Skip to main content

Oxide Thin Films and Nano-heterostructures for Microelectronics (MOS Structures, Ferroelectric Materials and Multiferroic Heterostructures)

  • Chapter
  • First Online:
Book cover Size Effects in Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 205))

  • 1230 Accesses

Abstract

Oxide materials are becoming of increasing interest due to their large variety of physical properties such as dielectric, magnetism, superconductivity, conductivity, ferroelectricity, multiferroism, etc. In addition, interfacing oxides with other materials is conferring new or better device functionalities. The main physical properties of oxides interfaces and their impact on the electrical properties of interest for microelectronic applications are presented. Further on, this subchapter is also devoted to the investigation and understanding of interface effects observed in heterostructures containing linear (SiO2) and non-linear (ferroelectrics) dielectrics in combination with wide-band gap semiconductor materials (e.g. ZnO and SiC) with special emphasis on size effects, interface quality and the opportunity to control the emergent phenomena in Metal-Oxide-Semiconductor (MOS) and Metal-Ferroelectric-Semiconductor (MFS) materials systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L.G. Fierro, Metal Oxides: Chemistry and Applications. (CRC Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  2. D.W. Bruce, D. O’Hare, R.I. Walton, Functional Oxides. (Wiley, Chichester, 2010)

    Google Scholar 

  3. G.F. Dionne, Magnetic Oxides. (Springer, New York, 2009)

    Google Scholar 

  4. L. Mitoseriu, New developments in advanced functional ceramics Transworld Research Network. Phys. Rev. B 75, 024403 (2007)

    Google Scholar 

  5. N. Izyumskaya, Y. Alivov, H. Morkoc, Crit. Rev. Solid State Materials Sci. 34, 89 (2009)

    Google Scholar 

  6. A.S. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat. 4, 3 (2000)

    Article  Google Scholar 

  7. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  Google Scholar 

  8. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  9. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  10. N. Barsan, M. Schweizer-Berberich, W. Göpel, Fresenius J. Anal. Chem. 365, 287 (1999)

    Article  Google Scholar 

  11. M.C. Tucker, J. Power Sources 195, 4570 (2010)

    Article  Google Scholar 

  12. R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986)

    Article  Google Scholar 

  13. A.F. Basile, J. Rozen, J.R. Williams, L.C. Feldman, P.M. Mooney, J. Appl. Phys. 109, 064514 (2011)

    Article  Google Scholar 

  14. D.M. Brown, E. Downey, M. Ghezzo, J. Kretchmer, V. Krishnamurthy, W. Hennessy, G. Michon, Solid-State Electron 39, 1531 (1996)

    Article  Google Scholar 

  15. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Device Lett. 22, 176 (2001)

    Article  Google Scholar 

  16. D. Peters, R. Schorner, K.H. Holzlein, P. Friedrichs, Appl. Phys. Lett. 71, 2996 (1997)

    Article  Google Scholar 

  17. F. Moscatelli, A. Poggi, S. Solmi, R. Nipoti, IEEE Trans. Electron Devices 55, 961 (2008)

    Article  Google Scholar 

  18. G. Pensl, S. Beljakowa, T. Frank, K. Gao, F. Speck, T. Seyller, L. Ley, F. Ciobanu, V.V. Afanas’ev, A. Stesmans, T. Kimoto, A. Schoner, Phys. Status Solidi B 245, 1378 (2008)

    Article  Google Scholar 

  19. I. Pintilie, C.M. Teodorescu, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L.S. Lovlie, B.G. Svensson, J. Appl. Phys. 108, 024503 (2010)

    Article  Google Scholar 

  20. S. Dhar, X.D. Chen, P.M. Mooney, J.R. Williams, L.C. Feldman, Appl. Phys. Lett. 92, 102112 (2008)

    Article  Google Scholar 

  21. R. Kosugi, T. Umeda, Y. Sakuma, Appl. Phys. Lett. 99, 182111 (2011)

    Article  Google Scholar 

  22. K. McDonald, R.A. Weller, S.T. Pantelides, L.C. Feldman, G.Y. Chung, C.C. Tin, J.R. Williams, J. Appl. Phys. 93, 2719 (2003)

    Article  Google Scholar 

  23. P. Deák, J.M. Knaup, T. Hornos, C. Thill, A. Gali, T. Frauenheim, J. Phys. D Appl. Phys. 40, 6242 (2007)

    Article  Google Scholar 

  24. F. Allerstam, H.O. Olafsson, G. Gudjonsson, D. Dochev, E.O. Sveinbjornsson, T. Rodle, R. Jos, J. Appl. Phys. 101, 124502 (2007)

    Article  Google Scholar 

  25. T.E. Rudenko, I.N. Osiyuk, I.P. Tyagulski, H.O. Olafsson, E.O. Sveinbjornsson, Solid-State Electron. 49, 545 (2005)

    Article  Google Scholar 

  26. I. Pintilie, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L.S. Lovlie, B.G. Svensson, Mater. Sci. Forum 679–680, 346 (2011)

    Article  Google Scholar 

  27. V.V. Afanas’ev, A. Stesmans, M. Bassler, G. Pensl, M.J. Schultz, Appl. Phys. Lett. 76, 336 (2000)

    Article  Google Scholar 

  28. E. Pippel, J. Woltersdorf, H.Ö. Ólafsson, E.Ö. Sveinbjörnsson, J. Appl. Phys. 97, 034302 (2005)

    Article  Google Scholar 

  29. A.F. Basile, P.M. Mooney, J. Appl. Phys. 111, 094509 (2012)

    Article  Google Scholar 

  30. H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  31. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  32. A. Agarwal, S.-H. Ryu, J. Palmour, W. J. Choyke, H. Matsunami, G. Pensl, Silicon Carbide: Recent Major Advances, ed. by W.J. Choyke, Springer, Berlin, (2004)

    Google Scholar 

  33. C.M. Johnson, Comparison of Silicon and Silicon Carbide Semiconductors for a 10 kV Switching Application. IEEE-PESC Proc. 572, (2004)

    Google Scholar 

  34. G. Majumdar, Future of Power Semiconductors. IEEE-PESC Proc. 10, (2004)

    Google Scholar 

  35. T. Zheleva, A Lelis, G. Duscher, F. Liu, I. Levin, M. Das, Appl. Phys. Lett. 93, 022108 (2008)

    Google Scholar 

  36. T. Hatakeyama, H. Matsuhata, T. Suzuki, T. Shinohe, H. Okamura, Mat Sci. Forum 679–680, 330 (2011)

    Article  Google Scholar 

  37. L.D. Filip, I. Pintilie, B.G. Svensson, Mater. Sci. Forum 740–742, 557 (2013)

    Article  Google Scholar 

  38. L.D. Filip, I. Pintilie, L.C. Nistor, B.G. Svensson, Thin Solid Films 545, 22 (2013)

    Article  Google Scholar 

  39. A. Mar, J.G. Simmons, Solid-State Electron. 17, 131 (1974)

    Article  Google Scholar 

  40. J.P. Colinge, C.A. Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, New York, 2002)

    Google Scholar 

  41. J.H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  42. B.H. Bransden, C.J. Joachain, Quantum Mechanics (, Prentice Hall, Harlow, 2000)

    Google Scholar 

  43. V.V. Afanas’ev, A. Stesmans, Phys. Rev. Lett. 78, 2437 (1997)

    Google Scholar 

  44. S. Dhar, S.H. Ryu, A.K. Agarwal, IEEE Trans. Electron Devices 57, 1195 (2010)

    Article  Google Scholar 

  45. J. Rozen, S. Dhar, M.E. Zvanut, J.R. Williams, L.C. Feldman, J. Appl. Phys. 105, 124506 (2009)

    Article  Google Scholar 

  46. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000)

    Google Scholar 

  47. S.L. Miller, P.J. McWhorterer, J. Appl. Phys. 72, 5999 (1992)

    Article  Google Scholar 

  48. N. Maffei, S.B. Krupanidhi, J. Appl. Phys. 72, 3617 (1992)

    Article  Google Scholar 

  49. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, Y. Tarui, Jpn. J. Appl. Phys. Part 1(33), 5172 (1994)

    Article  Google Scholar 

  50. B. Chen, H. Yang, J. Miao, L. Zhao, B. Xu, X.L. Dong, L.X. Cao, X.G. Qiu, B.R. Zhao, Chin. Phys. Lett. 22, 697 (2005)

    Article  Google Scholar 

  51. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98 041301 (2005)

    Google Scholar 

  52. J. Phillips, W. Bowen, E. Cagin, W. Wang, Compr. Semicond. Sci. Technol. 6, 101 (2011)

    Article  Google Scholar 

  53. E. Cagin, D.Y. Chen, J.J. Siddiqui, J.D. Phillips, J. Phys. D Appl. Phys. 40, 2430 (2007)

    Article  Google Scholar 

  54. Y.S. Kim, C.H. Park, Phys. Rev. Lett. 102, 086403 (2009)

    Article  Google Scholar 

  55. L. Pintilie, C. Dragoi, R. Radu, A. Costinoaia, V. Stancu, I. Pintilie, Appl. Phys. Lett. 96, 012903 (2010)

    Article  Google Scholar 

  56. I. Pintilie, I. Pasuk, G.A. Ibanescu, R. Negrea, C. Chirila, E. Vasile, L. Pintilie, J. Appl. Phys. 112, 104103 (2012)

    Article  Google Scholar 

  57. M.H. Tang, Z.H. Sun, Y.C. Zhou, Y. Sugiyama, H. Ishiwara, Appl. Phys. Lett. 94, 212907 (2009)

    Article  Google Scholar 

  58. S. Parashar, A.R. Raju, C.N.R. Rao, P. Victor, S.B. Krupanidhi, J. Phys. D Appl. Phys. 36, 2134 (2003)

    Article  Google Scholar 

  59. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  60. H. Tanaka, H. Tabata, K. Ota, T. Kawai, Phys. Rev. B 53, 14112 (1996)

    Article  Google Scholar 

  61. S. Chandarak, A. Ngamjarurojana, S. Srilomsak, P. Laoratanakul, S. Rujirawat, R. Yimnirun, Ferroelectrics 410, 75 (2011)

    Article  Google Scholar 

  62. A. Erbil, Y. Kim, R.A. Gerhardt, Phys. Rev. Lett. 77, 1628 (1996)

    Article  Google Scholar 

  63. X.- N. Zhu, W. Zhang and M. Xiang, AIP Advances 3, 082125 (2013)

    Google Scholar 

  64. S. Mingrong, G. Shuibing, C. Wenwu, J. Phys. D Appl. Phys. 34, 2935 (2001)

    Article  Google Scholar 

  65. C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)

    Article  Google Scholar 

  66. H. Schroeder, S, Schmitz, Appl. Phys. Lett. 83, 4381 (2003)

    Google Scholar 

  67. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  68. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceramics 11, 5 (2003)

    Article  Google Scholar 

  69. K. Kim, D.J. Jung, Future Memory Technology and Ferroelectric Memory as an Ultimate Memory Solution, in Ferroelectrics-Applications, editor Mickael Lallart, In Tech (2011)

    Google Scholar 

  70. A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N.D. Mathur, M. Bibes, A. Barthélémy, J. Grollier, Nat. Mater. 11, 860 (2012)

    Article  Google Scholar 

  71. Z.G. Ye, Handbook of Dielectric, Piezoelectric and Ferroelectric Materials (Woodhead Publishing Limited, Cambridge, 2008)

    Book  Google Scholar 

  72. J.F. Scott, Ferroelectric memories, (Springer, Berlin, 2000)

    Google Scholar 

  73. H. Schmid, J. Phys.: Condens. Matter 20, 434201 (2008)

    Google Scholar 

  74. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  75. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, J. Phys.: Condens. Matter 20, 434220 (2008)

    Google Scholar 

  76. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  77. N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoç, H. Lee, Y.S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007)

    Article  Google Scholar 

  78. H. Wu, W.Z. Shen, Phys. Rev. B 73, 094115 (2006)

    Article  Google Scholar 

  79. P.K. Panda, J. Mater. Sci. 44, 5049 (2009)

    Article  Google Scholar 

  80. B. Jaffe, W.R. Cook, H.L. Jaffe, Piezoelectric Ceramics. (Academic Press, New York,, 1971)

    Google Scholar 

  81. K.P. Jayadevan, T.Y. Tseng, J. Mat Sci: Mat. Electron. 13, 439 (2002)

    Google Scholar 

  82. L. Pintilie, I. Vrejoiu, D. Hesse, M. Alexe, J. Appl. Phys. 104, 114101 (2008)

    Article  Google Scholar 

  83. L. Pintilie, I. Pasuk, R. Negrea, L.D. Filip, I. Pintilie, J. Appl. Phys. 112, 064116 (2012)

    Article  Google Scholar 

  84. L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhun, M. Alexe, Phys. Rev. B 75, 104103 (2007)

    Article  Google Scholar 

  85. A. Petraru, N.A. Pertsev, H. Kohlstedt, U. Poppe, R. Waser, A. Solbach, U. Klemradt, J. Appl. Phys. 101, 114106 (2007)

    Article  Google Scholar 

  86. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, U. Goesele, Adv. Mater. 18, 1657 (2006)

    Article  Google Scholar 

  87. L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhun, M. Alexe, Phys. Rev. B 75, 224113 (2007)

    Article  Google Scholar 

  88. B. Wang, C.H. Woo, J. Appl. Phys. 97, 084109 (2005)

    Article  Google Scholar 

  89. K. Boldyreva, L. Pintilie, A. Lotnyk, I.B. Misirlioglu, M. Alexe, D. Hesse, Appl. Phys. Lett. 91, 122915 (2007)

    Article  Google Scholar 

  90. L. Pintilie, K. Boldyreva, M. Alexe, D. Hesse, New J. Phys. 10, 013003 (2008)

    Article  Google Scholar 

  91. M. Alexe, D. Hesse, J. Mat. Sci. 41, 1 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledges the financial support from the Romanian Ministry of Education-UEFISCDI under the contracts PCCE 3/2012 and PN45N L. D. Filip acknowledges the financial support from the Romanian Ministry of Education-UEFISCDI under the contract PN-II-RU-TE-2012-3-0320. L. Pintilie wish also to thank to his collaborators from the Max Planck Institute for Micro-structure Physics, Halle/Saale, Germany, for providing some samples of PZT thin films and PZT-PZO super-lattices (Dr. K. Boldyreva, Dr. I. Vrejoiu, Dr. M. Alexe and Prof. D. Hesse). I. Pintilie and L.D. Filip gratefully acknowledge the fruitful discussions and collaboration with Prof. B. G. Svensson from Center for Materials Science and Nanotechnology, Oslo University, and also Drs. A. Poggi, R. Nipoti, F. Moscatelli and S. Solmi from CNR- IMM of Bologna for processing some of the SiC samples used in these studies. The authors are also grateful for the magnetic measurements performed by our colleagues, V. Kuncser, G. Schinteie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Pintilie , L. Pintilie , L. D. Filip , L. C. Nistor or C. Ghica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pintilie, I., Pintilie, L., Filip, L.D., Nistor, L.C., Ghica, C. (2014). Oxide Thin Films and Nano-heterostructures for Microelectronics (MOS Structures, Ferroelectric Materials and Multiferroic Heterostructures). In: Kuncser, V., Miu, L. (eds) Size Effects in Nanostructures. Springer Series in Materials Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44479-5_4

Download citation

Publish with us

Policies and ethics