Skip to main content

ZnS and ZnO Semiconductor Nanoparticles Doped with Mn2+ Ions. Size Effects Investigated by EPR Spectroscopy

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 205))

Abstract

Electron paramagnetic resonance (EPR) spectroscopy has been extensively employed to investigate the presence, localization, distribution and interaction with the host crystalline lattice of the paramagnetic point defects (intrinsic defects and transition metal ions) in semiconductors. The retrieval of such information for nanostructured semiconductors is considerably more difficult, due to the high disorder level in such systems, reflected in broad, featureless EPR spectra. We show here how, with proper adjustments of the EPR experiments and accurate numerical analysis of the resulting spectra, it was possible to obtain more accurate information regarding the localization and structure of various Mn2+ centers in ZnS and ZnO semiconductor nanoparticles (NPs). This lead to the observation and investigation of size related effects such as the presence of the extended lattice defect assisted incorporation of impurities in small (~3 nm) cubic ZnS NPs, the dominant size induced lattice disorder observed for ZnO NPs, independent of the synthesis procedures, or the three steps decomposition of the ε-Zn(OH)2 disordered shell of ZnS NPs with formation of new oxy-hydrated zinc compounds. These effects can be used to synthesize semiconductor nanoparticles with controlled size distribution, doping level and functionalized surfaces for specific technological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)

    Article  Google Scholar 

  2. D. Bera, L. Quian, T.K. Tseng, P.H. Holloway, Materials 3, 2260 (2010)

    Article  Google Scholar 

  3. R. Beaulac, S.T. Ochsenbein, D.R. Gamelin, Colloidal Transition-Metal Doped Quantum Dots, ed. by V.I. Klimov Nanocrystals quantum dots, 2nd edn. (CRC Press, New York, 2010)

    Google Scholar 

  4. F. Huang, B. Gilbert, H. Zhang, J.F. Banfield, Phys. Rev. Lett. 92, 155501 (2004)

    Article  Google Scholar 

  5. B. Gilbert, F. Huang, L. Zhang, C. Goodell, H. Zhang, J.F. Banfield, Nano Lett. 6, 605 (2006)

    Article  Google Scholar 

  6. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)

    Article  Google Scholar 

  7. R. Buonsanti, D.J. Miliron, Chem. Mater. 25, 1305 (2013)

    Article  Google Scholar 

  8. H. Hu, W. Zhang, Opt. Mater. 28, 536 (2006)

    Article  Google Scholar 

  9. X.S. Fang, T.Y. Zhai, U.K. Gautam, L.A. Li, L.M. Wu, B. Yoshio, D. Golberg, Prog. Mater Sci. 56, 175 (2011)

    Article  Google Scholar 

  10. X.S. Fang, Y. Bando, U.K. Gautmam, T.Y. Zhai, H. Zong, X. Xu, M.Y. Liao, D. Goldberg, Crt. Rev. Sol. St. Mat. Sci. 34, 190 (2009)

    Google Scholar 

  11. K. Manzoor, S. Johny, D. Thomas, S. Seuta, D. Menon, S. Nair, Nanotechnology 20, 065102 (2009)

    Article  Google Scholar 

  12. R.E. Anderson, W.C.W. Chan, ACS Nano 7, 1301 (2008)

    Google Scholar 

  13. R. Beaulac, P.I. Archer, D.R. Gamelin, J. Sol. St. Chem. 181, 1582 (2008)

    Article  Google Scholar 

  14. R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, Adv. Funct. Mater. 18, 3873 (2008)

    Article  Google Scholar 

  15. R. Beaulac, Y. Feng, J.W. May, E. Badaeva, D.R. Gamelin, X. Li, Phys. Rev. B 84, 195324 (2011)

    Article  Google Scholar 

  16. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  17. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  18. S. Bhattacharyya, D. Zitoun, A. Gedanken, Nanosci. Nanotech. Lett. 3, 541 (2011)

    Article  Google Scholar 

  19. D. Ghica, S.V. Nistor, L.C. Nistor, M. Stefan, C.D. Mateescu, J. Nanopart. Res. 13, 4325 (2011)

    Article  Google Scholar 

  20. S.V. Nistor, D. Ghica, L.C. Nistor, M. Stefan, C.D. Mateescu, J. Nanosci. Nanotechnol. 11, 9296 (2011)

    Article  Google Scholar 

  21. S.V. Nistor, L.C. Nistor, M. Stefan, D. Ghica, Gh Aldica, J.N. Barascu, Cryst. Growth Des. 11, 5030 (2011)

    Article  Google Scholar 

  22. S.V. Nistor, D. Ghica, M. Stefan, I. Vlaicu, N.J. Barascu, C. Bartha, J. Alloys Comp. 548, 222 (2013)

    Article  Google Scholar 

  23. M. Stefan, S.V. Nistor, D. Ghica, Cryst. Growth Des. 13, 1350 (2013)

    Article  Google Scholar 

  24. S.V. Nistor, D. Ghica, M. Stefan, L.C. Nistor, J. Phys. Chem. C 117, 22017 (2013)

    Article  Google Scholar 

  25. M. Stefan, S.V. Nistor, N.J. Barascu, J. Magn. Reson. 210, 200 (2011)

    Article  Google Scholar 

  26. C. Rudowicz, Magn. Res. Rev. 13, 1 (1987)

    Google Scholar 

  27. S.V. Nistor, M. Stefan, J. Phys.: Condens. Matter 21, 145408 (2009)

    Google Scholar 

  28. S.V. Nistor, L.C. Nistor, M. Stefan, C.D. Mateescu, R. Birjega, N. Solovieva, M. Nikl, Superlattices Microstruct. 46, 306 (2009)

    Article  Google Scholar 

  29. S.V. Nistor, M. Stefan, L.C. Nistor, E. Goovaerts, G. Van Tendeloo, Phys. Rev. B 81, 035366 (2010)

    Google Scholar 

  30. M. Stefan, S.V. Nistor, D. Ghica, C.D. Mateescu, M. Nikl, R. Kucherkova, Phys. Rev. B 83, 045301 (2011)

    Article  Google Scholar 

  31. R.S. Title, Paramagnetic Resonance Studies, In Physics and Chemistry of II-VI Compounds, ed. by M. Aven, J.S. Prener, (North-Holland Publishing Company, Amsterdam, 1967)

    Google Scholar 

  32. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  Google Scholar 

  33. J. Kliava, Phys. Stat. Sol. (b) 134, 411 (1986)

    Article  Google Scholar 

  34. L.C. Nistor, C.D. Mateescu, R. Birjega, S.V. Nistor, Appl. Phys. A 92, 295 (2008)

    Article  Google Scholar 

  35. A. Ya. Yakunin, I.V. Shtambar, A.S. Kushnir, S.A. Omelchenko, Russ. Phys. J. 16, 1375 (1973)

    Google Scholar 

  36. T. Buch, B. Clerjaud, B. Lambert, P. Kovacs, Phys. Rev. B 7, 184 (1973)

    Article  Google Scholar 

  37. S.V. Nistor, M. Stefan, L.C. Nistor, D. Ghica, C.D. Mateescu, N.J. Barascu, IOP Conf. Series: Mat. Sci. Eng. 15, 012024 (2010)

    Article  Google Scholar 

  38. M.H. Du, S.C. Erwin, Al. L. Efros, Nanolett. 8, 2878 (2008)

    Google Scholar 

  39. S.V. Nistor, M. Stefan, D. Ghica, L.C. Nistor, Rad. Meas. 56, 40 (2013)

    Article  Google Scholar 

  40. E. Simanek, K.A. Muller, J. Phys. Chem. Sol. 31, 1027 (1970)

    Article  Google Scholar 

  41. M. Diaconu, H. Schmidt, A. Poppl, R. Bottcher, J. Hoentsch, A. Klunker, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Phys. Rev. B 72, 085214 (2005)

    Article  Google Scholar 

  42. E. Erdem, R. Bottcher, H.J. Glasel, E. Hartmann, Magn. Reson. Chem. 43, S174 (2005)

    Article  Google Scholar 

  43. M. Açıkgöz, M.D. Drahus, A. Ozarowski, J. van Tol, S. Weber, E. Erdem, J. Phys.: Condens. Matter 26, 155803 (2014)

    Google Scholar 

  44. A.M. Gazizulina, E.M. Alakshin, E.I. Baibekov, R.R. Gazizulin, MYu. Zakharov, A.V. Klochkov, S.L. Korableva, M.S. Tagirov, JETP Lett. 99, 149 (2014)

    Article  Google Scholar 

  45. S.V. Nistor, M. Stefan, D. Ghica, J. Therm. Anal. Calorim. (2014). doi:10.1007/s10973-014-3743-1

    Google Scholar 

  46. C.J. Delbecq, D. Schoemaker, P.H. Yuster, Phys. Rev. B 3, 473 (1971)

    Article  Google Scholar 

  47. S.V. Nistor, E. Goovaerts, B.R. Yang, D. Schoemaker, Phys. Rev. B 28, 1219 (1983)

    Article  Google Scholar 

  48. S.V. Nistor, I. Heyndrickx, E. Goovaerts, A. Bouwen, D. Schoemaker, Phys. Stat. Sol. (b) 130, 175 (1985)

    Article  Google Scholar 

  49. V. Ischenko, S. Polarz, D. Grote, V. Stavrache, K. Fink, M. Driess, Adv. Funct. Mat. 15, 1945 (2003)

    Google Scholar 

  50. S. Wang, G. Xia, J, Shao , Z. Fan, J. Alloys Compd. 424, 304 (2006)

    Google Scholar 

  51. Z. Mickovic, D.T.L. Alexander, A. Sienkiewicz, M. Mionic, L. Forro, A. Magrez, Cryst. Growth Des. 10, 4437 (2010)

    Article  Google Scholar 

  52. L.C. Nistor, S.V. Nistor, D. Ghica, Rom. Rept. Phys. 65, 186 (2013)

    Google Scholar 

  53. C.H. Shek, J.K.L. Lai, G.M. Lin, Nanostruct. Mater. 11, 887 (1999)

    Article  Google Scholar 

  54. G. Palumbo, S.J. Thorpe, K.T. Aust, Scr. Metall. Mater. 24, 1347 (1990)

    Article  Google Scholar 

  55. N.K. Datta, S. Pal, M. Ghosh, Chem. Phys. 400, 44 (2012)

    Article  Google Scholar 

  56. S. Pal, M. Ghosh, Superlat. Microstruct. 55, 118 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The original work described here was supported by CNCSIS-UEFISCSU through projects no. 788/2006, CEX no. 38/2006, PN-II-ID-PCE no. 523/2008 and PN-II-ID no.74/2011. We would like to thank Leona C. Nistor, Doina C. Mateescu, Narcis J. Barascu, Ioana Vlaicu and Dan Zernescu for contributions along the years to the work contained within the manuscript. This chapter was written through equal contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stefan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stefan, M., Nistor, S.V., Ghica, D. (2014). ZnS and ZnO Semiconductor Nanoparticles Doped with Mn2+ Ions. Size Effects Investigated by EPR Spectroscopy. In: Kuncser, V., Miu, L. (eds) Size Effects in Nanostructures. Springer Series in Materials Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44479-5_1

Download citation

Publish with us

Policies and ethics