Skip to main content

Abstract

Linear elasticity is one of the more successful theories of mathematical physics. Its pragmatic success in describing the small deformations of many materials is uncontested. The origins of the three-dimensional theory go back to the beginning of the 19th century and the derivation of the basic equations by Cauchy, Navier, and Poisson. The theoretical development of the subject continued at a brisk pace until the early 20th century with the work of Beltrami, Betti, Boussinesq, Kelvin, Kirchhoff, Lamé, Saint-Venant, Somigliana, Stokes, and others. These authors established the basic theorems of the theory, namely compatibility, reciprocity, and uniqueness, and deduced important general solutions of the underlying field equations. In the 20th century the emphasis shifted to the solution of boundary-value problems, and the theory itself remained relatively dormant until the middle of the century when new results appeared concerning, among other things, Saint-Venant’s principle, stress functions, variational principles, and uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1780 Euler, L.: Determinatio onerum, quae columnae gestare valent. Acta Acad. Sci. Petrop. 2 (1778), 121–145. To be reprinted in L. Euleri Opera Omnia (2) 17. (22).

    Google Scholar 

  2. 1822 Fourier, J.: Théorie Analytique de la Chaleur. Paris: Didot = Œuvres 1. (15).

    Google Scholar 

  3. Cauchy, A.-L.: 1823 Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomath. 9-13 = Œuvres (2) 2, 300–304. (15, 22).

    Google Scholar 

  4. 1822 Navier, C.-L.-M.-H.: Sur les lois de l’équilibre et du mouvement des corps solides élastiques (1821). Bull. Soc. Philomath. 177-181. (Abstract of [1827, 2].) (22, 27, 59).

    Google Scholar 

  5. 1826 Poisson, S.-D.: Notes sur les racines des équations transcendantes. Bull. Soc. Philomath. 145-148. (76).

    Google Scholar 

  6. Cauchy, A.-L.: 1827 De la pression ou tension dans un corps solide (1822). Ex. de Math. 2, 42-56 = Œuvres (2) 7, 60–78. (15).

    Google Scholar 

  7. Navier, C.-L.-M.-H.: 1827 Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques (1821). Mém. Acad. Sci. Inst. France (2) 7, 375–393. (22, 27, 59).

    Google Scholar 

  8. Cauchy, A.-L.: 1828 Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique (1822). Ex. de Math. 3, 160-187 = Œuvres (2) 8, 195–226. (22, 27, 59).

    Google Scholar 

  9. Cauchy, A.-L.: 1829 Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Ex. de Math. 4, 293-319 = Œuvres (2) 9, 343–369. (20, 22).

    MathSciNet  Google Scholar 

  10. Poisson, S.-D.: 1829 Mémoire sur l’équilibre et le mouvement des corps élastiques (1828). Mém. Acad. Sci. Inst. France (2) 8, 357–570. (15, 22, 27, 59, 67, 76).

    Google Scholar 

  11. Poisson, S.-D.: 1829 Addition au mémoire sur l’équilibre et le mouvement des corps élastiques. Mém. Acad. Sci. Inst. France. (2) 8, 623–627. (67).

    Google Scholar 

  12. Cauchy, A.-L.: 1830 Sur les diverses méthodes à l’aide desquelles on peut établir les équations qui représentent les lois d’équilibre, ou le mouvement intérieur des corps solides ou fluides. Bull. Sci. Math. Soc. Prop. Conn. 13, 169–176. (22).

    Google Scholar 

  13. Poisson, S.-D.: 1831 Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides (1829). J. Ecole Polytech. 13, cahier 20, 1–174. (20, 22).

    Google Scholar 

  14. Lamé, G., and E. Clapeyron: 1833 Mémoire sur l’équilibre des corps solides homogènes. Mém. Divers Savants Acad. Sci. Paris (1828) (2) 4, 465–562. (27, 59) 2. Piola, G.: La meccanica dei corpi naturalmente estesi trattata col calcolo delle variazioni. Opusc. Mat. Fis. di Diversi Autori. Milano: Giusti 1, 201-236. (18).

    Google Scholar 

  15. Green, G.: 1839 On the laws of reflection and refraction of light at the common surface of two non-crystallized media (1837). Trans. Cambridge Phil. Soc. 7 (1838-1842), 1–24 = Papers, 245-269-(24, 34, 67).

    Google Scholar 

  16. 1840 Cauchy, A. L.: Exercises d’Analyse et de Physique Mathématique 1. Paris: Bachelier =Œuvres (2) 12 (59, 67, 71).

    Google Scholar 

  17. Green, G.: 1841 On the propagation of light in crystallized media (1839). Trans. Cambridge Phil. Soc. 7 (1838-1842), 121–140 = Papers 293-3H. (24, 71).

    Google Scholar 

  18. Green, G.: 1841 Supplement to a memoir on the reflexion and refraction of light. Trans. Cambridge Phil. Soc. 7, (1838-1842), 113–120 = Papers 283-290.

    Google Scholar 

  19. Stokes, G. G.: 1845 On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Phil. Soc. 8 (1844-1849), 287-319 = Papers 1, 75–129. (22, 27, 59).

    Google Scholar 

  20. Piola, G.: 1848 Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono, considerati secondo 1a naturale loro forma e costituzione (1845). Mem. Mat. Fis. Soc. Ital. Modena 241, 1–186. (18).

    Google Scholar 

  21. Stokes, G. G.: 1848 On a difficulty in the theory of sound. Phil. Mag. 23, 349–356. A drastically condensed version, with an added note, appears in Papers 2, 51-55. (73).

    Google Scholar 

  22. Thomson, W. (Lord Kelvin): 1848 On the equations of equilibrium of an elastic solid. Cambr. Dubl. Math. J. 3, 87–89. (51).

    Google Scholar 

  23. Haughton, S.: 1849 On the equilibrium and motion of solid and fluid bodies (1846). Trans. Roy. Irish Acad. 21, 151–198. (34).

    Google Scholar 

  24. Kirchhoff, G.: 1850 Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 = Ges. Abh. 237-279. (34).

    MATH  Google Scholar 

  25. Stokes, G. G.: 1851 On the dynamical theory of diffraction (1849). Trans. Cambridge Phil. Soc. 9, 1–62 = Papers 2, 243-328. (59, 68).

    Google Scholar 

  26. Stokes, G. G.: 1851 On the effect of the internal friction of fluids on the motion of pendulums (1850). Trans. Cambridge Phil. Soc. 92, 8-106 = Papers 3, 1–141. (19).

    Google Scholar 

  27. Kirchhoff, G.: 1852 Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber. Akad. Wiss. Wien 9, 762–773. (Not reprinted in Ges. Abh.) (65).

    Google Scholar 

  28. Lamé, G.: 1852 Leçons sur la Théorie Mathématique de l’Élasticité. Paris: Bachelier. Also 2nd ed., Paris 1866. (22, 27, 28, 44, 59, 67, 71).

    Google Scholar 

  29. St. Venant, A.-J.-C. B., de: 1855 Mémoire sur la torsion des prismes... (1853) Mém. Divers Savants Acad. Sci. Paris 14, 233–560. (54).

    Google Scholar 

  30. Kirchhoff, G.: 1859 Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–313 = Ges. Abh., 285-316. (13, 14, 32, 65).

    MATH  Google Scholar 

  31. Riemann, B.: 1860 Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Gött. Abh., Math. Cl. 8 (1858-1859), 43–65 = Werke, 145-164. (73).

    Google Scholar 

  32. 1862 Clebsch, A.: Theorie der Elasticität fester Körper. Leipzig: Teubner. There is an expanded version in French by B. De Saint Venant and A. Flamant, Paris 1883. (32, 47, 76).

    Google Scholar 

  33. Airy, G. B.: 1863 On the strains in the interior of beams. Phil. Trans. Roy. Soc. Lond. 153, 49–80. Abstract in Rep. Brit. Assn. 1862, 82-86 (1863). (17, 47).

    Google Scholar 

  34. Clebsch, A.: 1863 Über die Reflexion an einer Kugelfläche. J. Reine Angew. Math. 61, 195–262. (67).

    MATH  Google Scholar 

  35. Thomson, W. (Lord Kelvin): 1863 Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Phil. Trans. Roy. Soc. Lond. 153, 583–616 = Papers 3, 351-394. (34,48).

    Google Scholar 

  36. 1864 St. Venant, A.-J.-C. B. de: Établissement élémentaire des formules et équations générales de la théorie de l’élasticité des corps solides. Appendix in: Résumé des Leçons données à l’École des Ponts et Chaussées sur l’Application de la Mécanique, première partie, première section, De la Résistance des Corps Solides, par C.-L.-M.-H. Navier, 3rd éd. Paris. (14).

    Google Scholar 

  37. Cotterill, J. H.: 1865 Further application of the principle of least action. Phil. Mag. (4), 29, 430–436. (18,34,36).

    Google Scholar 

  38. Verdet, E.: 1866 Introduction, Œuvres de Fresnel 1, IX–XCIX. (22).

    Google Scholar 

  39. Fresnel, A.: 1868 Second supplément au mémoire sur la double réfraction (1822). Œuvres 2, 369–442. (15).

    Google Scholar 

  40. Maxwell, J. C.: 1868 On reciprocal diagrams in space, and their relation to Airy’s function of stress. Proc. Lond. Math. Soc. (1) 2 (1865-1969), 58-60 = Papers 2, 102–104. (17).

    Google Scholar 

  41. Maxwell, J. C.: 1870 On reciprocal figures, frames, and diagrams of forces. Trans. Roy. Soc. Edinburgh 26 (1869-1872), 1-40 = Papers 2, 161–207. (17, 46, 47).

    Google Scholar 

  42. Rankine, W. J. M.: 1870 On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Roy. Soc. Lond. 160, 277–288 = Papers, 530-543. (73).

    Google Scholar 

  43. Boussinesq, J.: 1871 Étude nouvelle sur l’équilibre et le mouvement des corps solides élastiques dont certaines dimensions sont très petites par rapport à d’autres. Premier Mémoire. J. Math. Pures Appl. (2) 16, 125–240. (14).

    MATH  Google Scholar 

  44. Betti, E.: 1872 Teoria dell’Elasticità. Nuovo Cim. (2) 7-8, 5-21, 69-97, 158-180; 9, 34–43; 10 (1873), 58-84 = Opère 2, 291-390. (27, 29, 30, 44, 52, 53).

    Google Scholar 

  45. 1873 Maxwell, J. C.: A Treatise on Electricity and Magnetism. 2 vols. Oxford. Cf. [1881,1]. (72).

    Google Scholar 

  46. Betti, E.: 1874 Sopra l’equazioni di equilibrio dei corpi solidi elastici. Ann. Mat. (2) 6, 101–111 = Opere 2, 379-390. (30).

    Google Scholar 

  47. Umov, N.: 1874 Ableitung der Bewegungsgleichungen der Energie in continuirlichen Körpern. Z. Math. Phys. 19, 418–431. (19).

    Google Scholar 

  48. 1876 Kirchhoff, G.: Vorlesungen über mathematische Physik: Mechanik. Leipzig. 2nd ed., 1877; 3rd ed., 1883. (14, 26, 32, 65).

    Google Scholar 

  49. Christoffel, E. B.: 1877 Untersuchungen über die mit dem Fortbestehen linearer partieller Differentialgleichungen verträglichen Unstetigkeiten. Ann. Mat. (2) 8, 81–113 = Abh. 2, 51-80. (72, 73).

    MATH  Google Scholar 

  50. Christoffel, E. B.: 1877 Über die Fortpflanzung von Stößen durch elastische feste Körper. Ann. Mat. (2) 8, 193–244 = Abh. 1, 81-126. (73).

    MATH  Google Scholar 

  51. Boussinesq, J.: 1878 Équilibre d—élasticité d’un solide isotrope sans pesanteur, supporttant différents poids. C.R. Acad. Sci., Paris 86, 1260–1263. (44).

    MATH  Google Scholar 

  52. 1881 Maxwell, J. C: 2nd éd. of [1873, 1]. (72).

    Google Scholar 

  53. Voigt, W.: 1882 Allgemeine Formeln für die Bestimmung der Elasticitätsconstanten von Krystallen durch die Beobachtung der Biegung und Drillung von Prismen. Ann. Phys. (2) 16, 273–321, 398-416. (26, 47).

    MATH  MathSciNet  Google Scholar 

  54. 1883 Thomson, W. (Lord Kelvin), and P. G. Tait: Treatise on Natural Philosophy, Part 2. Cambridge. (44, 51).

    Google Scholar 

  55. 1884 Minnigerode, B.: Untersuchungen über die Symmetrieverhältnisse und die Elasticität der Krystalle. Nach Königl. Ges. Wiss. Göttingen, 195-226, 374-384, 488-492. (26).

    Google Scholar 

  56. 2. Weyrauch, J. J.: 1884 Theorie elastischer Körper. Leipzig: Teubner. (71).

    MATH  Google Scholar 

  57. Boussinesq, J.: 1885 Application des potentiels à l’étude de l’équilibre et des mouvements des solides élastiques. Paris: Gauthier-Villars. (44, 51, 54).

    Google Scholar 

  58. Kovalevski, S.: 1885 Über die Brechung des Lichtes in cristallinischen Mitteln. Acta Math. 6, 249–304. (67).

    MathSciNet  Google Scholar 

  59. Neumann, F.: 1885 Vorlesungen über die Theorie der Elastizität. Leipzig: Teubner. (26, 63).

    Google Scholar 

  60. Somigliana, C.: 1885 Sopra l’equilibrio di un corpo elastico isotropo. Nuovo Cimento (3) 17, 140–148, 272-276; 18, 161-166. (51, 52).

    Google Scholar 

  61. Beltrami, E.: 1886 Sull’interpretazione meccanica delle formole di Maxwell. Mem. Accad. Sci. Bologna (4) 7, 1–38 = Opere 4, 190-223. (14).

    MathSciNet  Google Scholar 

  62. Hugoniot, H.: 1886 Sur un théorème général relatif à la propagation du mouvement. C.R. Acad. Sci. Paris 102, 858–860. (73).

    MATH  Google Scholar 

  63. Ibbetson, W. J.: 1886 On the Airy-Maxwell solution of the equations of equilibrium of an isotropic elastic solid, under conservative forces. Proc. Lond. Math. Soc. 17, 296–309. (47).

    MATH  MathSciNet  Google Scholar 

  64. Somigliana, C.: 1886 Sopra l’equilibrio di un corpo elastico isotropo. Nuovo Cimento (3) 19, 84–90, 278-282; 20, 181-185. (52).

    Google Scholar 

  65. Hugoniot, H.: 1887 Mémoire sur 1a propagation du mouvement dans les corps et spécialement dans les gaz parfaits. J. École Polytech. 57, 3–97; 58, 1-125 (1889). The date of the memoir is 26 October 1885. (73).

    Google Scholar 

  66. Ibbetson, W. J.: 1887 An Elementary Treatise on the Mathematical Theory of Perfectly Elastic Solids with a Short Account of Viscous Fluids. London: MacMillan. (47, 76).

    Google Scholar 

  67. 1887 Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Ges. Wiss. Göttingen 34, 100 pp. (26).

    Google Scholar 

  68. Boussinesq, J.: 1888 Équilibre d’élasticité d’un solide sans pesanteur, homogène et isotrope, dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions ou des déplacements connus, s’annulant hors d’une région restreinte oú ils sont arbitraires. C.R. Acad. Sci., Paris 106, 1043–1048. (44).

    MATH  Google Scholar 

  69. Boussinesq, J.: 1888 Équilibre d’élasticité d’un solide sans pesanteur, homogène et isotrope, dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions ou des déplacements connus, s’annulant hors d’une région restreinte où ils sont arbitraires — cas où les donées sont mixtes, c’est-à-dire relatives en partie aux pressions et en partie aux déplacements. C. R. Acad. Sci., Paris 106, 1119–1123. (44).

    MATH  Google Scholar 

  70. Lévy, M.: 1888 Sur une propriété générale des corps solides élastiques. C. R. Acad. Sci. Paris 107, 414–416. (30).

    Google Scholar 

  71. Thomson, W. (Lord Kelvin): 1888 On the reflection and refraction of light. Phil. Mag. (5) 26, 414–425. Reprinted in part as Sections 107-111 of Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: Clay and Sons 1904. (32, 57).

    MATH  Google Scholar 

  72. Beltrami, E.: 1889 Sur la théorie de la déformation infiniment petite d’un milieu. C.R. Acad. Sci., Paris 108, 502–504 = Opere 4, 344-347. (14).

    MATH  Google Scholar 

  73. Padova, E.: 1889 Sulle deformazioni infinitesimi. Atti Accad. Lincei Rend. (4) 52, 174–178. (14).

    MATH  Google Scholar 

  74. 1889 Somigliana, C.: Sulle equazioni délia elasticità. Ann. Mat. (2) [17, 37-64. (27, 44, 52).

    Google Scholar 

  75. Donati, L.: 1890 Illustrazione al teorema del Menabrea. Mem. Accad. Sci. Bologna (4) 10, 267–274. (18, 34, 36).

    MathSciNet  Google Scholar 

  76. Poincaré, H.: 1890 Sur les équations aux dérivées partielles de la physique mathématique. Am. J. Math. 12, 211–294. (76).

    MATH  Google Scholar 

  77. Fontaneau, M. E.: 1890 Sur l’équilibre d’élasticité d’une enveloppe sphérique. Nouv. Ann. de Math. (3) 9, 455–471. (44).

    Google Scholar 

  78. 1891 Schoenfliess, A.: Kristallsysteme und Kristallstruktur. Leipzig. (21).

    Google Scholar 

  79. Beltrami, E.: 1892 Osservazioni sulla nota précédente. Atti Accad. Lincei Rend. (5) 11 141-142 = Opere 4, 510–512. (27, 27).

    Google Scholar 

  80. Chree, C: 1892 Changes in the dimensions of elastic solids due to given systems of forces. Cambridge Phil. Soc. Trans. 15, 313–337. (18, 29).

    Google Scholar 

  81. 1892 Fontaneau, M. E.: Sur la déformation des corps isotropes en équilibre d’élasticité. Assoc. Fran. Avan. Sci., CR. 21st Sess. (2), 190-207. (44).

    Google Scholar 

  82. 1892 Morera, G.: Soluzione generale délie equazioni indefinite dell’equilibrio di un corpo continuo. Atti Accad. Lincei Rend. (5) l1, 137-141. (17).

    Google Scholar 

  83. 1892 Morera, G.: Appendice alla Nota: Sulla soluzione più generale délie equazioni indefinite dell’equilibrio di un corpo continuo. Atti Accad. Lincei Rend. (5) 11 233-234. (17).

    Google Scholar 

  84. 1892 Poincaré, H.: Leçons sur la théorie de l’élasticité. Paris. (76).

    Google Scholar 

  85. 1892 Somigliana, C.: Sulle espressioni analitiche generali dei movimenti oscillatori. Atti Accad. Lincei Rend. (5) l1, 111-119-(67).

    Google Scholar 

  86. Cesàro, E.: 1894 Introduzione alla teoria matematica délia elasticità. Torino: Fratelli, Bocca. (76).

    Google Scholar 

  87. Donati, L.: 1894 Ulteriori osservazioni intorno al teorema del Menabrea. Mem. Accad. Sci. Bologna (5) 4, 449–474. (18, 27, 34, 36).

    Google Scholar 

  88. Somigliana, C.: 1894 Sopra gli integrali délie equazioni délia isotropia elastica. Nuovo Cimento (3) 36, 28–39. (44).

    MATH  Google Scholar 

  89. Volterra, V.: 1894 Sur les vibrations des corps élastiques isotropes. Acta Math. 18, 161–232. (69).

    MATH  MathSciNet  Google Scholar 

  90. Lauricella, G.: 1895 Equilibrio dei corpi elastici isotropi. Ann. Scuola Norm. Pisa 7, 1–120. (53).

    MathSciNet  Google Scholar 

  91. Cosserat, E., et F.: 1896 Sur la théorie de l’élasticité. Ann. Fac. Sci. Toulouse 10, 1–116. (14).

    MathSciNet  Google Scholar 

  92. Tedone, O.: 1897 Sulle vibrazioni dei corpi solidi, omogenei ed isotropi. Mem. Accad. Sci. Torino (2) 47, 181–258. (67).

    Google Scholar 

  93. Cosserat, E., et F.: 1898 Sur la déformation infiniment petite d’une ellipsoïde élastique. CR. Acad. Sci., Paris 127, 315–318. (32).

    MATH  Google Scholar 

  94. Cosserat, E.: 1898 Sur les équations de la théorie de l’élasticité. CR. Acad. Sci., Paris 126, 1089–1091. (32).

    MATH  Google Scholar 

  95. Cosserat, E.: 1898 Sur les fonctions potentielles de la théorie de l’élasticité. CR. Acad. Sci., Paris 126, 1129–1132. (32).

    MATH  Google Scholar 

  96. Dougall, J.: 1898 A general method of solving the equations of elasticity. Edinburgh Math. Soc. Proc. 16, 82–98. (51, 52, 53).

    MATH  Google Scholar 

  97. Duhem, P.: 1898 Sur l’intégrale des équations des petits mouvements d’un solide isotrope. Mém. Soc. Sci. Bordeaux (5) 3, 317–329. (67).

    Google Scholar 

  98. Goursat, É.: 1898 Sur l’équation ΔΔu = 0. Bull. Soc. Math. France 26, 236–237. (47).

    MATH  MathSciNet  Google Scholar 

  99. 1898 Lévy, M.: Sur la légitimité de la règle dite du trapèze dans l’étude de la résistance des barrages en maçonnerie. C.R. Acad. Sci., Paris 126, 1235. (46, 47).

    Google Scholar 

  100. Poincaré, H.: 1899 Théorie du potentiel Newtonien. Paris: Gauthier-Villars. (8).

    Google Scholar 

  101. Duhem, P.: 1900 Sur le théorème d’Hugoniot et quelques théorèmes analogues. CR Acad. Sci., Paris 131, 1171–1173-(72).

    Google Scholar 

  102. Fredholm, L: 1900 Sur les équations de l’équilibre d’un corps solide élastique. Acta Math. 23, 1–42. (51).

    MathSciNet  Google Scholar 

  103. Michell, J. H.: 1900 On the direct determination of stress in an elastic solid, with applications to the theory of plates. Proc. Lond. Math. Soc. 31 (1899), 100–124. (27, 45, 46, 47).

    MathSciNet  Google Scholar 

  104. Michell, J. H.: 1900 The uniform torsion and flexure of incomplete tores, with application to helical springs. Proc. Lond. Math. Soc. 31, 130–146. (44).

    Google Scholar 

  105. Voigt, W.: 1900 Elementare Mechanik. Leipzig: Veit. (44).

    Google Scholar 

  106. Voigt, W.: 1900 L’Élasticité des Cristaux. Rapports Congrès Int. Phys. 1. Paris: Gauthier-Villars, 277–347. (26).

    Google Scholar 

  107. Abraham, M.: 1901 Geometrische Grundbegriffe. In: Vol. 43 of the Encyklopädie der Mathematischen Wissenschaften, edited by F. Klein and C Müller. Leipzig: Teubner. (14).

    Google Scholar 

  108. Cosserat, E., et F.: 1901 Sur la déformation infiniment petite d’un corps élastique soumis à des forces données. C.R. Acad. Sci., Paris 133, 271–273, 400. (32).

    Google Scholar 

  109. Cosserat, E.: 1901 Sur la déformation infiniment petite d’un ellipsoïde élastique soumis à des efforts donnés sur la frontière. C.R. Acad. Sci., Paris 133, 361–364. (32).

    Google Scholar 

  110. Cosserat, E.: 1901 Sur la déformation infiniment petite d’une enveloppe sphérique élastique. C. R. Acad. Sci., Paris 133, 326–329. (32).

    Google Scholar 

  111. Hadamard, J.: 1901 Sur la propagation des ondes. Bull. Soc. Math. France 29, 50–60. (72).

    MATH  Google Scholar 

  112. Jouguet, E.: 1901 Sur la propagation des discontinuités dans les fluides. C. R. Acad. Sci., Paris 132, 673–676. (73).

    MATH  Google Scholar 

  113. 1901 Weingarten, G.: Sulle superficie di discontinuità nella teoria délia elasticità dei corpi solidi. Atti Accad. Lincei Rend. (5) 101, 57-60. (14, 72).

    Google Scholar 

  114. Boggio, T.: 1903 Sull’integrazione di alcune equazioni lineari alle derivate parziali. Ann. Mat. (3) 8, 181–231. (67).

    Google Scholar 

  115. Filon, L. N. G.: 1903 On an approximative solution for the bending of a beam of rectangular cross-section under any system of load, with special reference to points of concentrated or discontinuous loading. Phil. Trans. Roy Soc. Lond., Ser. A 201, 63–155. (45, 47).

    MATH  Google Scholar 

  116. Hadamard, J.: 1903 Leçons sur 1a Propagation des Ondes et les Équations de l’Hydrodynamique. Paris: Hermann. (34, 72, 73).

    Google Scholar 

  117. Tedone, O.: 1903 Saggio di una teoria generale délie equazioni deU’equilibrio elastico per un corpo isotropo. Ann. Mat. (3) 8, 129–180. (27).

    Google Scholar 

  118. Dougall, J.: 1904 The equilibrium of an isotropic elastic plate. Trans. Roy. Soc. Edinburgh 41, 129–228. (63).

    MATH  Google Scholar 

  119. Duhem, P.: 1904 Recherches sur l’élasticité. Ann. École Norm. (3) 21, 99–139, 375-414; 22 (1905), 143-217; 23 (1906), 169-223 = repr. separ., Paris 19O6. (73).

    MATH  MathSciNet  Google Scholar 

  120. Love, A. E. H.: 1904 The propagation of wave-motion in an isotropic elastic solid medium. Proc. Lond. Math. Soc. (2) 1, 291–344. (68, 69).

    MATH  Google Scholar 

  121. Tedone, O.: 1904 Saggio di una teoria generale délie equazioni dell’equilibrio elastico per un corpo isotropo. Ann. Mat. (3) 10, 13–64. (27, 44).

    MATH  Google Scholar 

  122. Thomson, W. (Lord Kelvin): 1904 Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: Clay and Sons. (67).

    Google Scholar 

  123. Klein, F., and K. Wieghardt: 1905 Über Spannungsflächen und reziproke Diagramme, mit besonderer Berücksichtigung der Maxwellschen Arbeiten. Arch. Math. Phys. (3) 8, 1–10, 95-119. (17).

    Google Scholar 

  124. 1905 Timpe, A.: Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion. Dissertation. Göttingen. (14).

    Google Scholar 

  125. Zemplen, G.: 1905 Kriterien für die physikalische Bedeutung der unstetigen Lösungen der hydrodynamischen Bewegungsgleichungen. Math. Ann. 61, 437–449. (73).

    MATH  MathSciNet  Google Scholar 

  126. Zemplen, G.: 1905 Besondere Ausführungen über unstetige Bewegungen in Flüssigkeiten. In: Vol. 44 of the Encyklopädie der Mathematischen Wissenschaften, edited by F. Klein and C. Müller. Leipzig: Teubner. (73).

    Google Scholar 

  127. 1906 Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen. Dissertation. Göttingen. (38).

    Google Scholar 

  128. Cesàro, E.: 1906 Sülle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche. Rend. Napoli (3 a) 12, 311–321. (14).

    MATH  Google Scholar 

  129. Fredholm, I.: 1906 Solution d’un problème fondamental de la théorie de l’élasticité. Ark. Mat. Astr. Fys. 2, 1–8. (32).

    Google Scholar 

  130. Korn, A.: 1906 Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Akad. Wiss., München, Math. phys. Kl. Sitz. 36, 351–402. (13).

    Google Scholar 

  131. 1906 Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, 2nd ed. Cambridge. (17, 34, 57).

    Google Scholar 

  132. Somigliana, C.: 1906 Sopra alcune formole fondamentali della dinamica dei mezzi isotropi. Atti Accad. Sci. Torino 41, 869–885, 1070-1090. (69).

    MATH  Google Scholar 

  133. Boggio T.: 1907 Nuova risoluzione di un problema fondamentale della teoria dell’ elasticità. Atti Accad. Lincei Rend. 16, 248–255. (32).

    MATH  Google Scholar 

  134. Tedone, O.: 1907 Allgemeine Theoreme der mathematischen Elastizitätslehre (Integrationstheorie). In Vol. 4 of the Encyklopädie der Mathematischen Wissenschaften, edited by F. Klein and C. Müller. Leipzig: Teubner. (76).

    Google Scholar 

  135. Tedone, O., and A. Timpe: 1907 Spezielle Ausführungen zur Statik elastischer Körper. In Vol. 4 of the Encyklopädie der Mathematischen Wissenschaften, edited by F. Klein and C. Müller. Leipzig: Teubner. (44).

    Google Scholar 

  136. Volterra, V.: 1907 Sur l’équilibre des corps élastiques multiplement connexes. Ann. École Norm. (3) 24, 401–517. (14).

    MATH  MathSciNet  Google Scholar 

  137. Korn, A.: 1908 Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse (2) 10, 165–269. (13).

    MATH  MathSciNet  Google Scholar 

  138. Ritz, W.: 1908 Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 = Œuvres 192-264. (39).

    MATH  Google Scholar 

  139. 1908 Routh, E. T.: A Treatise on Analytical Statics, 2nd ed. Cambridge. (18).

    Google Scholar 

  140. Mises, R. v.: 1909 Theorie der Wasserräder. Z. Math. Phys. 57, 1–120. (19).

    MATH  Google Scholar 

  141. 1909 Kolosov, G. V.: On an application of complex function theory to a plane problem in the mathematical theory of elasticity (in Russian). Dissertation at Dorpat (Yuriev) University. (47).

    Google Scholar 

  142. 1909 Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Akad. Umiejet. Krakow Bulletin Int. 705-724. (13).

    Google Scholar 

  143. Voigt, W.: 1910 Lehrbuch der Kristallphysik. Leipzig: Teubner. (21, 26).

    Google Scholar 

  144. Zeilon, N.: 1911 Das Fundamentalintegral der allgemeinen partiellen linearen Differentialgleichung mit konstanten Koeffizienten. Ark. Mat. Ast. Fys. 6, 38, 1–32. (51).

    Google Scholar 

  145. Colonnetti, G.: 1912 L’equilibrio elastico dal punto di vista energetico. Mem. Accad. Sci. Torino (2) 62, 479–495. (34).

    Google Scholar 

  146. 1912 Gwyther, R. F.: The formal specification of the elements of stress in cartesian, and in cylindrical and spherical polar coordinates. Mem. Manchester Lit. Phil. Soc. 56, No. 10 (13 pp.). (17).

    Google Scholar 

  147. 1913 Gwyther, R. F.: The specification of the elements of stress. Part II. A simplification of the specification given in Part I. Mem. Manchester Lit. Phil. Soc. 57, No. 5 (4 pp.) (17).

    Google Scholar 

  148. Hellinger, E.: 1914 Die allgemeinen Ansätze der Mechanik der Kontinua. In: Vol. 44 of the Encyklopädie der Mathematischen Wissenschaften, edited by F. Klein and C. Müller. Leipzig: Teubner. (38).

    Google Scholar 

  149. KoLosov, G. V.: 1914 Über einige Eigenschaften des ebenen Problems der Elastizitätstheorie. Z. Math. Phys. 62, 383–409. (47).

    Google Scholar 

  150. Domke, O.: 1915 Über Variationsprinzipien in der Elastizitätslehre nebst Anwendungen auf die technische Statik. Z. Math. Phys. 63, 174–192. (34, 36).

    Google Scholar 

  151. Korn, A.: 1915 Über die beiden bisher zur Lösung der ersten Randwertaufgabe der Elastizitätstheorie eingeschlagenen Wege. Annaes. Acad. Poly. Porto 10, 129–156. (44).

    Google Scholar 

  152. Weyl, H.: 1915 Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo 39, 1–50. (57, 78).

    MATH  Google Scholar 

  153. Zaremba, S.: 1915 Sopra un teorema d’unicita relativo alla equazione délie onde sferiche. Atti Accad. Lincei Rend. (5) 24, 904–908. (74).

    MATH  Google Scholar 

  154. 1916 Prange, G.: Die Variations-und Minimalprinzipe der Statik der Baukonstruktionen. Habilitationsschrift. Tech. Univ. Hannover. (34, 38).

    Google Scholar 

  155. 1919 Muskhelishvili, N. I.: Sur l’intégration de l’équation biharmonique. Izv. Akad. Nauk SSSR. 663-686. (47).

    Google Scholar 

  156. Serini, R.: 1919 Deformazioni simmetriche dei corpi elastici. Atti Accad. Lincei Rend. (5) 28, 343–347. (44).

    MATH  Google Scholar 

  157. Courant, R.: 1920 Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7, 1–57. (76, 77).

    MATH  MathSciNet  Google Scholar 

  158. Rubinowicz, A.: 1920 Herstellung von Lösungen gemischter Randwertprobleme bei hyperbolischen Differentialgleichungen zweiter Ordnung durch Zusammenstückelung aus Lösungen einfacher gemischter Randwertaufgaben. Mon. Math. Phys. 30, 65–79. (74).

    MATH  MathSciNet  Google Scholar 

  159. Burgatti, P.: 1923 Sopra una soluzione molto generale dell’equazioni dell’equilibrio elastico. Atti Accad. Bologna Rend. (2) 27, 66–73. (44).

    Google Scholar 

  160. Southwell, R.: 1923 On Castigliano’s theorem of least work and the principle of Saint-Venant. Phil. Mag. (6) 45, 193–212. (54).

    MATH  Google Scholar 

  161. Lichtenstein, L.: 1924 Über die erste Randwertaufgabe der Elastizitätstheorie. Math. Z. 20, 21–28. (27, 53).

    MATH  MathSciNet  Google Scholar 

  162. Timpe, A.: 1924 Achsensymmetrische Deformation von Umdrehungskörpern. Z. Angew. Math. Mech. 4, 361–376. (44).

    MATH  Google Scholar 

  163. Weber, C.: 1925 Achsensymmetrische Deformation von Umdrehungskörpern. Z. Angew. Math. Mech. 5, 477–468. (44).

    Google Scholar 

  164. Burgatti, P.: 1926 Sopra due utili forme dell’integrale generale dell’equazione per l’equilibrio dei solidi elastici isotropi. Mem. Accad. Sci. Bologna (8) 3, 63–67. (44).

    Google Scholar 

  165. Kotchine, N. E.: 1926 Sur la théorie des ondes de choc dans un fluide. Rend. Cire. Mat. Palermo 50, 305–344. (73).

    MATH  Google Scholar 

  166. Auerbach, F.: 1927 Elastizität der Kristalle. Handbuch der Physikalischen und Technischen Mechanik 3, 239–282. Leipzig: Barth. (26).

    Google Scholar 

  167. Korn, A.: 1927 Allgemeine Theorie der Elastizität. Handbuch der Physikalischen und Technischen Mechanik 3, 1–47. Leipzig: Barth. (27, 53).

    Google Scholar 

  168. 1927 Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed. Cambridge. (18, 26, 27, 29, 44, 45, 47, 51, 52, 53, 54, 65, 68, 73).

    Google Scholar 

  169. Friedrichs, K. O., and H. Lewy: 1928 Über die Eindeutigkeit und das Abhängigkeitsgebiet der Lösungen beim Anfangswertproblem linearer hyperbolischer Differentialgleichungen. Math. Ann. 98, 192–204. (74).

    MathSciNet  Google Scholar 

  170. Geckeler, J.W.: 1928 Elastizitätstheorie anisotroper Körper (Kristallelastizität). In: Volume VI of the Handbuch der Physik, edited by R. Grammel. Berlin: Springer. (26).

    Google Scholar 

  171. Trefftz, E.: 1928 Mathematische Elastizitätstheorie. In: Volume VI of the Handbuch der Physik, edited by R. Grammel. Berlin: Springer. (34, 44, 47, 51, 53).

    Google Scholar 

  172. Trefftz, E.: 1928 Konvergenz und Fehlerschätzung beim Ritzschen Verfahren. Math. Ann. 100, 503–521. (37).

    MATH  MathSciNet  Google Scholar 

  173. Kellogg, O. v.: 1929 Foundations of Potential Theory. Berlin: Springer. (5, 6, 8, 52).

    Google Scholar 

  174. Lichtenstein, L.: 1929 Grundlagen der Hydromechanik. Berlin: Springer. (6, 72).

    MATH  Google Scholar 

  175. Filon, L. N. G.: 1930 On the relation between corresponding problems in plane stress and in generalized plane stress. Q. J. Appl. Math. 1, 289–299. (45).

    MATH  Google Scholar 

  176. 1930 Galerkin, B.: On an investigation of stresses and deformations in elastic isotropic solids [in Russian]. Dokl. Akad. Nauk SSSR, 353-358. (44).

    Google Scholar 

  177. Galerkin, B.: 1930 Contribution à 1a solution générale du problème de la théorie de l’élasticité dans le cas de trois dimensions. C. R. Acad. Sci., Paris 190, 1047–1048. (44).

    MATH  Google Scholar 

  178. 1930 Rellich, F.: Ein Satz über mittlere Konvergenz. Nachr. Ges. Wissen. Göttingen. Math.-Phys. Kl., 30-35. (7).

    Google Scholar 

  179. 1931 Burgatti, P.: Teoria Matematica délia Elasticità. Bologna: Zanichelli. (30).

    Google Scholar 

  180. 1931 Coker, E. G., and L. N. G. Filon: A Treatise on Photoelasticity. Cambridge. (45).

    Google Scholar 

  181. 1931 Galerkin, B.: On the general solution of a problem in the theory of elasticity in three dimensions by means of stress and displacement functions [in Russian]. Dokl. Akad. Nauk SSSR, 281-286. (44).

    Google Scholar 

  182. 1931 Hobson, E. W.: The Theory of Spherical and Ellipsoidal Harmonies. Cambridge. (8).

    Google Scholar 

  183. Supino, G.: 1931 Sopra alcune limitazioni per 1a sollecitazione elastica e sopra 1a dimostrazione del principio del De Saint Venant. Ann. Mat. (4) 9, 91–119. (54).

    MathSciNet  Google Scholar 

  184. Muskhelishvili, N. I.: 1932 Recherches sur les problèmes aux limites relatifs à l’équation biharmonique et aux équations de l’élasticité à deux dimensions. Math. Ann. 107, 282–312. (47).

    Google Scholar 

  185. Papkovitch, P. F.: 1932 Expressions générales des composantes des tensions, ne renfermant comme fonctions arbitraires que des fonctions harmoniques. C.R. Acad. Sci., Paris 195, 754–756. (44).

    Google Scholar 

  186. Papkovitch, P. F.: 1932 Solution générale des équations différentielles fondamentales d’élasticité, exprimée par trois fonctions harmoniques. C.R. Acad. Sci., Paris 195, 513–515. (44).

    Google Scholar 

  187. Papkovitch, P. F.: 1932 The representation of the general integral of the fundamental equations of the theory of elasticity in terms of harmonic functions [in Russian]. Izv. Akad. Nauk SSSR, Fiz.-Mat. Ser. 10, 1425–1435. (44).

    Google Scholar 

  188. Signorini, A.: 1932 Sollecitazioni iperastatiche. Rend. 1st. Lombardo (2) 65, 1–7. (18).

    Google Scholar 

  189. Marguerre, K.: 1933 Ebenes und achsensymmetrisches Problem der Elastizitätstheorie. Z. Angew. Math. Mech. 13, 437–438. (44).

    MATH  Google Scholar 

  190. Muskhelishvili, N. I.: 1933 Recherches sur les problèmes aux limites relatifs à l’équation biharmonique et aux équations de l’élasticité à deux dimensions. Math. Ann. 107, 282–312. (32).

    MathSciNet  Google Scholar 

  191. Phillips, H. B.: 1933 Vector Analysis. New York: Wiley. (6).

    MATH  Google Scholar 

  192. Signorini, A.: 1933 Sopra alcune questioni di statica dei sistemi continui. Ann. Scuola Norm. Pisa (2) 2, 231–257. (18).

    MATH  MathSciNet  Google Scholar 

  193. Biezeno, C.: 1934 Über die Marguerresche Spannungsfunktion. Ing.-Arch. 5, 120–124. (44).

    MATH  Google Scholar 

  194. Finzi, B.: 1934 Integrazione délie equazioni indefinite délia meccanica dei sistemi continui. Atti Accad. Lincei Rend. (6) 19, 578–584, 620-623. (17).

    Google Scholar 

  195. Muskhelishvili, N. I.: 1934 A new general method of solution of the fundamental boundary problems of the plane theory of elasticity [in Russian]. Dokl. Akad. Nauk SSSR 3, 7–9. (47).

    Google Scholar 

  196. Neuber, H.: 1934 Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel. Z. Angew. Math. Mech. 14, 203–212. (44).

    MATH  Google Scholar 

  197. Phillips, H. B.: 1934 Stress functions. J. Math. Phys. 13, 421–425. (47).

    MATH  Google Scholar 

  198. Sobrero, L.: 1934 Nuovo metodo per lo studio dei problemi di elasticità con applieazione al problema della piastra forata. Ric. Ingegneria 2, 255–264. (44).

    Google Scholar 

  199. Grodski, G. D.: 1935 The integration of the general equations of equilibrium of an isotropic elastic body by means of the Newtonian potential and harmonic functions [in Russian]. Izv. Akad. Nauk SSSR Otdel Mat. 4, 587–614. (44).

    Google Scholar 

  200. KoLosov, G. V.: 1935 An Application of the Complex Variable in the Theory of Elasticity [in Russian]. Moscow-Leningrad: Gostehizdat. (47).

    Google Scholar 

  201. Marguerre, K.: 1935 Ebenes und achsensymmetrisches Problem der Elastizitätstheorie. Z. Angew. Math. Mech. 13, 437–438. (44).

    Google Scholar 

  202. Neuber, H.: 1935 Der räumliche Spannungszustand in Umdrehungskerben. Ing. Arch. 6, 133–156. (44).

    MATH  Google Scholar 

  203. Nielsen, T.: 1935 Elementare Mechanik. Berlin: Springer. (13).

    Google Scholar 

  204. Sobolev, S. L.: 1935 General theory of the diffraction of waves on Riemann surfaces. Trudy Mat. Inst. Steklov 9, 39–105-(42).

    Google Scholar 

  205. Sobrero, L.: 1935 Del significato meccanico della funzione di Airy. Ric. Ingegneria 3, 77–80 = Atti. Accad. Lincei Rend. (6) 21, 264-269. (17).

    Google Scholar 

  206. Sobrero, L.: 1935 Delle funzioni analoghe al potentiate intervenienti nella fisica-matematica. Atti. Accad. Lincei. Rend. (6) 21, 448–454. (44, 47).

    Google Scholar 

  207. Westergaard, H.: 1935 General solution of the problem of elastostatics of an n-dimen-sional homogeneous isotropic solid in an n-dimensional space. Bull. Amer. Math. Soc. 41, 695–699-(44).

    MathSciNet  Google Scholar 

  208. Mindlin, R. D.: 1936 Force at a point in the interior of a semi-infinite solid. Phys. 7, 195–202. (51).

    MATH  Google Scholar 

  209. Mindlin R.: 1936 Note on the Galerkin and Papkovitch stress functions. Bull. Amer. Math. Soc. 42, 373–376. (44).

    MATH  MathSciNet  Google Scholar 

  210. 1936 Nicolesco, M.: Les fonctions polyharmoniques. Actualités Sci. Ind. No. 331. (8).

    Google Scholar 

  211. Picone, M.: 1936 Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune equazioni lineari alle derivate parziali della Fisica Matematica. Ann. Scuola Norm. Pisa (2) 5, 213–288 (8).

    MathSciNet  Google Scholar 

  212. Southwell, R. V.: 1936 Castigliano’s principle of minimum strain energy. Proc. Roy. Soc. Lond. (A) 154, 4–21. (18, 36).

    MATH  Google Scholar 

  213. Zanaboni, O.: 1936 Il problema della funzione delle tensioni in un sistema spaziale isotropo. Bull. Un. Mat. Ital. 15, 71–76. (44).

    MATH  Google Scholar 

  214. Goodier, J. N.: 1937 A general proof of Saint-Venant’s principle. Phil. Mag. (7) 23, 607–609. (54).

    MATH  Google Scholar 

  215. Goodier, J. N.: 1937 Supplementary note on “A general proof of Saint-Venant’s principle”. Phil. Mag. (7) 24, 325. (54).

    Google Scholar 

  216. Neuber, H.: 1937 Kerbspannungslehre. Berlin: Springer. (44).

    Google Scholar 

  217. Odqvist, F.: 1937 Équations de compatibilité pour un système de coordonnées triples orthogonaux quelconques. C.R. Acad. Sci., Paris 205, 202–204. (14).

    Google Scholar 

  218. Papkovitch, P. F.: 1937 Survey of some general solutions of the fundamental differential equations of equilibrium of an isotropic elastic body [in Russian]. Prikl. Mat. Meh. 1, 117–132. (44).

    Google Scholar 

  219. Zanaboni, O.: 1937 Dimostrazione generate del principio del De Saint-Venant. Atti Accad. Lincei Rend. 25, 117–121. (54, 56a).

    MATH  Google Scholar 

  220. Zanaboni, O.: 1937 Valutazione deU’errore massimo cui da luogo l’applicazione del principio del Saint-Venant. Atti Accad. Lincei Rend. 25, 595–601. (54, 56a).

    MATH  Google Scholar 

  221. Zanaboni, O.: 1937 Sull’approssimazione dovuta al principio del De Saint-Venant nei solidi prismatici isotropi. Atti Accad. Lincei Rend. 26, 340–345. (54, 55, 56a).

    MATH  Google Scholar 

  222. Blinchikov, T. N.: 1938 The differential equations of equilibrium of the theory of elasticity in curvilinear coordinate systems [in Russian]. Prikl. Mat. Meh. 2, 407–413. (14).

    Google Scholar 

  223. 1938 Sherman, D. J.: On the distribution of eigenvalues of integral equations in the plane theory of elasticity [in Russian]. Trudy Seismol. Inst. Akad. Nauk SSSR, No. 82. (32).

    Google Scholar 

  224. Slobodyansky, M.: 1938 Expression of the solution of the diferential equations of elasticity by means of one, two, and three functions and proof of the generality of these solutions [in Russian]. Uch. Zap. Mosk. Gos. Univ. 24, 191–202. (44).

    Google Scholar 

  225. Slobodyansky, M.: 1938 Stress functions for spatial problems in the theory of elasticity [in Russian]. Uch. Zap. Mosk. Gos. Univ. 24, 181–190. (44).

    Google Scholar 

  226. 1938 Southwell, R. V.: Castigliano’s principle of minimum strain-energy, and the conditions of compatibility for strain. Stephen Timoshenko 60th Aniv. Vol. New York: MacMillan. (18, 36).

    Google Scholar 

  227. Burgers, J. M.: 1939 Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. Proc. Koninkl. Ned. Akad. Wetenschap. 42, 293–325, 378-399. (14).

    Google Scholar 

  228. Friedrichs, K. O.: 1939 On differential operators in Hilbert spaces. Am. J. Math. 61, 523–544. (42).

    MathSciNet  Google Scholar 

  229. Graffi, D.: 1939 Sui teoremi di reciprocità nei fenomeni dipendenti dal tempo. Ann. Mat. (4) 18, 173–200. (61).

    MathSciNet  Google Scholar 

  230. 1939 Papkovitch, P. F.: Theory of Elasticity [in Russian]. Moscow. (44).

    Google Scholar 

  231. Fadle, J.: 1940 Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing. Arch. 11, 125–149. (56).

    MathSciNet  Google Scholar 

  232. Locatelli, P.: 1940 Estensione del principio di St. Venant a corpi non perfettamente elastici. Atti Accad. Sci. Torino 75, 502–510. (54).

    MathSciNet  Google Scholar 

  233. Locatelli, P.: 1940 Sul principio di Menabrea. Boll. Un. Nat. Ital. (2) 2, 342–347. (18, 36).

    MathSciNet  Google Scholar 

  234. 1940 Locatelli, P.: Sulla congruenza delle deformazioni. Rend. 1st. Lombardo 73 =(3) 4 (1939-1940), 457-464. (18, 36).

    Google Scholar 

  235. Platrier, O.: 1941 Sur l’intégration des équations indéfinies de l’équilibre élastique. C. R. Acad. Sci., Paris 212, 749–751. (44).

    MathSciNet  Google Scholar 

  236. Sakadi, Z.: 1941 Elastic waves in crystals. Proc. Phys. Math. Soc. Japan (3) 23, 539–547. (70, 71).

    MATH  MathSciNet  Google Scholar 

  237. 1942 Finzi, B.: Propagazione ondosa nei continui anisotropi. Rend. 1st. Lombardo, 75. (3) 6 (1941/42) 630-640. (73).

    Google Scholar 

  238. Goodier, J.N.: 1942 An extension of Saint-Venant’s principle, with applications. J. Appl. Phys. 13, 167–171. (54).

    MATH  MathSciNet  Google Scholar 

  239. Frank, P., and R. v. Mises: 1943 Die Differential-und Integralgleichungen der Mechanik und Physik, Vol. 1. New York: Rosenberg. (8).

    MATH  Google Scholar 

  240. Stevenson, A. C: 1943 Some boundary problems of two-dimensional elasticity. Phil. Mag. (7) 34, 766–793. (47).

    MATH  MathSciNet  Google Scholar 

  241. Udeschini, P.: 1943 Sull’energia di deformazione. Rend. 1st. Lombardo 76 = (3) 7, 25–34. (24).

    MathSciNet  Google Scholar 

  242. Carrier, G. F.: 1944 The thermal stress and body-force problems of the infinite orthotropic solid. Q. Appl. Math. 2, 31–36. (51).

    MATH  MathSciNet  Google Scholar 

  243. Friedrichs, K. O.: 1944 The identity of weak and strong extensions of differential operators. Trans. Am. Math. Soc. 55, 132–151. (42).

    MATH  MathSciNet  Google Scholar 

  244. Vlasov, V. Z.: 1944 Equations of compatibility of deformation in curvilinear co-ordinates [in Russian]. Prikl. Mat. Meh. 8, 301–306. (14).

    MATH  MathSciNet  Google Scholar 

  245. Fox, L., and R. V. Southwell: 1945 Relaxation methods applied to engineering problems. VII A. Biharmonic analysis as applied to the flexure and extension of flat elastic plates. Phil. Trans. Roy. Soc. Lond. Ser. A 239, 419–460. (47).

    MATH  MathSciNet  Google Scholar 

  246. Kuzmin, R. O.: 1945 On Maxwell’s and Morera’s formulae in the theory of elasticity. Dokl. Akad. Nauk SSSR 49, 326–328. (17).

    MATH  MathSciNet  Google Scholar 

  247. Locatelli, P.: 1945 Nuove espressioni variazionali nella dinamica elastica. Rend. 1st. Lombardo 78= (3) 9, 247–257. (65).

    MathSciNet  Google Scholar 

  248. Locatelli, P.: 1945 Sull’interpretazione di principi variazionali dinamica nella statica elastica. Rend. 1st. Lombardo 78 = (3) 9, 301–306. (65).

    MathSciNet  Google Scholar 

  249. Mises, R. v.: 1945 On Saint-Venant’s principle. Bull. Amer. Math. Soc. 51, 555–562. (54).

    MATH  MathSciNet  Google Scholar 

  250. Rayleigh, J. W. S.: 1945 The Theory of Sound, Vol. 1. New York: Dover. (39).

    MATH  Google Scholar 

  251. Stevenson, A. C.: 1945 Complex potentials in two-dimensional elasticity. Proc. Roy. Soc. Lond. (A) 184, 129–179, 218-229. (47).

    MATH  MathSciNet  Google Scholar 

  252. Butty, E.: 1946 Tratado de elasticidad teorico-technica. Buenos Aires: Centro Estudiantes de Ingenieria. (51, 71).

    Google Scholar 

  253. Hearmon, R. F. S.: 1946 The elastic constants of anisotropic materials. Rev. Mod. Phys. 18, 409–440. (26).

    Google Scholar 

  254. Poritaky, H.: 1946 Application of analytic functions to two-dimensional biharmonic analysis. Trans. Am. Math. Soc. 59, 248–279. (47).

    Google Scholar 

  255. Prager, W.: 1946 On plane elastic strain in doubly-connected domains. Q. Appl. Math. 3, 377–380. (47).

    MATH  MathSciNet  Google Scholar 

  256. Friedrichs, K. O.: 1947 On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48, 441–471. (13, 42).

    MATH  MathSciNet  Google Scholar 

  257. Graffi, D.: 1947 Sul teorema di reciprocità nella dinamica dei corpi elastici. Mem. Accad. Sci. Bologna 18, 103–109. (19, 61).

    Google Scholar 

  258. Gutman, C. G.: 1947 General solution of a problem in the theory of elasticity in generalized cylindrical coordinates [in Russian]. Dokl. Akad. Nauk SSSR 58, 993–996. (44).

    MATH  Google Scholar 

  259. Lifshic, I. M., and L. N. Rozencveig: 1947 On the construction of the Green’s tensor for the fundamental equations of the theory of elasticity in the case of an unrestricted anisotropic elastic medium [in Russian]. Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz. 17, 783–791. (51).

    MathSciNet  Google Scholar 

  260. Mikhlin, S. G.: 1947 Fundamental solutions of the dynamic equations of the theory of elasticity for inhomogeneous media [in Russian]. Prikl. Mat. Meh. 11, 423–432. (68).

    Google Scholar 

  261. Prager, W., and J. L. Synge: 1947 Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269. (34).

    MATH  MathSciNet  Google Scholar 

  262. Shapiro, G.: 1947 Les fonctions des tensions dans un système arbitraire de coordonnées curvilignes. Dokl. Acad. Sci. URSS 55, 693–695. (44).

    MATH  Google Scholar 

  263. 1947 Ter-Mkrtychan, L. N.: On general solutions of the problems of the theory of elasticity [in Russian]. Trudy Leningr. Politekhn. Akad. in-ta, No. 4. (44).

    Google Scholar 

  264. Van Hove, L.: 1947 Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Proc. Koninkl. Ned. Akad. Wetenschap. 50, 18–23. (32).

    MATH  Google Scholar 

  265. Diaz, J. B., and H. J. Greenberg: 1948 Upper and lower bounds for the solution of the first boundary value problem of elasticity. Q. Appl. Math. 6, 326–331. (52).

    MATH  MathSciNet  Google Scholar 

  266. Elliot, H.A.: 1948 Three-dimensional stress distributions in hexagonal aeolotropic crystals. Proc. Cambridge Phil. Soc. 44, 522–533. (51).

    MATH  MathSciNet  Google Scholar 

  267. 1948 Erim, K.: Sur le principe de Saint-Venant. Proc. Seventh Int. Cong. Appl. Mech. London. (54).

    Google Scholar 

  268. Flint, E. E.: 1948 A Practical Handbook on Geometrical Crystallography [in Russian]. Moscow: Gosgeolizdat. (21).

    Google Scholar 

  269. Moriguti, S.: 1948 On Castigliano’s theorem in three-dimensional elastostatics [in Japanese]. J. Soc. Appl. Mech. Japan 1, 175–180. (18).

    MathSciNet  Google Scholar 

  270. Timpe, A.: 1948 Torsionsfreie achsensymmetrische Deformation von Umdrehungskörpern und ihre Inversion. Z. Angew. Math. Mech. 28, 161–166. (44).

    MATH  MathSciNet  Google Scholar 

  271. Weber, G.: 1948 Spannungsfunktionen des dreidimensionalen Kontinuums. Z. Angew. Math. Mech. 28, 193–197. (17).

    MATH  MathSciNet  Google Scholar 

  272. Finzi, B., and M. Pastori: 1949 Calcolo Tensoriale e Applicazioni. Bologna: Zanichelli. (17).

    MATH  Google Scholar 

  273. Freiberger, W.: 1949 On the solution of the equilibrium equations of elasticity in general curvilinear coordinates. Australian J. Sci. A 2, 483–492. (44).

    MathSciNet  Google Scholar 

  274. Freiberger, W.: 1949 The uniform torsion of an incomplete tore. Australian J. Sci. A 2, 354–375. (44).

    MathSciNet  Google Scholar 

  275. Iacovache, M.: 1949 O extindere a metodei lui Galerkin pentru sistemul ecuatiilor elasticitätii. Bul. St. Acad. R. P. Romane 1, 593–596. (44, 67).

    MathSciNet  Google Scholar 

  276. Krutkov, Y. A.: 1949 Tensor Stress Functions and General Solutions in the Static Theory of Elasticity [in Russian]. Moscow: Akademkniga. (17, 44).

    Google Scholar 

  277. Moisil, G.: 1949 Asupra formulelor lui Galerkin in teoria elasticitätii. Bui. St. Acad. R. P. Romane 1, 587–592. (44).

    MathSciNet  Google Scholar 

  278. Pastori, M.: 1949 Propagazione ondosa nei continui anisotropi e corrispondenti direzioni principali. Nuovo Cimento (9) 6, 187–193. (73).

    MathSciNet  Google Scholar 

  279. Peretti, G.: 1949 Significato del tensore arbitrario che interviene nell’integrale generale delle equazioni della statica dei continui. Atti Sem. Mat. Fis. Univ. Modena 3, 77–82. (17).

    MATH  MathSciNet  Google Scholar 

  280. Aquaro, G.: 1950 Un teorema di media per 1e equazioni dell’elasticità. Riv. Mat. Univ. Parma 1, 419–424. (43).

    MATH  MathSciNet  Google Scholar 

  281. Arzhanyh, I. S.: 1950 On the theory of integration of the dynamical equations of an isotropic elastic body [in Russian]. Dokl. Akad. Nauk SSSR (N.S.) 73, 41–44. (53, 69).

    Google Scholar 

  282. Blokh, V.: 1950 Stress functions in the theory of elasticity [in Russian]. Prikl. Mat. Meh. 14, 415–422. (17,44).

    Google Scholar 

  283. Fichera, G.: 1950 Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi airequilibrio di un corpo elastico. Ann. Scuola Norm. Pisa (3) 4, 35–99. (49, 50).

    MATH  MathSciNet  Google Scholar 

  284. Fridman, M. M.: 1950 The mathematical theory of elasticity of anisotropic media [in Russian]. Prikl. Mat. Meh. 14, 321–340. (45).

    MATH  MathSciNet  Google Scholar 

  285. Iacovache, M.: 1950 Asupra relatiilor dintre tensiuni intr’un corp elastic in miscare. Bul. St. Acad. R. P. Romane 2, 699–705. (59).

    MATH  MathSciNet  Google Scholar 

  286. Ionescu-Cazimir, V.: 1950 Asupra ecuatiilor echilibrului termoelastic. I. Analogul vectorului lui Galerkin. Bul. St. Acad. R. P. Romane 2, 589–595. (44).

    MathSciNet  Google Scholar 

  287. Moisil, G.: 1950 Asupra unui vector analog vectorului lui Galerkin pentru echilibrul corpurilor elastice cu isotropie transversa. Bul. St. Acad. R. P. Romane 2, 207–210 (44).

    MathSciNet  Google Scholar 

  288. Morinaga, K., and T. Nono: 1950 On stress-functions in general coordinates. J. sci. Hiroshima Univ. Ser. A 14, 181–194. (17).

    MATH  MathSciNet  Google Scholar 

  289. Reissner, E.: 1950 On a variational theorem in elasticity. J. Math. Phys. 29, 90–95. (38).

    MATH  MathSciNet  Google Scholar 

  290. Sobolev, S. L.: 1950 Some Applications of Functional Analysis in Mathematical Physics [in Russian]. Leningrad: University Press. (I have seen this work only in the English translation by F. E. Browder, Providence: Am. Math. Soc. 1963.) (42).

    Google Scholar 

  291. Synge, J. L.: 1950 Upper and lower bounds for solutions of problems in elasticity. Proc. Roy. Irish Acad. Sect. A 53, 41–64. (43, 52).

    MathSciNet  Google Scholar 

  292. Timpe, A.: 1950 Spannungsfunktionen für die von Kugel-und Kegelflächen begrenzten Körper-und Kuppelprobleme. Z. Angew. Math. Mech. 30, 50–61. (44).

    MATH  MathSciNet  Google Scholar 

  293. Albrecht, F.: 1951 L’équilibre élastique des cristaux du système cubique. Com. Acad. R. P. Romane 1, 403–408. (27).

    MathSciNet  Google Scholar 

  294. Arzhanyh, I. S.: 1951 The integral equations of the dynamics of an elastic body [in Russian]. Dokl. Akad. Nauk SSSR (N.S.) 76, 501–503. (53, 69).

    Google Scholar 

  295. Arzhanyh, I. S.: 1951 Integral equations for the representation of the vector of translation, spatial dilatation, and rotation of an elastic body [in Russian]. Prikl. Mat. Meh. 15, 387–391. (69).

    Google Scholar 

  296. Arzhanyh, I. S.: 1951 The fundamental integral equations of the dynamics of an elastic body [in Russian]. Dokl. Akad. Nauk SSSR (N.S.) 81, 513–516. (69).

    Google Scholar 

  297. Eidus, D. M.: 1951 On the mixed problem of the theory of elasticity [in Russian]. Dokl. Akad. Nauk SSSR. 76, 181–184. (13).

    MathSciNet  Google Scholar 

  298. Fichera, G.: 1951 Über eine Möglichkeit zur Kontrolle der physikalischen Widerspruchsfreiheit der Gleichungen der mathematischen Elastizitätstheorie. Z. Angew. Math. Mech. 31, 268–270. (31).

    MATH  Google Scholar 

  299. Filonenko-Borodich, M. M.: 1951 The problem of the equilibrium of an elastic parallelepiped subject to assigned loads on its boundaries [in Russian]. Prikl. Mat. Meh. 15, 137–148. (17).

    MATH  Google Scholar 

  300. Filonenko-Borodich, M. M.: 1951 Two problems on the equilibrium of an elastic parallelepiped [in Russian]. Prikl. Mat. Meh. 15, 563–574. (17).

    MATH  Google Scholar 

  301. Sternberg, E., R. A. Eubanks and M. A. Sadowski: 1951 On the stress function approaches of Boussinesq and Timpe to the axisymmetric problem of elasticity theory. J. Appl. Phys. 22, 1121–1124. (44).

    MATH  MathSciNet  Google Scholar 

  302. Timoshenko, S., and J. N. Goodier: 1951 Theory of Elasticity, 2nd ed. New York: McGraw Hill. (51).

    MATH  Google Scholar 

  303. Timpe, A.: 1951 Spannungsfunktionen achsensymmetrischer Deformationen in Zylinderkoordinaten. Z. Angew. Math. Mech. 31, 220–224. (44).

    MATH  MathSciNet  Google Scholar 

  304. Valcovici, V.: 1951 Sur les relations entre les tensions. Com. Acad. R. P. Romane 1, 337–339. (59).

    MATH  MathSciNet  Google Scholar 

  305. Cooperman, P.: 1952 An extension of the method of Trefftz for finding local bounds on the solutions of boundary-value problems, and on their derivatives. Q. Appl. Math. 10, 359–373. (37).

    MathSciNet  Google Scholar 

  306. 1952 Mikhlin, S. G.: The Problem of the Minimum of a Quadratic Functional [in Russian]. Moscow. (I have seen this work only in the English translation by A. Feinstein, San Francisco: Holden Day 1965.) (13, 43).

    Google Scholar 

  307. Moisil, A.: 1952 Les relations entre les tensions pour les corps élastiques à isotropie transverse. Bul. St. Acad. R. P. Romane 3, 473–480. (27).

    MathSciNet  Google Scholar 

  308. Sbrana, F.: 1952 Una proprietà caratteristica delle equazioni dell’elasticità. Atti Accad. Ligure Sci. Lett. 9, 84–88. (43).

    MathSciNet  Google Scholar 

  309. Sneddon, I. N.: 1952 The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid. Rend. Circ. Mat. Palermo (2) 1, 57–62. (47).

    MATH  MathSciNet  Google Scholar 

  310. Tiffen, R.: 1952 Uniqueness theorems of two-dimensional elasticity theory. Q. J. Mech. Appl. Math. 5, 237–252. (50).

    MATH  MathSciNet  Google Scholar 

  311. 1952 Westergaard, H.: Theory of Elasticity and Plasticity. Cambridge. (44).

    Google Scholar 

  312. Arzhanyh, I. S.: 1953 Construction of the integral equations of statics in the theory of elasticity by means of Green’s functions [in Russian]. Akad. Nauk Uzbek. SSR. Trudy Inst. Mat. Meh. 10, 5–25. (53).

    MathSciNet  Google Scholar 

  313. Arzhanyh, I. S.: 1953 Stress tensor functions for the dynamics of an elastic body [in Russian]. Dokl. Akad. Nauk Uzbek. SSR., No. 7, 3–4. (17).

    Google Scholar 

  314. Bergman, S., and M. Schiffer: 1953 Kernel functions and elliptic differential equations in mathematical physics. New York: Academic. (53).

    MATH  Google Scholar 

  315. Bishop, R. E. D.: 1953 On dynamical problems of plane stress and plane strain. Q. J. Mech. Appl. Math. 6, 250–254. (67).

    MATH  Google Scholar 

  316. Bland, D. R.: 1953 Mean displacements on the boundary of an elastic solid. Q. J. Mech. Appl. Math. 6, 379–384. (29).

    MATH  MathSciNet  Google Scholar 

  317. Brdicka, M.: 1953 The equations of compatibility and stress functions in tensor form [in Russian]. Czech. J. Phys. 3, 36–52. (44).

    MATH  MathSciNet  Google Scholar 

  318. Churikov, F.: 1953 On a form of the general solution of the equilibrium equations for the displacements in the theory of elasticity [in Russian]. Prikl. Mat. Meh. 17, 751–754. (44).

    Google Scholar 

  319. Courant, R., and D. Hilbert: 1953 Methods of Mathematical Physics, Vol. 1. New York: Interscience. (39, 76, 77, 78).

    Google Scholar 

  320. Dzhanelidze, G. I.: 1953 The general solution of the equations of the theory of elasticity in arbitrary linear coordinates [in Russian]. Dokl. Akad. Nauk SSSR 88, 423–425. (44).

    Google Scholar 

  321. Ericksen, J. L.: 1953 On the propagation of waves in isotropic incompressible perfectly elastic materials. J. Rational Mech. Anal. 2, 329–337. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (73).

    MATH  MathSciNet  Google Scholar 

  322. Fichera, G.: 1953 Condizioni perché sia compatibile il problema principale délia statica elastica. Atti Accad. Lincei Rend. (8) 14, 397–400. (31).

    MATH  MathSciNet  Google Scholar 

  323. FöPPL, L.: 1953 Ein Mittelwertsatz der ebenen Elastizitätstheorie. Sitzber. Math.-Naturw. Kl. Bayer Akad. Wiss. München 1952, 215–217. (43).

    MATH  Google Scholar 

  324. Hu, H.: 1953 On the three-dimensional problems of the theory of elasticity of a transversely isotropic body. Sci. Sinica (Peking) 2, 145–151. (44).

    Google Scholar 

  325. Kröner, E.: 1953 Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen. Z. Physik 136, 402–410. (51).

    MATH  MathSciNet  Google Scholar 

  326. 1953 Mindlin, R. D.: Force at a point in the interior of a semi-infinite solid. Proc. First Midwestern Conf. Solid Mech. (51).

    Google Scholar 

  327. Misicu, M.: 1953 Echilibrul mediilor continue cu deformäri mari. Stud. Cercet. Mec. Metal. 4, 31–53. (32).

    MathSciNet  Google Scholar 

  328. Saenz, A. W.: 1953 Uniformly moving dislocations in anisotropic media. J. Rational Mech. Anal. 2, 83–98. (51, 71).

    MATH  MathSciNet  Google Scholar 

  329. Schaefer, H.: 1953 Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers. Z. Angew. Math. Mech. 33, 356–362 (17,18, 44).

    MATH  MathSciNet  Google Scholar 

  330. Trenin, S.: 1953 On the solutions of the equilibrium equations of an axisymmetrical problem in the theory of elasticity [in Russian]. Vestn. Mosk. Univ. Ser. Fiz., Mat. 8, 7–13. (44).

    MATH  MathSciNet  Google Scholar 

  331. Washizu, K.: 1953 Bounds for solutions of boundary-value problems in elasticity. J. Math. Phys. 32, 117–128. (52).

    MATH  MathSciNet  Google Scholar 

  332. Arzhanyh, I. S.: 1954 Dynamical potentials of the theory of elasticity [in Russian]. Akad. Nauk Uzbek. SSR. Trudy Inst. Mat. Meh. 13, 3–17. (69).

    MathSciNet  Google Scholar 

  333. 1954 Arzhanyh, I. S.: Integral Equations of Basic Problems in the Theory of Vector Fields and in Elasticity [in Russian]. Tashkent: Izdat. Akad. Nauk Uzbek. SSR. (53, 69).

    Google Scholar 

  334. Brdicka, M.: 1954 Covariant form of the general solution of the Galerkin equations of elastic equilibrium [in Russian]. Czech. J. Phys. 4, 246. (44).

    Google Scholar 

  335. Browder, F. E.: 1954 Strongly elliptic systems of differential equations. Contrib. Th. Partial Diff. Eqns. Annals, of Math. Studies No. 33, 15–51. (32).

    MATH  MathSciNet  Google Scholar 

  336. Eubanks, R., and E. Sternberg: 1954 On the axisymmetric problem of elasticity theory for a medium with transverse isotropy. J. Rational Mech. Anal. 3, 89–101. (44).

    MATH  MathSciNet  Google Scholar 

  337. Graffi, D.: 1954 Über den Reziprozitätssatz in der Dynamik der elastischen Körper. Ing. Arch. 22, 45–46. (19, 61).

    MATH  MathSciNet  Google Scholar 

  338. Günther, W.: 1954 Spannungsfunktionen und Verträglichkeitsbedingungen der Kontinuumsmechanik. Abhandl. Braunschweig. Wiss. Ges. 6, 207–219. (17).

    MATH  Google Scholar 

  339. Hu, H.: 1954 On the general theory of elasticity for a spherically isotropic medium. Sci. Sinica (Peking) 3, 247–260. (44).

    Google Scholar 

  340. Ionescu, D.: 1954 Asupra vectorului lui Galerkin în teoria elasticitätii si in hidrodinamica fluidelor vîscoase. Bul. St. Acad. R. P. Române 6, 555–571 (44).

    MATH  Google Scholar 

  341. Klyushnikov, V. D.: 1954 Derivation of the Beltrami-Michell equations from a variational principle [in Russian]. Prikl. Mat. Meh. 18, 250–252. (18).

    MATH  Google Scholar 

  342. Kröner, E.: 1954 Die Spannungsfunktionen der dreidimensionalen isotropen Elastizitätstheorie. Z. Physik 139, 175–188. Correction, Z. Phys. 143, 175 (1955). (17, 44).

    MATH  MathSciNet  Google Scholar 

  343. Langhaar, H., and M. Stippes: 1954 Three-dimensional stress functions. J. Franklin Inst. 258, 371–382. (17).

    MathSciNet  Google Scholar 

  344. Ling, C. B., and K. L. Yang: 1954 On symmetric strains in solids of revolution in curvilinear coordinates. Ann. Acad. Sinica Taipei 1, 507–516. (44).

    MathSciNet  Google Scholar 

  345. Morrey, C. B., Jr.: 1954 Second order elliptic systems of differential equations. Contrib. Th. Partial Diff. Eqns. Annals of Math. Studies No. 33, 101–159. (32).

    MATH  MathSciNet  Google Scholar 

  346. Musgrave, M. J. P.: 1954 On the propagation of elastic waves in aeolotropic media. Proc. Roy. Soc. Lond., Ser. (A) 226, 339–366. (71).

    MATH  MathSciNet  Google Scholar 

  347. 1954 Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], 4th Ed. Moscow. (I have seen this work only in the English translation by J. R. M. Radok, Groningen: Noordhoff 1963.) (47, 50).

    Google Scholar 

  348. Ornstein, W.: 1954 Stress functions of Maxwell and Morera. Q. Appl. Math. 12, 198–201. (17).

    MATH  MathSciNet  Google Scholar 

  349. Schumann, W.: 1954 Sur différentes formes du principe de B. de Saint-Venant. C. R. Acad. Sci., Paris 238, 988–99O. (54).

    MATH  MathSciNet  Google Scholar 

  350. Slobodyansky, M. G.: 1954 The general form of solutions of the equations of elasticity for simply connected and multiply connected domains expressed by harmonic functions [in Russian]. Prikl. Mat. Meh. 18, 55–74. (44).

    Google Scholar 

  351. Sternberg, E.: 1954 On Saint-Venant’s principle. Q. Appl. Math. 11, 393–402. (54).

    MATH  MathSciNet  Google Scholar 

  352. Aymerich, G.: 1955 Una proprietà dell’energia elastica. Boll. Un. Mat. Ital. (3) 10, 332–336. (34).

    MATH  MathSciNet  Google Scholar 

  353. Arzhanyh, I. S.: 1955 Regular integral equations of the dynamics of an elastic body [in Russian]. Akad. Nauk Uzbek. SSR. Trudy Inst. Mat. Meh. 15, 79–85. (69).

    MathSciNet  Google Scholar 

  354. 1955 î Retarded potentials of the dynamics of an elastic body [in Russian]. Akad. Nauk Uzbek. SSR. Trudy Inst. Mat. Meh. 16, 5-22. (69).

    Google Scholar 

  355. 1955 Babuska, I., K. Rektorys, and F. Vyöichlo: Mathematical Theory of Elasticity for the Plane Problem [in Czechoslovakian]. Prague. (I have seen this work only in the German translation by W. Heinrich, Berlin: Akademie 1960.) (56).

    Google Scholar 

  356. Hu, H.: 1955 On some variational principles in the theory of elasticity and the theory of plasticity. Sci. Sinica (Peking) 4, 33–54. (38).

    MATH  Google Scholar 

  357. Kaczkowski, Z.: 1955 The conjugate directions in an anisotropic body [in Polish]. Arch. Mech. Stos. 7, 52–86. (31).

    MathSciNet  Google Scholar 

  358. Kröner, E.: 1955 Die Spannungsfunktionen der dreidimensionalen anisotropen Elastizitätstheorie. Z. Physik 141, 386–398. (17).

    MATH  Google Scholar 

  359. Kröner, E.: 1955 Die inneren Spannungen und der Inkompatibilitätstensor in der Elastizitätstheorie. Z. Angew. Phys. 7, 249–257. (17).

    MATH  Google Scholar 

  360. Lodge, A. S.: 1955 The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids. Q. J. Mech. Appl. Math. 8, 211–225. (31).

    MathSciNet  Google Scholar 

  361. 1955 Lur’e, A. I.: Three-dimensional problems in the theory of elasticity [in Russian]. Moscow: Gostekhizdat. (I have seen this work only in the English translation by D. B. McVean, New York: Interscience 1964.) (17, 44, 51).

    Google Scholar 

  362. Marguerre, K.: 1955 Ansätze zur Lösung der Grundgleichungen der Elastizitätstheorie. Z. Angew. Math. Mech. 35, 241–263. (17, 44).

    MathSciNet  Google Scholar 

  363. Schaefer, H.: 1955 Die Spannungsfunktion einer Dyname. Abhandl. Braunschweig. Wiss. Ges. 7, 107–112. (17).

    MATH  MathSciNet  Google Scholar 

  364. Sternberg, E., and R. A. Eubanks: 1955 On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity. J. Rational Mech. Anal. 4, 135–168. (28, 51, 53).

    MATH  MathSciNet  Google Scholar 

  365. 1955 Washizu, K.: On the variational principles of elasticity and plasticity. Rept. 25-18, Cont. Nsori-07833 Massachusetts Institute of Technology, March. (38).

    Google Scholar 

  366. Dorn, W. S., and A. Schild: 1956 A converse to the virtual work theorem for deformable solids. Q. Appl. Math. 14, 209–213. (17, 36).

    MATH  MathSciNet  Google Scholar 

  367. Duffin, R. J.: 1956 Analytic continuation in elasticity. J. Rational Mech. Anal. 5, 939–950. (42, 44).

    MATH  MathSciNet  Google Scholar 

  368. Ericksen, J. L., and R. A. Toupin: 1956 Implications of Hadamard’s condition for elastic stability with respect to uniqueness theorems. Canad. J. Math. 8, 432–436. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (32, 57).

    MATH  MathSciNet  Google Scholar 

  369. Eubanks, R. A., and E. Sternberg: 1956 On the completeness of the Boussinesq-Papkovitch stress functions. J. Rational Mech. Anal. 5, 735–746. (44).

    MATH  MathSciNet  Google Scholar 

  370. Finzi, L.: 1956 Legame fra equilibrio e congruenza e suo significato fisico. Atti Accad. Lincei Rend. (8) 20, 205–211. (47).

    MATH  MathSciNet  Google Scholar 

  371. Knopoff, L.: 1956 Diffraction of elastic waves. J. Acoust. Soc. Amer. 28, 217–229. (69).

    MathSciNet  Google Scholar 

  372. Levin, M. L., and S. M. Rytov: 1956 Transition to geometrical approximations in elasticity theory [in Russian], Soviet Phys. Acoust. 2, 179–184. (73).

    MathSciNet  Google Scholar 

  373. Miller, G. F., and M. J. P. Musgrave: 1956 On the propagation of elastic waves in aeolotropic media. III. Media of cubic symmetry. Proc. Roy. Soc. Lond. (A) 236, 352–383. (71).

    MATH  MathSciNet  Google Scholar 

  374. 1956 Pailloux, M. H.: Élasticité. Mem. Sci. Math. Acad. Sci. Paris 132. (71).

    Google Scholar 

  375. Radok, J. R. M.: 1956 On the solutions of problems of dynamic plane elasticity. Q. Appl. Math. 14, 289–298. (47).

    MATH  MathSciNet  Google Scholar 

  376. Schaefer, H.: 1956 Die drei Spannungsfunktionen des zweidimensionalen ebenen Kontinuums. Österreich. Ing. Arch. 10, 267–277. (47).

    MATH  MathSciNet  Google Scholar 

  377. Sokolnikoff, I. S.: 1956 Mathematical Theory of Elasticity. 2nd Ed. New York: McGraw-Hill. (14, 27, 36, 37, 44, 47).

    MATH  Google Scholar 

  378. Synge, J. L.: 1956 Flux of energy for elastic waves in anisotropic media. Proc. Roy. Irish Acad., Sect. A 58, 13–21. (71).

    MATH  MathSciNet  Google Scholar 

  379. Temple, G., and W. G. Bickley: 1956 Rayleigh’s principle and its applications to engineering. New York: Dover. (56).

    MATH  Google Scholar 

  380. Basheleishvili, M. O.: 1957 On fundamental solutions of the differential equations of an anisotropic elastic body [in Russian]. Soobsö. Akad. Nauk Gruzin. SSR. 19, No. 4, 393–400. (51).

    Google Scholar 

  381. Bondarenko, B. A.: 1957 On a class of solutions of dynamical equations in the theory of elasticity [in Russian]. Akad. Nauk Uzbek. SSR. Trudy Inst. Mat. Men. 21, 41–49. (67).

    MathSciNet  Google Scholar 

  382. Brdicka, M.: 1957 On the general form of the Beltrami equation and Papkovitch’s solution of the axially symmetric problem of the classical theory of elasticity. Czech. J. Phys. 7, 262–274. (17, 44).

    MathSciNet  Google Scholar 

  383. Courant, R.: 1957 Differential and Integral Calculus, Vol. 2. New York: Interscience. (6).

    Google Scholar 

  384. Ericksen, J. L.: 1957 On the Dirichlet problem for linear differential equations. Proc. Amer. Math. Soc. 8, 521–522. (32).

    MATH  MathSciNet  Google Scholar 

  385. Filonenko-Borodich, M. M.: 1957 On the problem of Lamé for the parallelepiped in the general case of surface loads [in Russian]. Prikl. Mat. Meh. 21, 550–559. (17).

    MathSciNet  Google Scholar 

  386. Garabaldi, A. C.: 1957 Su una proprietà di media caratteristica per l’equazione dell’elastostatica. Rend. Sem. Mat. Univ. Padova 27, 306–318. (43).

    MathSciNet  Google Scholar 

  387. Hill, R.: 1957 On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241. (32, 34).

    MATH  MathSciNet  Google Scholar 

  388. Horvay, G.: 1957 Saint-Venant’s principle: a biharmonic eigenvalue problem. J. Appl. Mech. 24, 381–386. (56).

    MATH  Google Scholar 

  389. 1957 Mikhlin, S. G.: Variational Methods in Mathematical Physics [in Russian]. Moscow. (I have seen this work only in the English translation by T. Boddington, New York: Pergamon 1964.) (34, 37, 39).

    Google Scholar 

  390. Noll, W.: 1957 Verschiebungsfunktionen für elastische Schwingungsprobleme. Z. Angew. Math. Mech. 37, 81–87. (44).

    MATH  MathSciNet  Google Scholar 

  391. Solomon, L.: 1957 Displacement potentials for the equations of elastostatics [in Roumanian], Buletinul Stiintific Ac. R.P.R., 9, 415–431. (44).

    MATH  Google Scholar 

  392. Solyanik-Krassa, K. V.: 1957 Stress functions of an axisymmetric problem in the theory of elasticity [in Russian]. Prikl. Mat. Meh. 21, 285–286. (44).

    MathSciNet  Google Scholar 

  393. Sternberg, E., and R. A. Eubanks: 1957 On stress functions for elastokinetics and the integrations of the repeated wave equation. Q. Appl. Math. 15, 149–153. (67).

    MATH  MathSciNet  Google Scholar 

  394. 1957 Synge, J.L.: The Hypercircle in Mathematical Physics; a Method for the Approximate Solution of Boundary-Value Problems. Cambridge. (34, 51).

    Google Scholar 

  395. Synge, J.L.: 1957 Elastic waves in anisotropic media. J. Math. Phys. 35, 323–334. (71).

    MATH  MathSciNet  Google Scholar 

  396. Thomas, T. Y.: 1957 The decay of waves in elastic solids. J. Math. Mech. 6, 759–768. (73).

    MATH  MathSciNet  Google Scholar 

  397. 1957 Washizu, K.: On the variational principles applied to dynamic problems of elastic bodies. ASRL TR 25-23. Massachusetts Institute of Technology. (65).

    Google Scholar 

  398. 1958 Babich, V. M., and A. S. Alekseev: A ray method of computing wave front intensities [in Russian], Izv. Akad. Nauk SSSR, Ser. Geofiz. 17-31. (73).

    Google Scholar 

  399. Blokh, V. I.: 1958 On the representation of the general solution of the basic equations of the static theory of elasticity for an isotropic body with the aid of harmonic functions [in Russian]. Prikl. Mat. Meh. 22, 473–479. (44).

    Google Scholar 

  400. 1958 Boley, B.: Some observations on Saint-Venant’s principle. Proc. Third U.S. National Congress Appl. Mech. 259-264. (54).

    Google Scholar 

  401. 1958 De Hoop, A. T.: Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory. Doctoral Dissertation, Technische Hogeschool, Delft. (69).

    Google Scholar 

  402. 1958 Deev, V. M.: The solution of the spatial problem in the theory of elasticity [in Ukrainian]. Dopovidi Acad. Nauk Ukr. RSR 29-32. (44).

    Google Scholar 

  403. 1958 Diaz, J. B., and L. E. Payne: Mean value theorems in the theory of elasticity. Proc. Third U. S. Natl. Congress Appl. Mech. 293-303. (8, 43, 55).

    Google Scholar 

  404. Diaz, J. B., and L. E. Payne:1958 On a mean value theorem and its converse for the displacements in the theory of elasticity. Port. Mat. 17, 123–126. (43).

    MATH  MathSciNet  Google Scholar 

  405. Duffin, R. J., and W. Noll: 1958 On exterior boundary value problems in elasticity. Arch. Rational Mech. Anal. 2, 191–196. (32, 49, 50, 57).

    MATH  MathSciNet  Google Scholar 

  406. Halmos, P.: 1958 Finite-Dimensional Vector Spaces. New York: Van Nostrand. (3, 23).

    MATH  Google Scholar 

  407. Hu, H.: 1958 On reciprocal theorems in the dynamics of elastic bodies and some applications. Sci. Sinica (Peking) 7, 137–150. (62).

    MATH  Google Scholar 

  408. Hu, H.: 1958 On two variational principles about the natural frequencies of elastic bodies. Sci. Sinica (Peking) 7, 293–312. (76).

    Google Scholar 

  409. Petrashen, G. I.: 1958 The investigations of the propagation of elastic waves [in Russian]. Vestn. Leningrad Univ. 13, No. 22, 119–136. (73).

    Google Scholar 

  410. Predeleanu, M.: 1958 Über die Verschiebungsfunktionen für das achsensymmetrische Problem der Elastodynamik. Z. Angew. Math. Mech. 38, 402–405. (67).

    MATH  Google Scholar 

  411. Reissner, E.: 1958 On variational principles in elasticity. Proc. Symp. Appl. Math. Vol. 8, Calculus of Variations and its Applications. New York: McGraw Hill. (38).

    Google Scholar 

  412. 1958 Skuridin, G. A., and A. A. Gvozdev: Boundary conditions for the jumps of discontinuous solutions of the dynamical equations of the theory of elasticity [in Russian]. Izv. Akad. Nauk SSSR. Ser. Geofiz. 145-156. (73).

    Google Scholar 

  413. Smith, G. F., and R. S. Rivlin: 1958 The strain-energy function for anisotropic elastic materials. Trans. Amer. Math. Soc. 88, 175–193. (21, 26).

    MATH  MathSciNet  Google Scholar 

  414. Sneddon, I. N.: 1958 Note on a paper by J. R. M. Radok. Q. Appl. Math. 16, 197. (47).

    MATH  MathSciNet  Google Scholar 

  415. Sneddon, I. N. and D. S. Berry: 1958 The classical theory of elasticity. Handbuch der Physik 6. Berlin-Göttingen-Heidelberg: Springer. (67).

    Google Scholar 

  416. Teodorescu, P. P.: 1958 A plane problem of the theory of elasticity with arbitrary body forces [in Russian]. Rev. Méc. Appl. 3, 101–108. (47).

    MATH  MathSciNet  Google Scholar 

  417. Washizu, K.: 1958 A note on the conditions of compatibility. J. Math. Phys. 36, 306–312. (18).

    MATH  MathSciNet  Google Scholar 

  418. Buchwald, V. T.: 1959 Elastic waves in anisotropic media. Proc. Roy. Soc. Lond. (A) 253, 563–580. (73).

    MATH  MathSciNet  Google Scholar 

  419. 1959 Dana, J. S.: Dana’s manual of mineralogy 17th ed., revised by C. S. Hurlbut, Jr. New York: John Wiley. (21).

    Google Scholar 

  420. Deev, V. M.: 1959 On the form of the general solution of the three-dimensional problem of the theory of elasticity expressed with the aid of harmonic functions [in Russian]. Prikl. Math. Meh. 23, 1132–1133; translated as J. Appl. Math. Mech. 23, 1619-1622. (44).

    MathSciNet  Google Scholar 

  421. DiMaggio, F. L., and H. H. Bleich: 1959 An application of a dynamic reciprocal theorem. J. Appl. Mech. 26, 678–679. (61).

    MATH  MathSciNet  Google Scholar 

  422. Gvozdev, A. A.: 1959 On the conditions at elastic wave fronts propagating in a non-homogeneous medium [in Russian]. Prikl. Math. Meh. 23, 395–397; translated as J. Appl. Math. Mech. 23, 556-561. (73).

    MathSciNet  Google Scholar 

  423. 1959 Hardy, G. H., J. E. Littlewood, and G. Polya: Inequalities. Cambridge. (56).

    Google Scholar 

  424. Hijab, W. A.: 1959 Application of Papkovitch functions to three-dimensional problems of elasticity. Proc. Math. Phys. Soc. U.A.R. No. 23, 99–115. (44).

    MathSciNet  Google Scholar 

  425. Ignaczak, J.: 1959 Direct determination of stresses from the stress equations of motion in elasticity. Arch. Mech. Stos. 11, 671–678. (59).

    MATH  MathSciNet  Google Scholar 

  426. Karal, F. C., and J. B. Keller: 1959 Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Am. 31, 694–705. (73).

    MathSciNet  Google Scholar 

  427. Mikusinski, J.: 1959 Operational Calculus. New York: Pergamon. (10, 69).

    MATH  Google Scholar 

  428. Pearson, C. E.: 1959 Theoretical Elasticity. Cambridge: Harvard University Press. (67).

    Google Scholar 

  429. Schaefer, H.: 1959 Die Spannungsfunktionen des dreidimensionalen Kontinuums; statische Deutung und Randwerte. Ing. Arch. 28, 291–306. (17).

    MATH  MathSciNet  Google Scholar 

  430. Signorini, A.: 1959 Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18, 95–139. (31).

    MATH  MathSciNet  Google Scholar 

  431. 1959 Skuridin, G. A.: Duhamel’s principle and asymptotic solutions of dynamical equations in the theory of elasticity. II [in Russian]. Izv. Akad. Nauk SSSR. Ser. Geofiz. 337-343. (73).

    Google Scholar 

  432. Slobodyansky, M. G.: 1959 On the general and complete form of solutions of the equations of elasticity [in Russian]. Prikl. Math. Meh. 23, 468–482; translated as J. Appl. Math. Mech. 23, 666-685. (44).

    Google Scholar 

  433. Truesdell, C.: 1959 Invariant and complete stress functions for general continua. Arch. Rational Mech. Anal. 3, 1–29. (17, 44).

    MATH  MathSciNet  Google Scholar 

  434. Truesdell, C.: 1959 The rational mechanics of materials-past, present, future. Applied Mech. Rev. 12, 75–80. Corrected reprint, Applied Mechanics Surveys. Washington: Spartan Books. 1965. (22).

    MathSciNet  Google Scholar 

  435. Waterman, P. C.: 1959 Orientation dependence of elastic waves in single crystals. Phys. Rev. (2) 113, 1240–1253. (71).

    MATH  MathSciNet  Google Scholar 

  436. Bernstein, B., and R. Toupin: 1960 Korn inequalities for the sphere and for the circle. Arch. Rational Mech. Anal. 6, 51–64. (13).

    MATH  MathSciNet  Google Scholar 

  437. Boley, B. A.: 1960 On a dynamical Saint-Venant principle. J. Appl. Mech. 27, 74–78. (54) (54).

    MATH  MathSciNet  Google Scholar 

  438. Boley, B. A. and J. H. Weiner: 1960 Theory of Thermal Stresses. New York: Wiley. (14).

    MATH  Google Scholar 

  439. 1960 Bondarenko, B. A.: Gradient and curl solutions of the dynamical equations of elasticity theory [in Russian]. Issled. Mat. Analizu Mehanike Uzbek. Izdat. Akad. Nauk Uzbek. SSR., Tashkent, 17-29. (67).

    Google Scholar 

  440. Duff, G. F. D.: 1960 The Cauchy problem for elastic waves in an anisotropic medium. Trans. Roy. Soc. Lond. (A) 252, 249–273. (74).

    MATH  MathSciNet  Google Scholar 

  441. 1960 Ericksen, J. L.: Tensor fields. Appendix to [1960, 17]. (27).

    Google Scholar 

  442. Gurtin, M. E., and E. Sternberg: 1960 On the first boundary-value problem of linear elastostatics. Arch. Rational Mech. Anal. 3, 177–187. (32, 34, 57).

    MathSciNet  Google Scholar 

  443. Indenbom, V. L.: 1960 Reciprocity theorems and influence functions for the dislocation density tensor and the deformation incompatibility tensor [in Russian]. Dokl. Akad. Nauk SSSR 128, 906–909; translated as Soviet Phys. Doklady 4, 1125-1128. (30).

    MathSciNet  Google Scholar 

  444. Rieder, G.: 1960 Topologische Fragen in der Theorie der Spannungsfunktionen. Abhandl. Braunschweig. Wiss. Ges. 7, 4–65-(17).

    Google Scholar 

  445. Rüdiger, D.: 1960 Eine Verallgemeinerung des Prinzips vom Minimum der potentiellen Energie elastischer Körper. Ing. Arch. 27, 421–428. (38, 41).

    MATH  MathSciNet  Google Scholar 

  446. Sirotin, Y. I.: 1960 Group tensor spaces [in Russian]. Kristallografiya 5, 171–179; translated as Soviet Phys.-Cryst. 5, 157-165. (26).

    MathSciNet  Google Scholar 

  447. Sternberg, E.: 1960 On some recent developments in the linear theory of elasticity. In Structural Mechanics. New York: Pergamon Press. (17, 54).

    Google Scholar 

  448. Sternberg, E.: 1960 On the integration of the equations of motion in the classical theory of elasticity. Arch. Rational Mech. Anal. 6, 34–50. (67).

    MATH  MathSciNet  Google Scholar 

  449. Teodorescu, P. P.: 1960 Sur une représentation par potentiels dans le problème tridimensionnel de l’élastodynamique. C. R. Acad. Sci., Paris 250, 1792–1794. (67).

    MATH  MathSciNet  Google Scholar 

  450. Truesdell, C.: 1960 A program toward rediscovering the rational mechanics of the age of reason. Arch. Hist. Exact Sc. 1, 3–36. Corrected reprint in Essays in the History of Mechanics. Berlin-Heidelberg-New York: Springer-Verlag 1968. (22).

    MATH  MathSciNet  Google Scholar 

  451. 1960 Truesdell, C.: The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788. L. Euleri Opera Omnia (2) 112. Zurich: Füssli. (22).

    Google Scholar 

  452. 1960 Truesdell, C. and R. Toupin: The classical field theories. In Vol. 31 of the Handbuch der Physik, edited by S. Flügge. Berlin-Göttingen-Heidelberg: Springer-Verlag. (12, 15, 16, 17, 18, 19, 71, 72, 73).

    Google Scholar 

  453. Babich, V. M.: 1961 Fundamental solutions of the dynamical equations of elasticity for nonhomogeneous media [in Russian]. Prikl. Mat. Meh. 25, 38–45,’ translated as J. Appl. Math. Mech. 25, 49-60. (68).

    MathSciNet  Google Scholar 

  454. 1961 Blokh, V. I.: Stress functions and displacement functions [in Russian]. Dopovidi Akad. Nauk. Ukr. RSR 455-458. (17, 44).

    Google Scholar 

  455. Bramble, J. H., and L. E. Payne: 1961 An analogue of the spherical harmonics for the equation of elasticity. J. Math. Phys. 15, 163–171. (32).

    MathSciNet  Google Scholar 

  456. 1961 A new decomposition formula in the theory of elasticity. J. Res. Nat. Bur. Std. 65B, 151-156. (44).

    Google Scholar 

  457. 1961 On some new continuation formulas and uniqueness theorems in the theory of elasticity. J. Math. Anal. Appl. 3, 1-17. (40).

    Google Scholar 

  458. 1961 A priori bounds in the first boundary-value problem in elasticity. J. Res. Nat. Bur. Std. 65 B, 269-276. (52).

    Google Scholar 

  459. Farnell, G. W.: 1961 Elastic waves in trigonal crystals. Can. J. Phys. 39, 65–80. (71).

    MathSciNet  Google Scholar 

  460. Fichera, G.: 1961 Il teorema del massimo modulo per l’equazione dell’elastostatica. Arch. Rational Mech. Anal. 7, 373–387. (42).

    MATH  MathSciNet  Google Scholar 

  461. 1961 Goldberg, R. R.: Fourier Transforms. Cambridge. (32).

    Google Scholar 

  462. Gurtin, M. E., and E. Sternberg: 1961 A note on uniqueness in classical elastodynamics. Q. Appl. Math. 19, 169–171. (63).

    MATH  MathSciNet  Google Scholar 

  463. 1961 Theorems in linear elastostatics for exterior domains. Arch. Rational Mech. Anal. 8, 99-119. (8, 34, 48, 49, 50).

    Google Scholar 

  464. 1961 Hill, R.: Bifurcation and uniqueness in non-linear mechanics of continua. Problems Contin. Mech. (Muskhelisvili Anniv. Vol.), 155-164. Phila.: Soc. Indust. Appl. Math. (32).

    Google Scholar 

  465. Hill, R.: 1961 Uniqueness in general boundary-value problems for elastic or inelastic solids. J. Mech. Phys. Solids 9, 114–130. (32).

    MATH  MathSciNet  Google Scholar 

  466. Hill, R.: 1961 Discontinuity relations in mechanics of solids. Progress in Solid Mechanics. Vol. II, 245–276. Amsterdam: North-Holland. (72).

    Google Scholar 

  467. Musgrave, M. J. P.: 1961 Elastic waves in anisotropic media. Progress in Solid Mechanics. Vol. II, 61–85. (71).

    MathSciNet  Google Scholar 

  468. Naghdi, P. M., and C. S. Hsu: 1961 On a representation of displacements in linear elasticity in terms of three stress functions. J. Math. Mech. 10, 233–245. (44).

    MATH  MathSciNet  Google Scholar 

  469. Payne, L. E., and H. F. Weinberger: 1961 On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89–98. (13).

    MATH  MathSciNet  Google Scholar 

  470. 1961 Reissner, E.: On some variational theorems in elasticity. Problems of Continuum Mechanics (Muskhelishvili Anniversary Volume), 370-381. Phila.: Soc. Indust. Appl. Math. (38).

    Google Scholar 

  471. Rüdiger, D.: 1961 Ein neues Variationsprinzip in der Elastizitätstheorie. Ing. Arch. 30, 220–224. (38).

    MathSciNet  Google Scholar 

  472. Solomon, L.: 1961 On the degree of arbitrariness in the determination of the functions of Papkovitch [in Roumanian]. Comun. Acad. RPR., 11, 1039–1045. (44).

    MATH  Google Scholar 

  473. Sveklo, V. A.: 1961 On the solution of dynamic problems in the plane theory of elasticity for anisotropic media [in Russian]. Prikl. Mat. Meh. 25, 885–896; translated as J. Appl. Math. Mech. 25, 1324-1339. (47).

    MathSciNet  Google Scholar 

  474. Truesdell, C.: 1961 General and exact theory of waves in finite elastic strain. Arch. Rational Mech. Anal. 8, 263–296. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965 and also in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer 1965. (73).

    MATH  MathSciNet  Google Scholar 

  475. Alexandrov, A. Y., and I. I. Solovev: 1962 One form of solution of three-dimensional axisymmetric problems of elasticity theory by means of functions of a complex variable and the solution of these problems for the sphere [in Russian]. Prikl. Mat. Mech. 26, 138–145; translated as J. Appl. Math. Mech. 26, 188-198. (44).

    Google Scholar 

  476. Blokh, V. I.: 1962 On some consequences of two variational principles in the mechanics of solid deformable bodies. Akad. Nauk. Ukr. RSR Prikl. Meh. 8, 56–62. (18).

    Google Scholar 

  477. Bramble, J. H., and L. E. Payne: 1962 On the uniqueness problem in the second boundary-value problem in elasticity. Proc. Fourth U. S. National Congress Appl. Mech. 1, 469–473. (32).

    MathSciNet  Google Scholar 

  478. 1962 Some uniqueness theorems in the theory of elasticity. Arch. Rational Mech. Anal. 9, 319-328. (32).

    Google Scholar 

  479. Courant, R.: 1962 Partial Differential Equations. Vol. 2 of Methods of Mathematical Physics by R. Courant and D. Hilbert. New York: Interscience, (6, 74).

    Google Scholar 

  480. Gobert, J.: 1962 Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Roy Sci. Liège 31, 182–191. (13).

    MATH  MathSciNet  Google Scholar 

  481. Gurtin, M.: 1962 On Helmholtz’s theorem and the completeness of the Papkovitch-Neuber stress functions for infinite domains. Arch. Rational Mech. Anal. 9, 225–233. (44).

    MATH  MathSciNet  Google Scholar 

  482. Gutzwiller, M. C.: 1962 Note on Green’s function in anisotropic elasticity. Q. Appl. Math. 20, 249–256. (68).

    MATH  MathSciNet  Google Scholar 

  483. Hashin, Z., and S. Shtrikman: 1962 On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–352. (34).

    MathSciNet  Google Scholar 

  484. Kneshke, A., u. D. Rüdiger: 1962 Eine Erweiterung des Hamiltonschen Prinzips zur Integration mechanischer Anfangs-Randwertaufgaben. Ing. Arch. 31, 101–112. (65).

    MathSciNet  Google Scholar 

  485. Minagawa, S.: 1962 Riemannian three-dimensional stress-function space. RAAG Mem. 3, 69–81. (17).

    Google Scholar 

  486. Murtazaev, D.: 1962 Fundamental solutions of systems of equations in elasticity theory [in Russian]. Izv. Vyss. Uöebn. Zaved. Matematika No. 1 (26) 109–117. (51, 68).

    MathSciNet  Google Scholar 

  487. 1962 Sternberg, E., and M. Gurtin: On the completeness of certain stress functions in the linear theory of elasticity. Proc. Fourth U. S. Nat. Cong. Appl. Mech. 793-797. (44, 67).

    Google Scholar 

  488. Stroh, A. N.: 1962 Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77–103. (71).

    MATH  MathSciNet  Google Scholar 

  489. Strubecker, K.: 1962 Airysche Spannungsfunktion und isotrope Differentialgeometrie. Math. Z. 78, 189–198. (47).

    MATH  MathSciNet  Google Scholar 

  490. Adler, G.: 1963 Maggiorazione delle tensioni in un corpo elastico mediante gli spostamenti superficiali. Atti Accad. Lincei Rend. (8) 34, 369–371. (42).

    MATH  Google Scholar 

  491. Bourgin, D. G.: 1963 Modern Algebraic Topology. New York: Macmillan. (71).

    Google Scholar 

  492. Diaz, J. B., and L. E. Payne: 1963 New mean value theorems in the linear theory of elasticity. Contrib. Diff. Eqts. 1, 29–38. (43).

    MathSciNet  Google Scholar 

  493. Ericksen, J. L.: 1963 Non-existence theorems in linear elasticity theory. Arch. Rational Mech. Anal. 14, 180–183. (33).

    MATH  MathSciNet  Google Scholar 

  494. Fedorov, F. I.: 1963 The theory of elastic waves in crystals. Comparison with isotropic medium [in Russian]. Kristallografiya 8, 213–220; translated as Soviet Phys.-Cryst. 8, 159-163. (70).

    Google Scholar 

  495. Fichera, G.: 1963 Problemi elastostatici con vincoli unilaterali: II problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. (8) 7, 91–140. English translation in: Estratto dai Seminari dell’Istituto Nazionale di Alta Matematica 1962-1963. Rome: Edizioni Cremonese 1964. (31).

    MathSciNet  Google Scholar 

  496. Gazis, D. C., I. Tadjbakhsh, and R. A. Toupin: 1963 The elasticity tensor of a given symmetry nearest to an anisotropic elastic tensor. Acta Cryst. 16, 917–922. (22).

    MathSciNet  Google Scholar 

  497. Graffi, D.: 1963 Sui teoremi di reciprocità nei fenomeni non stazionari. Atti Accad. Sci. Bologna (11) 10, 33–40. (19, 61).

    MathSciNet  Google Scholar 

  498. Gurtin, M. E.: 1963 A generalization of the Beltrami stress functions in continuum mechanics. Arch. Rational Mech. Anal. 13, 321–329. (17).

    MATH  MathSciNet  Google Scholar 

  499. Gurtin, M. E.: 1963 A note on the principle of minimum potential energy for linear anisotropic elastic solids. Q. Appl. Math. 20, 379–382. (32, 34).

    MATH  MathSciNet  Google Scholar 

  500. Gurtin, M. E.: 1963 Variational principles in the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 13, 179–191. (36).

    MATH  MathSciNet  Google Scholar 

  501. Hayes, M.: 1963 Wave propagation and uniqueness in prestressed elastic solids. Proc. Roy. Soc. Lond. (A) 274, 500–506. (32).

    MATH  MathSciNet  Google Scholar 

  502. Hill, R.: 1963 New derivations of some elastic extremum principles. Progress in Applied Mechanics, the Prager Anniversary Volume. New York: Macmillan. 99–106. (34).

    Google Scholar 

  503. Ignaczak, J.: 1963 A completeness problem for the stress equation of motion in the linear theory of elasticity. Arch. Mech. Stosow. 15, 225–234. (59, 62).

    MATH  MathSciNet  Google Scholar 

  504. 1963 John, F.: Estimates for the error in the equations of nonlinear plate theory. New York University, Courant Institute of Math. Sc. Rept. IMM-NYU 308. (55).

    Google Scholar 

  505. Kawatate, K.: 1963 A note on the stress function. Rep. Res. Inst. Appl. Mech. Kyushi Univ. 11, 21–27. (17).

    MathSciNet  Google Scholar 

  506. 1963 Kupradze, V. D.: Potential Methods in the Theory of Elasticity [in Russian]. Moscow. (I have seen this work only in the English translation by H. Gutfreund, Jerusalem: Monson 1965.) (27, 30, 45, 49, 75).

    Google Scholar 

  507. Kupradze, V. D.: 1963 Dynamical problems in elasticity. Vol. Ill of Progress in Solid Mechanics. New York: Wiley. (27, 30, 45, 49, 75).

    Google Scholar 

  508. Melnik, S. I.: 1963 Estimates for the St. Venant principle [in Russian]. Perm. Gos. Univ. Uéen. Zap. Mat. 103, 178–18O. (55).

    MathSciNet  Google Scholar 

  509. 1963 Mills, N.: Uniqueness in classical linear isotropic elasticity theory. M. Sci. Thesis, University of Newcastle upon Tyne. (32).

    Google Scholar 

  510. 1963 Pastori, M.: Equilibrio e congruenza nei sistemi continui. Aspetto formale e geometrico. Aspetto energetico ed estensioni. Confer. Sem. Mat. Univ. Bari, 95-96. (17).

    Google Scholar 

  511. Tang, L.-M., and H.-C. Sun: 1963 Three-dimensional elasticity problems solved by complex variable method. Sci. Sinica (Peking) 12, 1627–1649. (44).

    MATH  Google Scholar 

  512. Teodorescu, P. P.: 1963 Sur l’utilisation des potentiels réels dans le problème plan de la théorie de l’élasticité. Bull. Math. Soc. Sci. Math. Phys. R.P. Romaine (N.S.) 7 (55), 77–111. (47).

    MathSciNet  Google Scholar 

  513. Truesdell, C.: 1963 The meaning of Betti’s reciprocal theorem. J. Res. Nat. Bur. Std. B 67, 85–86. (30).

    MATH  MathSciNet  Google Scholar 

  514. Volkov, S. D., and M. L. Komissarova: 1963 Certain representations of the general solutions of the boundary-value problems of elasticity theory [in Russian]. Inzh. Zh. 3, 86–92. (44).

    MathSciNet  Google Scholar 

  515. Adler, G.: 1964 Majoration des tensions dans un corps élastique à l’aide des déplacements superficiels. Arch. Rational Mech. Anal. 16, 345–372. (42).

    Google Scholar 

  516. Aleksandrov, A. Y., and I. I. Solovev: 1964 On a generalization of a method of solution of axially symmetric problems in the theory of elasticity by means of analytic functions to spatial problems without axial symmetry [in Russian]. Dokl. Akad. Nauk SSSR 154, 294–297; translated as Soviet Phys. Dokl. 9, 99-102. (44).

    MathSciNet  Google Scholar 

  517. Bers, L., F. John, and M. Schechter: 1964 Partial Differential Equations. New York: Interscience. (74).

    MATH  Google Scholar 

  518. Bramble, J. H., and L. E. Payne: 1964 Some mean value theorems in elastostatics. SIAM J. 12, 105–114. (43).

    MathSciNet  Google Scholar 

  519. Coleman, B. D., and W. Noll: 1964 Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Rational Mech. Anal. 15, 87–111. (21).

    MATH  MathSciNet  Google Scholar 

  520. Chen, Y.: 1964 Remarks on variational principles in elastodynamics. J. Franklin Inst. 278, 1–7. (65).

    MATH  MathSciNet  Google Scholar 

  521. Fedorov, F. I.: 1964 On the theory of waves in crystals, [in Russian]. Mosk. Univ. Vestn. Fiz. Ast. (3) 6, 36–40. (71).

    Google Scholar 

  522. Gurtin, M. E.: 1964 Variational principles in linear elastodynamics. Arch. Rational Mech. Anal. 16, 34–50. (19, 62, 64, 65).

    MATH  MathSciNet  Google Scholar 

  523. Herrmann, L. R.: 1964 Stress functions for the asymmetric, orthotropic elasticity equations. AIAA J. 2, 1822–1824. (44).

    MATH  MathSciNet  Google Scholar 

  524. Ionov, V. N., and G. A. Vvodenskiï: 1964 On the possible forms of the general solution of the equilibrium equations in curvilinear coordinates [in Russian]. Izv. Vyss. Uéebn. Zaved. Mat. (43) 6, 59–66. (17).

    Google Scholar 

  525. Jeffrey, A.: 1964 A note on the derivation of the discontinuity conditions across contact discontinuities, shocks, and phase fronts. Z. Angew. Math. Phys. 15, 68–71. (73).

    MathSciNet  Google Scholar 

  526. Keller, H. B.: 1964 Propagation of stress discontinuities in inhomogeneous elastic media. SIAM Rev. 6, 356–382. (73).

    MATH  MathSciNet  Google Scholar 

  527. Knops, R.: 1964 Uniqueness for the whole space in classical elasticity. J. Lond. Math. Soc. 39, 708–712. (32).

    MATH  MathSciNet  Google Scholar 

  528. Martin, J.: 1964 A displacement bound technique for elastic continua subjected to a certain class of dynamic loading. J. Mech. Phys Solids 12, 165–175. (60).

    MATH  MathSciNet  Google Scholar 

  529. Nôno, T.: 1964 Sur les champs de tensions. J. Sci. Hiroshima Univ. Ser. A-I. 28, 209–221. (17).

    MATH  Google Scholar 

  530. Payton, R. G.: 1964 An application of the dynamic Betti-Rayleigh reciprocal theorem to moving point loads in elastic media. Q. Appl. Math. 21, 299–313. (61).

    MATH  MathSciNet  Google Scholar 

  531. Rieder, G.: 1964 Die Berechnung des Spannungsfeldes von Einzelkräften mit Hilfe räumlicher Spannungsfunktionen und ihre Anwendung zur quellenmäßigen Darstellung der Verschiebung bei Eigenspannungszuständen. Österr. Ing. Arch. 18, 173–201. (17).

    MathSciNet  Google Scholar 

  532. Rieder, G.: 1964 Die Randbedingungen für den Spannungsfunktionentensor an ebenen und gekrümmten belasteten Oberflächen. Österr. Ing. Arch. 18, 208–243. (17).

    MathSciNet  Google Scholar 

  533. Rieder, G.: 1964 Über eine Spezialisierung des Schaefersehen Spannungsfunktionenansatzes in der räumlichen Elastizitätstheorie. Z. Angew. Math. Mech. 44, 329–330. (17).

    MATH  Google Scholar 

  534. Sternberg, E., and S. Al-Khozai: 1964 On Green’s functions and Saint Venant’s principle in the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 15, 112–146. (51, 54).

    MATH  MathSciNet  Google Scholar 

  535. Stickforth, J.: 1964 Zur Anwendung des Castiglianoschen Prinzips und der Beltramischen Spannungsfunktionen bei mehrfach zusammenhängenden elastischen Körpern unter Berücksichtigung von Eigenspannungen. Tech. Mitt. Krupp Forsch.-Ber. 22, 83–92. (18).

    MathSciNet  Google Scholar 

  536. Teodorescu, P. P.: 1964 A hundred years of research on the plane problem of the theory of elasticity [in Romanian]. Stud. Cere. Mat. 15, 355–367. (45).

    MathSciNet  Google Scholar 

  537. Yu, Y.-Y.: 1964 Generalized Hamilton’s principle and variational equation of motion in nonlinear elasticity theory, with application to plate theory. J. Acoust. Soc. Am. 36, 111–120. (65).

    Google Scholar 

  538. Zorski, H.: 1964 On the equations describing small deformations superposed on finite deformations. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, 109–128. (32).

    MathSciNet  Google Scholar 

  539. 1965 Alexsandrov, I. Y.: Solution of axisymmetric and other three-dimensional problems in the theory of elasticity by means of analytical functions. Appl. Theory of Functions in Continuum Mechanics (Proc. Int. Sympos. Tbilisi. 1963) Vol. I, 97-118. Moscow: Izdat. Nauka. (44).

    Google Scholar 

  540. Bramble, J. H., and L. E. Payne: 1965 Some converses of mean value theorems in the theory of elasticity. J. Math. Anal. Appl. 10, 553–567. (43).

    MATH  MathSciNet  Google Scholar 

  541. Brugger, K.: 1965 Pure modes for elastic waves in crystals. J. Appl. Phys. 36, 759–768. (71).

    MathSciNet  Google Scholar 

  542. Brun, L.: 1965 Sur l’unicité en thermoélasticité dynamique et diverses expressions analogues à la formule de Clapeyron. C. R. Acad. Sci., Paris 261, 2584–2587. (60, 63).

    MathSciNet  Google Scholar 

  543. 1965 Fedorov, F. I.: Theory of Elastic Waves in Crystals [in Russian]. Moscow: Nauka Press (I have seen this work only in the English translation by J. E. S. Bradley, New York: Plenum 1968.) (70, 71).

    Google Scholar 

  544. De Veubeke, B. F.: 1965 Displacement and equilibrium models in the finite element method. Stress Analysis. New York: Wiley. (38).

    Google Scholar 

  545. Ericksen, J. L.: 1965 Nonexistence theorems in linearized elastostatics. J. Diff. Eqts. 1, 446–451. (33).

    MATH  Google Scholar 

  546. Friedrichs, K. O., and H. B. Keller: 1965 A finite difference scheme for generalized Neumann problems. Numerical Solution of Partial Differential Equations. New York: Academic. (39).

    Google Scholar 

  547. Gurtin, M. E., and R. A. Toupin: 1965 A uniqueness theorem for the displacement boundary-value problem of linear elastodynamics. Q. Appl. Math. 23, 79–81. (63).

    MATH  MathSciNet  Google Scholar 

  548. John, F.: 1965 Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Comm. Pure Appl. Math. 18, 235–267. (55).

    MathSciNet  Google Scholar 

  549. Keller, H. B.: 1965 Saint-Venant’s procedure and Saint Venant’s principle. Q. Appl. Math. 22, 293–304. (54).

    MATH  Google Scholar 

  550. Knops, R. J.: 1965 Uniqueness of axisymmetric elastostatic problems for finite regions. Arch. Rational Mech. Anal. 18, 107–116. (32).

    MATH  MathSciNet  Google Scholar 

  551. Knops, R. J.: 1965 Uniqueness of the displacement boundary-value problem for the classical elastic half-space. Arch. Rational Mech. Anal. 20, 373–377. (32, 50).

    MATH  MathSciNet  Google Scholar 

  552. Minagawa, S.: 1965 On Riemannian and non-Riemannian stress function spaces with reference to two-dimensional stress functions. Reports of the Research Institute for Strength and Fracture of Materials. Tohuku Univ. 1, 15–31. (17).

    MathSciNet  Google Scholar 

  553. 1965 Muskhelishvili, N. I.: Applications of the theory of functions of a complex variable to the theory of elasticity. Appl. Theory of Functions in Continuum Mechanics (Proc. Int. Sympos. Tbilisi, 1963) Vol. I, 32-55 (Russian); 56-75 (English) Moscow: Izdat Nauka. (45).

    Google Scholar 

  554. Reissner, E.: 1965 A note on variational principles in elasticity. Int. J. Solids Structures 1, 93–95. (38).

    Google Scholar 

  555. Stickforth, J.: 1965 On the derivation of the conditions of compatibility from Castigliano’s principle by means of three-dimensional stress functions. J. Math. Phys. 44, 214–226. (18).

    MathSciNet  Google Scholar 

  556. 1965 Stippes, M.: Steady state waves in anisotropic media. Ann. Meeting Soc. Eng. Sci., Nov., 1965 (unpublished). (71).

    Google Scholar 

  557. Teodorescu, P. P.: 1965 Über das dreidimensionale Problem der Elastokinetik. Z. Angew. Math. Mech. 45, 513–523. (59).

    MATH  MathSciNet  Google Scholar 

  558. Toupin, R. A.: 1965 Saint-Venant and a matter of principle. Trans. N.Y. Acad. Sci. 28, 221–232. (54, 55).

    Google Scholar 

  559. Toupin, R. A.: 1965 Saint-Venant’s principle. Arch. Rational Mech. Anal. 18, 83–96. (24, 55).

    MATH  MathSciNet  Google Scholar 

  560. Truesdell, C., and W. Noll: 1965 The non-linear field theories of mechanics. In Vol. 33 of the Handbuch der Physik, edited by S. Flügge. Berlin-Heidelberg-New York: Springer Verlag. (12, 16, 19, 20, 21, 23, 73).

    Google Scholar 

  561. Ainola, L. I.: 1966 A reciprocal theorem for dynamic problems of the theory of elasticity [in Russian]. Prikl. Math. Meh. 31, 176–177; translated as J. Appl. Math. Mech. 31, 190-192. (61).

    Google Scholar 

  562. Ben-Amoz, M.: 1966 Variational principles in anisotropic and non-homogeneous elasto-kinetics. Q. Appl. Math. 24, 82–86. (65).

    MATH  MathSciNet  Google Scholar 

  563. Beran, M., and J. Molyneux: 1966 Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Q. Appl. Math. 24, 107–118. (34).

    MATH  Google Scholar 

  564. Bernikov, H. B.: 1966 Generalization of the Boussinesq-Galerkin solution to anisotropic bodies [in Russian]. Dokl. Akad. Nauk. Tadzh. SSR 9, No. 6, 3–6. (44).

    Google Scholar 

  565. Burckhardt, J. J.: 1966 Die Bewegungsgruppen der Kristallographie. Basel und Stuttgart: Birkhäuser Verlag. (21).

    MATH  Google Scholar 

  566. Carlson, D.: 1966 Completeness of the Beltrami stress functions in continuum mechanics. J. Math. Anal. Appl. 15, 311–315. (17).

    MATH  MathSciNet  Google Scholar 

  567. Dou, A.: 1966 Upper estimate of the potential elastic energy of a cylinder. Comm. Pure Appl. Math. 19, 83–93. (54).

    MATH  MathSciNet  Google Scholar 

  568. Doyle, J. M.: 1966 Integration of the Laplace transformed equations of classical elasto-kinetics. J. Math. Anal. Appl. 13, 118–131. (69).

    MATH  MathSciNet  Google Scholar 

  569. Hayes, M.: 1966 On the displacement boundary-value problem in linear elastostatics. Q. J. Mech. Appl. Math. 19, 151–155. (32).

    MATH  MathSciNet  Google Scholar 

  570. Karnopp, B. H.: 1966 Complementary variational principles in linear elastodynamics. Tensor (N.S.) 17, 300–307. (65).

    MATH  MathSciNet  Google Scholar 

  571. 1966 Key, S.: A convergence investigation of the direct stiffness method. Ph. D. Thesis. Dept. Aero. Eng. University of Washington. (39).

    Google Scholar 

  572. Knowles, J. K.: 1966 On Saint Venant’s principle in the two-dimensional linear theory of elasticity. Arch. Rational Mech. Anal. 21, 1–22. (55, 56).

    MathSciNet  Google Scholar 

  573. Knowles, J. K. and E. Sternberg: 1966 On Saint Venant’s principle and the torsion of solids of revolution. Arch. Rational Mech. Anal. 22, 100–120. (55).

    MATH  MathSciNet  Google Scholar 

  574. Kolodner, I.: 1966 Existence of longitudinal waves in anisotropic media. J. Acoust. Soc. Am. 40, 730–731. (71).

    Google Scholar 

  575. Komkov, V.: 1966 Application of Rail’s theorem to classical elastodynamics. J. Math. Anal. Appl. 14, 511–521. (65).

    MATH  MathSciNet  Google Scholar 

  576. Mikhlin, S. G.: 1966 On Cosserat functions. Problems in Mathematical Analysis. Vol. 1. Boundary Value Problems and Integral Equations [in Russian]. Leningrad University Press. (I have seen this work only in the English translation. New York: Consultant’s Bureau 1968, 55–64.) (32).

    Google Scholar 

  577. 1966 Muskhelishvili: Some Basic Problems of the Mathematical Theory of Elasticity [in Russian] 5th Ed. Moscow. (I have not seen this work.) (45).

    Google Scholar 

  578. Nariboli, G. A.: 1966 Wave propagation in anisotropic elasticity. J. Math. Anal. Appl. 16, 108–122. (73).

    MATH  MathSciNet  Google Scholar 

  579. Oravas, G., and L. McLean: 1966 Historical developments of energetical principles in elastomechanics. Appl. Mech. Rev. 19, 647–656, 919-933. (34, 38).

    Google Scholar 

  580. Radzhabov, R. R.: 1966 The construction of the Green’s tensor for the first boundary-value problem of the theory of elasticity [in Russian]. Voprosy Kibernet. Vychisl. Mat. Vyp. 6, 96–111. (53).

    Google Scholar 

  581. Robinson, A.: 1966 Non-Standard Analysis. Amsterdam: North-Holland. (56a).

    MATH  Google Scholar 

  582. Roseman, J. J.: 1966 A pointwise estimate for the stress in a cylinder and its application to Saint-Venant’s principle. Arch. Rational Mech. Anal. 21, 23–48. (55).

    MathSciNet  Google Scholar 

  583. Shield, R. T., and C. A. Anderson: 1966 Some least work principles for elastic bodies. Z. Angew. Math. Phys. 17, 663–676. (30).

    Google Scholar 

  584. Sternberg, E., and J. K. Knowles: 1966 Minimum energy characterizations of Saint Venant’s solution to the relaxed Saint-Venant problem. Arch. Rational Mech. Anal. 21, 89–107. (40, 41).

    MathSciNet  Google Scholar 

  585. Stippes, M.: 1966 On stress functions in classical elasticity. Q. Appl. Math. 24, 119–125. (17, 44).

    MATH  Google Scholar 

  586. Tonti, E.: 1966 Condizioni iniziali nei principi variazionali. Rend. 1st. Lombardo (A) 100, 982–988. (65).

    MATH  MathSciNet  Google Scholar 

  587. Truesdell, C.: 1966 Existence of longitudinal waves. J. Acoust. Soc. Am. 40, 729–730. (71).

    Google Scholar 

  588. Truesdell, C.: 1966 The Elements of Continuum Mechanics. Berlin-Heidelberg-New York: Springer. (27).

    MATH  Google Scholar 

  589. Azhymudinov, T., and G. Mamaturdiev: 1967 Representation of eigenvalues of the first boundary-value problem of elasticity theory by means of a contour-integral. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 11, No. 3, 3–9. (76).

    Google Scholar 

  590. Beatty, M. F.: 1967 A reciprocal theorem in the linearized theory of couple-stresses. Acta Mech. 3, 154–166. (30).

    Google Scholar 

  591. Bézier, P.: 1967 Sur quelques propriétés des solutions de problèmes de l’élastostatique linéaire. C. R. Acad. Sci., Paris (A) 265, 365–367. (48, 50, 51).

    MATH  Google Scholar 

  592. Carlson, D.: 1967 A note on the Beltrami stress functions. Z. Angew. Math. Mech. 47, 206–207. (17).

    Google Scholar 

  593. Chadwick, P., and E. A. Trowbridge: 1967 Elastic wave fields generated by scalar wave functions. Proc. Cambridge Phil. Soc. 63, 1177–1187. (67).

    MATH  MathSciNet  Google Scholar 

  594. Hlavacek, I.: 1967 Derivation of non-classical variational principles in the theory of elasticity. Apl. Mat. 12, 15–29. (38).

    MATH  MathSciNet  Google Scholar 

  595. Hlavacek, I.: 1967 Variational principles in the linear theory of elasticity for general boundary conditions. Apl. Mat. 12, 425–448. (38, 41).

    MATH  MathSciNet  Google Scholar 

  596. Hashin, Z.: 1967 Variational principles of elasticity in terms of the polarization tensor. Int. J. Eng. Sci. 5, 213–223. (34).

    MATH  Google Scholar 

  597. Hill, R.: 1967 Eigenmodal deformations in elastic/plastic continua. J. Mech. Phys. Solids 15, 371–386. (63).

    Google Scholar 

  598. 1967 Kilchevskii, M. O., and O. F. Levchuk: One of the forms of the general solution of the elastodynamic equations [in Ukrainian]. Dopovidi Akad. Nauk. Ukr. RSR (A) 801-804. (67).

    Google Scholar 

  599. Prager, W.: 1967 Variational principles of linear elastostatics for discontinuous displacements, strains and stresses. Recent Progress in Applied Mechanics. The Folke Odqvist Volume. New York: Wiley. 463–474. (38, 41).

    Google Scholar 

  600. Roseman, J. J.: 1967 The principle of Saint Venant in linear and non-linear plane elasticity. Arch. Rational Mech. Anal. 26, 142–162. (56).

    MATH  MathSciNet  Google Scholar 

  601. 1967 Schüler, K. W., and R. L. Fosdick: Generalized Beltrami stress functions. Dept. Mech. Rept., Illinois Inst. Tech. (17, 47).

    Google Scholar 

  602. Stippes, M.: 1967 A note on stress functions. Int. J. Solids Structures 3, 705–711. (17, 44).

    MATH  Google Scholar 

  603. Tong, P., and T. H. H. Pian: 1967 The convergence of finite element method in solving linear elastic problems. Int. J. Solids Structures 3, 865–879. (39).

    MATH  Google Scholar 

  604. Tonti, E.: 1967 Principii variazionali nell’elastostatica. Atti Accad. Lincei Rend. (8) 42, 390–394. (18, 38).

    MATH  Google Scholar 

  605. Tonti, E.: 1967 Variational principles in elastostatics. Meccanica 2, 201–208. (18, 38).

    MATH  MathSciNet  Google Scholar 

  606. Turteltaub, M. J., and E. Sternberg: 1967 Elastostatic uniqueness in the half-space. Arch. Rational Mech. Anal. 24, 233–242. (50).

    MATH  MathSciNet  Google Scholar 

  607. Zienkiewicz, O. C., and Y. K. Cheung: 1967 The Finite Element Method in Structural and Continuum Mechanics. New York: McGraw-Hill. (39).

    MATH  Google Scholar 

  608. Bross, H.: 1968 Das Fundamentalintegral der Elastizitätstheorie für kubische Medien. Z. Angew. Math. Phys. 19, 434–446. (51).

    MATH  Google Scholar 

  609. Cakala, S., Z. Domanski, and H. Milicer-Gruzewska: 1968 Construction of the fundamental solution of the system of equations of the static theory of elasticity and the solution of the first boundary-value problem for a half space [in Polish]. Zeszyty Nauk. Politech. Warszaw. Mat. No. 14, 151–164. (51).

    MathSciNet  Google Scholar 

  610. Dafermos, C. M.: 1968 Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19, 913–920. (13).

    MATH  MathSciNet  Google Scholar 

  611. Edelstein, W. S., and R. L. Fosdick: 1968 A note on non-uniqueness in linear elasticity theory. Z. Angew. Math. Phys. 19, 906–912. (32).

    MATH  MathSciNet  Google Scholar 

  612. Fosdick, R. L.: 1968 On the displacement boundary-value problem of static linear elasticity theory. Z. Angew. Math. Phys. 19, 219–233. (57).

    MATH  MathSciNet  Google Scholar 

  613. Gurtin, M. E., V. J. Mizel, and W.O. Williams: 1968 A note on Cauchy’s stress theorem. J. Math. Anal. Appl. 22, 398–401. (15).

    MATH  MathSciNet  Google Scholar 

  614. Hayes, M., and R. J. Knops: 1968 On the displacement boundary-value problem of linear elastodynamics. Q. Appl. Math. 26, 291–293. (63).

    MATH  Google Scholar 

  615. Horàk, V.: 1968 Inverse Variationsprinzipien der Mechanik fester Körper. Z. Angew. Math. Mech. 48, 143–146. (38).

    Google Scholar 

  616. Indenbom, V. L., and S. S. Orlov: 1968 Construction of Green’s function in terms of Green’s function of lower dimensions [in Russian]. Prikl. Math. Meh. 32, 414–420; translated as J. Appl. Math. Mech. 414-420. (53).

    MATH  MathSciNet  Google Scholar 

  617. Karnopp, B. H.: 1968 Reissner’s variational principle and elastodynamics. Acta Mech. 6, 158–164. (65).

    MATH  MathSciNet  Google Scholar 

  618. Knops, R. J., and L. E. Payne: 1968 Uniqueness in classical elastodynamics. Arch. Rational Mech. Anal. 27, 349–355. (63).

    MathSciNet  Google Scholar 

  619. Solomon, L.: 1968 Élasticité Linéaire. Paris: Masson. (27, 38, 44, 47).

    MATH  Google Scholar 

  620. Truesdell, C.: 1968 Comment on longitudinal waves. J. Acoust. Soc. Am. 43, 170. (71).

    Google Scholar 

  621. Turteltaub, M. J., and E. Sternberg: 1968 On concentrated loads and Green’s functions in elastostatics. Arch. Rational Mech. Anal. 29, 193–240. (51, 52, 53).

    MATH  MathSciNet  Google Scholar 

  622. Washizu, K.: 1968 Variational methods in elasticity and plasticity. New York: Pergamon. (38).

    MATH  Google Scholar 

  623. Wheeler, L. T., and E. Sternberg: 1968 Some theorems in classical elastodynamics. Arch. Rational Mech. Anal. 31, 51–90. (60, 61, 68, 69, 74).

    MATH  MathSciNet  Google Scholar 

  624. Berg, C. A.: 1969 The physical meaning of astatic equilibrium in Saint Venant’s principle for linear elasticity. J. Appl. Mech. 36, 392–396. (18, 29).

    Google Scholar 

  625. Brun, L.: 1969 Méthodes énergétiques dans les systèmes évolutifs linéaires. J. Mécanique 8, 125–191. (60, 63).

    MATH  MathSciNet  Google Scholar 

  626. de La Penha, G., and S. B. Childs: 1969 A note on Love’s stress function. AIAA J. 7, 540. (44).

    Google Scholar 

  627. Kavwal, R. P.: 1969 Integral equations formulation of classical elasticity. Q. Appl. Math. 27, 57–65. (52).

    Google Scholar 

  628. Nowak, M.: 1969 Equations of motion of an elastic free-free body. Bull. Acad. Polon. Sci., Ser. Sci. Tech. 17, 31–36. (68).

    MATH  MathSciNet  Google Scholar 

  629. Rubenfeld, L. A., and J. B. Keller: 1969 Bounds on elastic moduli of composite media. SIAM J. Appl. Math. 17, 495–510. (34).

    MATH  MathSciNet  Google Scholar 

  630. Schultz, M. H.: 1969 Error bounds on the Rayleigh-Ritz-Galerkin method. J. Math. Anal. Appl. 27, 524–533. (39).

    MATH  MathSciNet  Google Scholar 

  631. Stippes, M.: 1969 Completeness of the Papkovitch potentials. Q. Appl. Math. 26, 477–483. (44).

    MATH  MathSciNet  Google Scholar 

  632. Youngdahl, C. K.: 1969 On the completeness of a set of stress functions appropriate to the solution of elasticity problems in general cylindrical coordinates. Int. J. Eng. Sci. 7, 61–79. (44).

    MATH  MathSciNet  Google Scholar 

  633. Benthien, G., and M. E. Gurtin: 1970 A principle of minimum transformed energy in elastodynamics. J. Appl. Mech. 31, 1147–1149. (66).

    MathSciNet  Google Scholar 

  634. Hlaväöek, I., and J. Necas: 1970 On inequalities of Korn’s type. I. Boundary-value problems for elliptic systems of partial differential equations. II. Applications to linear elasticity. Arch. Rational Mech. Anal. 36, 305–334. (28).

    Google Scholar 

  635. Wheeler, L. T.: 1970 Some results in the linear dynamical theory of anisotropic elastic solids. Q. Appl. Math. 28, 91–101. (61, 74).

    MATH  Google Scholar 

  636. Zienkiewicz, O. C.: 1970 The finite element method; from intuition to generality. Appl. Mech. Rev. 23, 249–256. (39).

    Google Scholar 

  637. Fichera, G.: 1971 Existence theorems in elasticity. Below in Volume VIa/2 of the Handbuch der Physik, edited by C. Truesdell. Berlin-Heidelberg-New York: Springer. (5, 7, 13, 31, 33, 36, 78).

    Google Scholar 

  638. Knops, R. J., and L. E. Payne: 1971 Uniqueness theorems in linear elasticity. In: Springer Tracts in Natural Philosophy (ed. B. D. Coleman), Vol. 19. Berlin-Heidelberg-New York: Springer. (32, 40, 63).

    Google Scholar 

  639. 1971 Maiti, M., and G. R. Makan: On an integral equation approach to displacement problems of classical elasticity. Q. Appl. Math. To appear. (52).

    Google Scholar 

  640. 1971 Segenreich, S. A.: On the strain energy distribution in self equilibrated cylinders.

    Google Scholar 

  641. 1971 Thesis. COPPE, Federal Univ. Rio de Janeiro.

    Google Scholar 

Addendum

  • Teleman, S.: 1956 The method of orthogonal projection in the theory of elasticity. Rev. Math. Pures Appl. 1, 49–66.

    MATH  MathSciNet  Google Scholar 

  • Roseau, M.: 1957 Sur un théorème d’unicité applicable à certains problèmes de diffraction d’ondes élastiques. CR. Acad. Sci., Paris 245, 1780–1782.

    MATH  MathSciNet  Google Scholar 

  • Campanato, S.: 1959 Sui problemi al contorno per sistemi de equazioni differenziali lineari del tipo dell’elasticità. Ann. Scuola Norm. Pisa (3) 13, 223–258, 275-302.

    MATH  MathSciNet  Google Scholar 

  • 1961 Baïkuziev, K.: Some methods of solving the Cauchy problem of the mathematical theory of elasticity [in Russian]. Izv. Akad. Nauk USSR Ser. Fiz.-Mat. 3-12.

    Google Scholar 

  • Gegelia, T. G.: 1962 Some fundamental boundary-value problems in elasticity theory in space [in Russian]. Akad. Nauk Gruzin. SSSR Trudy Tbiliss. Mat. Inst. Razmadze 28, 53–72.

    MATH  MathSciNet  Google Scholar 

  • Kupradze, V. D.: 1962 Singular integral equations and boundary-value problems of elasticity theory [in Russian]. Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat. Nauk. 84, 63–75.

    MathSciNet  Google Scholar 

  • Rieder, G.: 1962 Iterationsverfahren und Operatorgleichungen in der Elastizitätstheorie. Abhandl. Braunschweig. Wiss. Ges. 14, 109–343.

    MATH  MathSciNet  Google Scholar 

  • 1962 Deev, V. M.: Representation of the general solution of a three-dimensional problem of elasticity theory by particular solutions of Lamé’s equations [in Ukrainian]. Dopovidi Akad. Nauk. Ukr. RSR 1464-1467.

    Google Scholar 

  • Volkov, S. D., and M. L. Komissarova: 1963 Certain representations of the general solutions of the boundary-value problems of elasticity theory [in Russian]. Inzh. Zh. 3, 86–92.

    MathSciNet  Google Scholar 

  • Kurlandzki, J.: 1964 Mathematical formulation of a certain method for solving boundary problems of mechanics. Proc. Vibration Problems 5, 117–124.

    MATH  MathSciNet  Google Scholar 

  • Niemeyer, H.: 1965 Über die elastischen Eigenschwingungen endlicher Körper. Arch. Rational Mech. Anal. 19, 24–61.

    MATH  MathSciNet  Google Scholar 

  • Barr, A. D. S.: 1966 An extension of the Hu-Washizu variational principle in linear elasticity for dynamic problems. J. Appl. Mech. 88, 465.

    Google Scholar 

  • 1963 Mikhlin, S. G.: Numerical Realization of Variational Methods [in Russian]. Moscow. (I have not seen this work.).

    Google Scholar 

  • Colautti, M. P.: 1967 Sui problemi variazionali di un corpo elastico incompressibile. Mem. Accad. Lincei (8) 8, 291–343.

    MathSciNet  Google Scholar 

  • Lai, P. T.: 1967 Potentiels élastiques: Tenseurs de Green et de Neumann. J. Mécan. 6, 211–242.

    Google Scholar 

  • Cakala, S., Z. Domanski, and H. Milicer-Gruzewskass: 1968 Construction of the fundamental solution of the system of equations of the static theory of elasticity and the solution of the first boundary value problem for a half space [in Polish]. Zeszyty Nauk. Politech. Warszaw. Mat. No. 14, 151–164.

    Google Scholar 

  • Knops, R. J., and L. E. Payne: 1968 Stability in linear elasticity. Int. J. Solids Structures 4, 1233–1242.

    MATH  Google Scholar 

  • Lai, P. T.: 1968 Elastic potentials and Green’s tensor. Parti. Mémorial de l’Artillerie Française 42, 23–96.

    Google Scholar 

  • Bufler, H.: 1970 Erweiterung des Prinzips der virtuellen Verschiebungen und des Prinzips der virtuellen Kräfte. Z. Angew. Math. Mech. 50, 104–108.

    MathSciNet  Google Scholar 

  • HlavAcek, I.: 1971 On Reissner’s variational theorem for boundary values in linear elasticity. Apl. Mat. 16, 109–124.

    MATH  MathSciNet  Google Scholar 

  • Horgan, C. O., and J. K. Knowles: 1971 Eigenvalue problems associated with Korn’s inequalities. Arch. Rational Mech. Anal. 40, 384–402.

    MATH  MathSciNet  Google Scholar 

  • 1971 Maisonneuve, O.: Sur le principe de Saint-Venant. Thèse, Université de Poitiers. 1972 Duvaut, G., and J. L. Lions: Sur les Inéquations en Mécanique et en Physique. Paris: Dunod.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurtin, M.E. (1973). The Linear Theory of Elasticity. In: Truesdell, C. (eds) Linear Theories of Elasticity and Thermoelasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39776-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39776-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38853-2

  • Online ISBN: 978-3-662-39776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics