Skip to main content

Power Converter Topologies for Grid-Integrated Medium-Voltage Applications

  • Chapter
  • First Online:
Power Converters for Medium Voltage Networks

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Although several converter topologies have been used in low-voltage applications, most of the topologies are not suitable in medium-voltage applications. The selection of converter topology in medium-voltage applications is really a critical problem and highly affects the converter performance and cost. The main aim of this chapter was to find out a suitable converter topology, which can interconnect the renewable generation units directly to the medium-voltage grid with mature semiconductor devices. Different multilevel converter topologies, such as neutral point clamped (NPC), flying capacitor (FC), and modular multilevel cascaded (MMC), have been considered and compared for the design of an 11 kV converter system. The comparison is made in terms of the number of semiconductors, semiconductor cost and availability, total harmonic distortions (THDs), filter size, and control complexity of the converters. The performance is analyzed and compared in the MATLAB/Simulink environment. To ensure quality performance, a level-shifted carrier-based switching scheme is used for the NPC topologies and a phase-shifted carrier-based switching scheme is used for the FC and MMC converter topologies with a carrier frequency of 1–2 kHz and modulation index of 0.8–0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam MR, Guo YG, Zhu JG (2014) A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems. IEEE Trans Power Electron 29(8):4167–4182

    Article  Google Scholar 

  2. Islam MR, Guo YG, Zhu JG (2014) A review of offshore wind turbine nacelle: technical challenges, and research and developmental trends. Renew Sustain Energy Rev 33:161–176

    Article  Google Scholar 

  3. Islam MR, Guo YG, Zhu JG (2014) A multilevel medium-voltage inverter for step-up-transformer-less grid connection of photovoltaic power plants. IEEE J Photovoltaics 4(3):881–889

    Article  Google Scholar 

  4. Broeck HW, Skudelny HC, Stanke GV (1988) Analysis and realization of a pulse width modulator based on voltage space vectors. IEEE Transactions Ind Appl 24(1):142–150

    Article  Google Scholar 

  5. Baker BK, Bannister LH (1975) Electric power converter. US Patent 3 867 643, Feb 1975

    Google Scholar 

  6. Peng FZ, Lai JS (1997) Multilevel cascade voltage-source inverter with separate dc source. US Patent 5 642 275, June 1997

    Google Scholar 

  7. Aiello MF, Hammond PW, Rastogi M (2001) Modular multi-level adjustable supply with series connected active inputs. US Patent 6 236 580, May 2001

    Google Scholar 

  8. Islam MR, Guo YG, Zhu JG (2011) Performance and cost comparison of NPC, FC and SCHB multilevel converter topologies for high-voltage applications. In: 2011 international conference on electrical machines and systems, Beijing, China, 20–23 Aug 2011, pp 1–6

    Google Scholar 

  9. Massoud MA, Finney SJ, Williams BW (2004) Multilevel converters and series connection of IGBT evaluation for high-power, high-voltage applications. In: Proceedings of the second international conference on power electronics, machines and drives, University of Edinburgh, UK, 31 Mar–2 Apr 2004, pp 1–5

    Google Scholar 

  10. Nabae A, Takahashi I, Akagi H (1981) A new neutral-point clamped PWM inverter. IEEE Trans Ind Appl 17(5):518–523

    Article  Google Scholar 

  11. Manjrekar MD, Lipo TA (1998) A hybrid multilevel inverter topology for drive applications. In: Proceedings of the thirteenth annual applied power electronic conference exposition, Anaheim, California, 15–19 Feb 1998, pp 523–529

    Google Scholar 

  12. Corzine K, Familiant Y (2002) A new cascaded multilevel H-bridge drive. IEEE Trans Power Electron 17(1):125–131

    Article  Google Scholar 

  13. Lai JS, Peng FZ (1996) Multilevel converters—a new breed of power converters. IEEE Trans Ind Appl 32(3):509–517

    Article  Google Scholar 

  14. Nami A, Zare F, Ghosh A, Blaabjerg F (2010) Multi-output DC-DC converters based on diode clamped converters configuration: topology and control strategy. IET Trans Power Electron 3(2):197–208

    Article  Google Scholar 

  15. Meynard TA, Foch H (1992) Multi-level conversion: high voltage choppers and voltage-source inverters. In: Proceedings of the 23rd annual IEEE power electronic specialised conference, Madrid, 29 June–3 July 1992, pp 397–403

    Google Scholar 

  16. Islam MR, Guo YG, Zhu JG (2014) Multilevel converters for step-up transformer-less direct grid integration of renewable generation units with medium voltage smart microgrids. In: Large scale renewable power generation: advances in technologies for generation, transmission and storage. Springer, Berlin Heidelberg, pp 127–149

    Google Scholar 

  17. Xu L, Agelidis VG (2002) Flying capacitor multilevel PWM converter based UPFC. IEE Proc Electric Power Appl 149(4):304–310

    Article  Google Scholar 

  18. Xu L, Agelidis VG (2007) VSC transmission system using flying capacitor multilevel converters and hybrid PWM control. IEEE Trans Power Delivery 22(1):693–701

    Article  Google Scholar 

  19. Islam MR, Guo YG, Lin ZW, Zhu JG (2014) An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters. J Appl Phys 115(17):17E710-1–17E710-3

    Google Scholar 

  20. Islam MR, Guo YG, Zhu JG (2013) A medium-frequency transformer with multiple secondary windings for medium-voltage converter based wind turbine generating systems. J Appl Phys 113(17):17A324-1–17A324-3

    Article  Google Scholar 

  21. Marchesoni M, Mazzucchelli M, Tenconi S (1990) A nonconventional power converter for plasma stabilization. IEEE Trans Power Electron 5(2):212–219

    Article  Google Scholar 

  22. Hammond PW (1997) A new approach to enhance power quality for medium voltage AC drives. IEEE Trans Ind Appl 33(1):202–208

    Article  Google Scholar 

  23. Peng FZ, Lai JS, McKeever JW, VanCoevering J (1996) A multilevel voltage-source inverter with separate DC sources for static var generation. IEEE Trans Ind Appl 32(5):1130–1138

    Article  Google Scholar 

  24. Tolbert LM, Peng FZ, Habetler TG (1999) Multilevel converters for large electric drives. IEEE Trans Ind Appl 35(1):36–44

    Article  Google Scholar 

  25. Meynard TA, Foch H (1998) Electronic device for electrical energy conversion between a voltage source and a current source by means of controllable switching cells. US Patent 5737201 A, Apr 1998

    Google Scholar 

  26. Islam MR, Guo YG, Jafari M, Malekjamshidi Z, Zhu JG (2014) A 43-level 33 kV 3-phase modular multilevel cascaded converter for direct grid integration of renewable generation systems. In: Proceedings of IEEE innovative smart grid technologies conference (ISGT) Asia, Kuala Lumpur, Malaysia, 20–23 May 2014, pp 1–6

    Google Scholar 

  27. Wilkinson RW, Meynard TA, Mouton HT (2006) Natural balance of multi cell converters: the general case. IEEE Trans Power Electron 21(6):1658–1666

    Article  Google Scholar 

  28. Meynard TA, Foch H, Thomas P, Cournault J, Jakob R, Nahrstaedt M (2002) Multicell converters: basic concepts and industry applications. IEEE Trans Ind Electron 49(5):955–964

    Article  Google Scholar 

  29. Carrara G, Gardella S, Marchesoni M, Salutari R, Sciutto G (1992) A new multilevel PWM method: a theoretical analysis. IEEE Trans Power Electron 7(3):497–505

    Article  Google Scholar 

  30. Rodriguez R, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel converters: an enabling technology for high-power applications. Proc IEEE 97(11):1786–1817

    Article  Google Scholar 

  31. Krug D, Bernet S, Fazel SS, Jalili K, Malinowski M (2007) Comparison of 2.3 kV medium voltage multilevel converters for industrial medium voltage drives. IEEE Trans Ind Electron 54(6):2979–2992

    Article  Google Scholar 

  32. Islam MR, Guo YG, Zhu JG (2013) Multiple-input-multiple-output medium frequency-link based medium voltage converter for direct grid connection of photovoltaic arrays In: Proceedings of international conference on electrical machines and systems (ICEMS2013), Busan, Korea, 26–29 Oct 2013, pp 202–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rabiul Islam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Islam, M.R., Guo, Y., Zhu, J. (2014). Power Converter Topologies for Grid-Integrated Medium-Voltage Applications. In: Power Converters for Medium Voltage Networks. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44529-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44529-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44528-0

  • Online ISBN: 978-3-662-44529-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics