase C. Oncol Res 1994; 6: 87–99.

    CAS  PubMed  Google Scholar 

  114. Surette ME, Winkler JD, Fonteh AN et al. Relationship between arachidonatephospholipid remodeling and apoptosis. Biochemistry 1996; 35: 9187–9196.

    Article  CAS  PubMed  Google Scholar 

  115. Seewald MJ, Olsen RA, Sehgal I et al. Inhibition of growth-factor dependent inositol phosphate Cat signaling by antitumor ether lipid analogues. Cancer Res 1990; 50: 4458–4463.

    CAS  PubMed  Google Scholar 

  116. Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2- O-methyl-racglycero-3-phosphocholine. J Biol Chem 1995; 270: 11612–11618.

    Article  CAS  PubMed  Google Scholar 

  117. Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine and 1–0-octadecyl-2-O-methyl-rac-glycero-3-phosphocho-line inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 1995; 270: 7757–7764.

    Article  CAS  PubMed  Google Scholar 

  118. Baserga R, Reiss K, Alder H et al. Inhibition of cell cycle progression by anti-sense oligodeoxynucleotides. Ann NY Acad Sci 1992; 660: 64–69.

    Article  CAS  PubMed  Google Scholar 

  119. Ferrari S, Manfredini R, Grande A et al. Antisense strategies to characterize the role of genes and oncogenes involved in myeloid differentiation. Annals New York Academy of Sciences 1992; 11–25.

    Google Scholar 

  120. Neckers L, Rosolen A, Fahmy B et al. Specific inhibition of oncogene expression in vitro and in vivo by antisense oligonucleotides. Ann of NY Acad Sci 1992; 660: 37–44.

    Article  CAS  Google Scholar 

  121. Gamard CJ, Blobe GC, Hannun YA et al. Specific role for protein kinase C ß in cell differentiation. Cell Growth and Diff 1994; 5: 405–409.

    CAS  Google Scholar 

  122. Aquino A, Hartman KD, Knode MC et al. Role of protein kinase C in phosphorylation of vinculin in adriamycin resistant HL-60 leukemia cells. Cancer Res 1988; 48: 3324–3329.

    CAS  PubMed  Google Scholar 

  123. Psada J, Tritton TR. Protein kinase C in adriamycin action and resistance in mouse sarcoma 180 cells. Cancer Res 1989; 49: 6634–6639.

    Google Scholar 

  124. Joseph CK, Byun H-S, Bittman R et al. Substrate recognition by ceramide-activated protein kinase. J Biol Chem 1993; 268: 20002–20006.

    CAS  PubMed  Google Scholar 

  125. Kan C-C, Kolesnick RN. A synthetic ceramide analog, d-threo-l-phenyl-2decanoylamino-3-morpholino-l -propanol, selectively inhibits adherence during macrophage differentiation of human leukemia cells. J Biol Chem 1992; 267: 9663–9667.

    CAS  PubMed  Google Scholar 

  126. Kharbanda S, Huberman E, Kufe D. Activation of the jun-D gene during treatment of human myeloid leukemia cells with 1–13-D-arabinofuranosylcytosine. Bioch Pharm 1993; 45: 2055–2061.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whitman, S.P., Daniel, L.W. (1997). Ceramide, a Mediator of Cytosine Arabinoside Induced Apoptosis. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics