Skip to main content

Metallic Nanowires and Nanotubes Prepared by Template Replication

  • Chapter
  • First Online:
Size Effects in Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 205))

Abstract

Low dimensional nanostructures represent a hot scientific field nowadays due mainly to the tremendous potential for applications. Low dimensions open the possibilities for both ultra-miniaturization and increase in functionality. Numerous procedures were developed for fabricating such nanostructures. Template replication represents a highly effective method in fabricating metallic nanowires and nanotubes. The approach is characterized by the excellent control in obtaining nano objects with the desired shape and dimensions. A large variety of templates are available ranging from viruses and proteins to nanoporous membranes fabricated by using swift heavy ion accelerators. In the following chapter the main steps involved in employing the method for fabricating metalic nanowires and nanotubes by replicating ion track nanoporous membranes were described. The steps include here membrane fabrication and replication and involve track etching and electrochemical metal deposition. The influence of the process parameters on the properties of the nanoobjects prepared by this approach was reviewed. It was found that simple experimental parameters can be chosen in such a way that the functionality of the nanowires or nanotubes can be finely tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  2. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  Google Scholar 

  3. Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber, Science 294, 1313 (2001)

    Article  Google Scholar 

  4. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666 (2011)

    Article  Google Scholar 

  5. Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  Google Scholar 

  6. G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)

    Article  Google Scholar 

  7. X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  Google Scholar 

  8. C.R. MARTIN, Science 266 (1994)

    Google Scholar 

  9. Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009)

    Article  Google Scholar 

  10. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  11. R. Agarwal, K. Ladavac, Y. Roichman, G.H. Yu, C.M. Lieber, D.G. Grier, Opt. Express 13, 8906 (2005)

    Article  Google Scholar 

  12. M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, J. Appl. Phys. 91, 8549 (2002)

    Article  Google Scholar 

  13. H. Yan, H.S. Choe, S. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Nature 470, 240 (2011)

    Article  Google Scholar 

  14. Y. Huang, X.F. Duan, Q.Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  Google Scholar 

  15. H. Yan, H.S. Choe, S.W. Nam, Y.J. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Nature 470, 240 (2011)

    Article  Google Scholar 

  16. X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  17. Z.Y. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)

    Article  Google Scholar 

  18. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000)

    Article  Google Scholar 

  19. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)

    Google Scholar 

  20. M. Reches, E. Gazit, Science 300, 625 (2003)

    Article  Google Scholar 

  21. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  Google Scholar 

  22. T. Thurn-Albrecht, J. Schotter, C.A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, Science 290, 2126 (2000)

    Article  Google Scholar 

  23. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science 261, 1316 (1993)

    Google Scholar 

  24. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, T.H. LaBean, Science 301, 1882 (2003)

    Article  Google Scholar 

  25. C.J. Murphy, N.R. Jana, Adv. Mater. 14, 80 (2002)

    Article  Google Scholar 

  26. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher, Science 312, 885 (2006)

    Article  Google Scholar 

  27. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, J. Phys. Chem. 100, 14037 (1996)

    Article  Google Scholar 

  28. Y.G. Sun, B.T. Mayers, Y.N. Xia, Nano Lett. 2, 481 (2002)

    Article  Google Scholar 

  29. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, App. Phys. Lett. 65, 2484 (1994)

    Article  Google Scholar 

  30. C. Schonenberger, B.M.I. vanderZande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk and U. Staufer, J. Phys. Chem. B 101, 5497 (1997)

    Google Scholar 

  31. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk,) and M.H.W. Chan. Nano Lett. 3, 919 (2003)

    Article  Google Scholar 

  32. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Meth. B 216, 1 (2004)

    Article  Google Scholar 

  33. E. Ferain, R. Legras, Nucl. Instrum. Meth. B 208, 115 (2003)

    Article  Google Scholar 

  34. M.E. Toimil-Molares, J. Brotz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter, Nucl. Instrum. Meth. B 185, 192 (2001)

    Article  Google Scholar 

  35. P. Apel, A. Schulz, R. Spohr, C. Trautmann, V. Vutsadakis, Nucl. Instrum. Meth. B 131, 55 (1997)

    Article  Google Scholar 

  36. H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys. 37, L1340 (1998)

    Article  Google Scholar 

  37. R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications (University of California Press, California, 1975)

    Google Scholar 

  38. B.E. Fischer, R. Spohr, Rev. Mod. Phys. 55, 907 (1983)

    Article  Google Scholar 

  39. M. Toulemonde, S. Bouffard, F. Studer, Nucl. Instrum. Meth. B 91, 108 (1994)

    Article  Google Scholar 

  40. P. Apel, A. Schulz, R. Spohr, C. Trautmann, V. Vutsadakis, Nucl. Instrum. Meth. B 146, 468 (1998)

    Article  Google Scholar 

  41. P. Apel, Nucl. Instrum. Meth. B 208, 11 (2003)

    Article  Google Scholar 

  42. P. Apel, Radiat. Meas. 34, 559 (2001)

    Article  Google Scholar 

  43. G.E. Possin, Rev. Sci. Instrum. 41, 772 (1970)

    Article  Google Scholar 

  44. G.E. Possin, Physica 55, 339 (1971)

    Article  Google Scholar 

  45. P. Apel, R. Spohr, Introduction to ion track etching in polymers, http://www.ion-tracks.de/introduction1/index.html

  46. A. Deslandes, P. Murugaraj, D.E. Mainwaring, M. Ionescu, D.D. Cohen, R. Siegele, Nucl. Instrum. Meth. B 314, 90 (2013)

    Article  Google Scholar 

  47. T.W. Cornelius, B. Schiedt, D. Severin, G. Pepy, M. Toulemonde, P.Y. Apel, P. Boesecke, C. Trautmann, Nanotechnology 21, 155702 (2010)

    Article  Google Scholar 

  48. L.G. Molokanova, A.N. Nechaev, P.Y. Apel, Colloid J. 76, 170 (2014)

    Google Scholar 

  49. P.Y. Apel, I.V. Blonskaya, S.N. Dmitriev, T.I. Mamonova, O.L. Orelovitch, B. Sartowska, Y. Yamauchi, Radiat. Meas. 43, S552 (2008)

    Article  Google Scholar 

  50. M. Schlesinger, M. Paunovic, Modern Electroplating Edited (Wiley, New York, 2000)

    Google Scholar 

  51. A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999)

    Article  Google Scholar 

  52. J. Grollier, V. Cros, A. Hamzic, J.M. George, H. Jaffres, A. Fert, G. Faini, J.B. Youssef, H. Legall, Appl. Phys. Lett. 78, 3663 (2001)

    Article  Google Scholar 

  53. D. Davis, N. Crews, Sensor. Actuat. A-Phys. 203, 335 (2013)

    Article  Google Scholar 

  54. J. Garcia-Torres, E. Gomez, E. Valles, Mat. Lett. 111, 101 (2013)

    Article  Google Scholar 

  55. M.E. Toimil-Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter, Adv. Mater. 13, 62 (2001)

    Article  Google Scholar 

  56. M. Motoyama, Y. Fukunaka, T. Sakka, Y.H. Ogata, Electrochim. Acta 53, 205 (2007)

    Article  Google Scholar 

  57. I. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil-Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr, Appl. Phys. A- Mater. 77, 751 (2003)

    Article  Google Scholar 

  58. Y.T. Pang, G.W. Meng, Y. Zhang, Q. Fang, D. Zhang, Appl. Phys. A 76, 533 (2003)

    Article  Google Scholar 

  59. P. Serbun, F. Jordan, A. Navitski, G. Müller, I. Alber, M.E. Toimil-Molares, C. Trautmann, Eur. Phys. J. 58, 10402 (2012)

    Google Scholar 

  60. M.E. Toimil-Molares, L. Röntzsch, W. Sigle, K.H. Heinig, C. Trautmann, R. Neumann, Adv. Funct. Mater. 22, 695 (2012)

    Article  Google Scholar 

  61. F. Mumm, A.T.J. van Helvoort, P. Sikorski, ACS Nano 3, 2647 (2009)

    Article  Google Scholar 

  62. D. Dobrev, J. Vetter, N. Angert, R. Neumann, Electrochim. Acta 45, 3117 (2000)

    Article  Google Scholar 

  63. D. Dobrev, J. Vetter, N. Angert, R. Neumann, Appl. Phys. A 72, 729 (2001)

    Article  Google Scholar 

  64. M. Daub, I. Enculescu, R. Neumann, R. Spohr, J. Optoelectron. Adv. M. 7, 865 (2005)

    Google Scholar 

  65. R. Ferre, K. Ounadjela, J.M. George, L. Piraux, S. Dubois, Phys. Rev. B. 56, 14066 (1997)

    Article  Google Scholar 

  66. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science 261, 1316 (1993)

    Article  Google Scholar 

  67. G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741 (2005)

    Article  Google Scholar 

  68. S. Dubois, L. Piraux, J.M. George, K. Ounadjela, J.L. Duvail, A. Fert, Phys. Rev. B. 60, 477 (1999)

    Article  Google Scholar 

  69. E. Matei, I. Enculescu, M.E. Toimil-Molares, A. Leca, C. Ghica, V. Kuncser, J. Nanopart. Res. 15, 1 (2013)

    Article  Google Scholar 

  70. L. Gravier, J.E. Wegrowe, T. Wade, A. Fabian, J.P. Ansermet, IEEE Trans. Magn. 38, 2700 (2002)

    Article  Google Scholar 

  71. J.E. Wegrowe, D. Kelly, A. Franck, S.E. Gilbert, J.P. Ansermet, Phys. Rev. Lett. 82, 3681 (1999)

    Article  Google Scholar 

  72. I. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil-Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr, Appl. Phys. A Mater. Sci. Process. 77, 751 (2003)

    Article  Google Scholar 

  73. T. Ohgai, I. Enculescu, C. Zet, L. Westerberg, K. Hjort, R. Spohr, R. Neumann, J. Appl. Electrochem. 36(10), 1157 (2006)

    Article  Google Scholar 

  74. N. Chtanko, M.E. Toimil-Molares, T.W. Cornelius, D. Dobrev, R. Neumann, Nucl. Instr. Meth. B 236, 103 (2005)

    Article  Google Scholar 

  75. M.E. Toimil-Molares, E.M. Hohberger, C. Schaeflein, R.H. Blick, R. Neumann, C. Trautmann, Appl. Phys. Lett. 82, 2139 (2003)

    Article  Google Scholar 

  76. P.R. Evans, G. Yi, W. Schwarzacher, Appl. Phys. Lett. 76, 481 (2000)

    Article  Google Scholar 

  77. A. Robinson, W. Schwarzacher, J. Appl. Phys. 93, 7250 (2003)

    Article  Google Scholar 

  78. H. Yu, S. Granville, D. P. Yu, J.-Ph. Ansermet, Phys. Rev. Lett. 104 (2010)

    Google Scholar 

  79. M. Wirtz, C.R. Martin, Adv. Mater. 15, 455 (2003)

    Article  Google Scholar 

  80. B. Bercu, I. Enculescu, R. Spohr, Nucl. Instr. Meth. B 225, 497 (2004)

    Article  Google Scholar 

  81. I. Enculescu, M. Sima, M. Enculescu, E. Matei, M.E. Toimil-Molares, T. Cornelius, Optoelectron. Adv. Mat. 2, 133 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Matei or I. Enculescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matei, E. et al. (2014). Metallic Nanowires and Nanotubes Prepared by Template Replication. In: Kuncser, V., Miu, L. (eds) Size Effects in Nanostructures. Springer Series in Materials Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44479-5_6

Download citation

Publish with us

Policies and ethics