Skip to main content

The Molecular Basis of Leptospiral Pathogenesis

  • Chapter
  • First Online:
Leptospira and Leptospirosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 387))

Abstract

The mechanisms of disease pathogenesis in leptospirosis are poorly defined. Recent developments in the application of genetic tools in the study of Leptospira have advanced our understanding by allowing the assessment of mutants in animal models. As a result, a small number of essential virulence factors have been identified, though most do not have a clearly defined function. Significant advances have also been made in the in vitro characterization of leptospiral interaction with host structures, including extracellular matrix proteins (such as laminin, elastin, fibronectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble mediators of complement resistance (factor H, C4b-binding protein), although none of these in vitro findings has been translated to the host animal. Binding to host structures may permit colonization of the host, prevention of blood clotting may contribute to hemorrhage, while interaction with complement resistance mediators may contribute to survival in serum. While not a classical intracellular pathogen, the interaction of leptospires and phagocytic cells appears complex, with bacteria surviving uptake and promoting apoptosis; mutants relating to these processes (such as cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of leptospiral biology is the high degree of functional redundancy and the surprising lack of attenuation of mutants in what appear to be certain virulence factors, such as LipL32 and LigB. While many advances have been made, there remains a lack of understanding of how Leptospira causes tissue pathology. It is likely that leptospires have many novel pathogenesis mechanisms that are yet to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler B, de la Peña Moctezuma A (2010) Leptospira and leptospirosis. Vet Microbiol 140:287–296

    CAS  PubMed  Google Scholar 

  • Adler B, Lo M, Seemann T, Murray GL (2011) Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153:73–81

    CAS  PubMed  Google Scholar 

  • Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an Mycobacterium tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457

    CAS  PubMed  Google Scholar 

  • Artiushin S, Timoney JF, Nally J, Verma A (2004) Host-inducible immunogenic sphingomyelinase-like protein, Lk73.5, of Leptospira interrogans. Infect Immun 72:742–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asuthkar S, Velineni S, Stadlmann J, Altmann F, Sritharan M (2007) Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 75:4582–4591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atzingen MV, Barbosa AS, De Brito T, Vasconcellos SA, de Morais ZM, Lima DM, Abreu PA, Nascimento AL (2008) Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection. BMC Microbiol 8:70

    PubMed Central  PubMed  Google Scholar 

  • Atzingen MV, Gomez RM, Schattner M, Pretre G, Goncales AP, de Morais ZM, Vasconcellos SA, Nascimento AL (2009) Lp95, a novel leptospiral protein that binds extracellular matrix components and activates e-selectin on endothelial cells. J Infect 59:264–276

    PubMed  Google Scholar 

  • Ballard SA, Williamson M, Adler B, Vinh T, Faine S (1986) Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells. J Med Microbiol 21:59–67

    CAS  PubMed  Google Scholar 

  • Ballard SA, Go M, Segers RP, Adler B (1998) Molecular analysis of the dnaK locus of Leptospira interrogans serovar Copenhageni. Gene 216:21–29

    CAS  PubMed  Google Scholar 

  • Barbosa AS, Abreu PA, Neves FO, Atzingen MV, Watanabe MM, Vieira ML, Morais ZM, Vasconcellos SA, Nascimento AL (2006) A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 74:6356–6364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbosa AS, Abreu PA, Vasconcellos SA, Morais ZM, Goncales AP, Silva AS, Daha MR, Isaac L (2009) Immune evasion of Leptospira species by acquisition of human complement regulator C4BP. Infect Immun 77:1137–1143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbosa AS, Monaris D, Silva LB, Morais ZM, Vasconcellos SA, Cianciarullo AM, Isaac L, Abreu PA (2010) Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect Immun 78:3207–3216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barocchi MA, Ko AI, Reis MG, McDonald KL, Riley LW (2002) Rapid translocation of polarized MDCK cell monolayers by Leptospira interrogans, an invasive but nonintracellular pathogen. Infect Immun 70:6926–6932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batzios SP, Zafeiriou DI, Papakonstantinou E (2013) Extracellular matrix components: an intricate network of possible biomarkers for lysosomal storage disorders? FEBS Lett 587:1258–1267

    CAS  PubMed  Google Scholar 

  • Berg HC, Turner L (1979) Movement of microorganisms in viscous environments. Nature 278:349–351

    CAS  PubMed  Google Scholar 

  • Biedzka-Sarek M, Metso J, Kateifides A, Meri T, Jokiranta TS, Muszynski A, Radziejewska-Lebrecht J, Zannis V, Skurnik M, Jauhiainen M (2011) Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3. J Biol Chem 286:38211–38219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackmore DK, Hathaway SC (1979) The nidality of zoonoses. In: Proceedings of the 2nd international symposium on veterinary epidemiology and economics, pp 207–213

    Google Scholar 

  • Blom AM, Hallström T, Riesbeck K (2009) Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol 46:2808–2817

    CAS  PubMed  Google Scholar 

  • Bourhy P, Louvel H, Saint Girons I, Picardeau M (2005) Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol 187:3255–3258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breiner DD, Fahey M, Salvador R, Novakova J, Coburn J (2009) Leptospira interrogans binds to human cell surface receptors including proteoglycans. Infect Immun 77:5528–5536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchner J (2010) Bacterial Hsp90–desperately seeking clients. Mol Microbiol 76:540–544

    CAS  PubMed  Google Scholar 

  • Bulach DM, Zuerner RL, Wilson P, Seemann T, McGrath A, Cullen PA, Davis J, Johnson M, Kuczek E, Alt DP, Peterson-Burch B, Coppel RL, Rood JI, Davies JK, Adler B (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103:14560–14565

    PubMed Central  PubMed  Google Scholar 

  • Burgess RR (2009) Refolding solubilized inclusion body proteins. Methods Enzymol 463:259–282

    CAS  PubMed  Google Scholar 

  • Cao XJ, Dai J, Xu H, Nie S, Chang X, Hu BY, Sheng QH, Wang LS, Ning ZB, Li YX, Guo XK, Zhao GP, Zeng R (2010) High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans. Cell Res 20:197–210

    CAS  PubMed  Google Scholar 

  • Carvalho E, Barbosa AS, Gomez RM, Cianciarullo AM, Hauk P, Abreu PA, Fiorini LC, Oliveira ML, Romero EC, Goncales AP, Morais ZM, Vasconcellos SA, Ho PL (2009) Leptospiral TlyC is an extracellular matrix-binding protein and does not present hemolysin activity. FEBS Lett 583:1381–1385

    CAS  PubMed  Google Scholar 

  • Castiblanco-Valencia MM, Fraga TR, Silva LB, Monaris D, Abreu PA, Strobel S, Jozsi M, Isaac L, Barbosa AS (2012) Leptospiral immunoglobulin-like proteins interact with human complement regulators factor H, FHL-1, FHR-1, and C4BP. J Infect Dis 205:995–1004

    CAS  PubMed  Google Scholar 

  • Cerqueira GM, McBride AJ, Picardeau M, Ribeiro SG, Moreira AN, Morel V, Reis MG, Ko AI, Dellagostin OA (2009) Distribution of the leptospiral immunoglobulin-like (lig) genes in pathogenic Leptospira species and application of ligB to typing leptospiral isolates. J Med Microbiol 58:1173–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann Rev Genet 36:47–73

    CAS  PubMed  Google Scholar 

  • Chassin C, Picardeau M, Goujon JM, Bourhy P, Quellard N, Darche S, Badell E, d’Andon MF, Winter N, Lacroix-Lamande S, Buzoni-Gatel D, Vandewalle A, Werts C (2009) TLR4- and TLR2-mediated B cell responses control the clearance of the bacterial pathogen, Leptospira interrogans. J Immunol 183:2669–2677

    CAS  PubMed  Google Scholar 

  • Ching AT, Favaro RD, Lima SS, Chaves Ade A, de Lima MA, Nader HB, Abreu PA, Ho PL (2012) Leptospira interrogans shotgun phage display identified LigB as a heparin-binding protein. Biochem Biophys Res Comm 427:774–779

    CAS  PubMed  Google Scholar 

  • Choy HA, Kelley MM, Chen TL, Moller AK, Matsunaga J, Haake DA (2007) Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75:2441–2450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choy HA, Kelley MM, Croda J, Matsunaga J, Babbitt JT, Ko AI, Picardeau M, Haake DA (2011) The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS ONE 6:e16879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choy HA (2012) Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement. PLoS ONE 7:e41566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cinco M, Banfi E (1983) Activation of complement by leptospires and its bactericidal activity. Zentralbl Bakteriol Mikrobiol Hyg A 254:261–265

    CAS  PubMed  Google Scholar 

  • Cinco M, Cini B, Perticarari S, Presani G (2002) Leptospira interrogans binds to the CR3 receptor on mammalian cells. Microb Pathog 33:299–305

    CAS  PubMed  Google Scholar 

  • Comstock LE, Thomas DD (1989) Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 57:1626–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Confer AW, Ayalew S (2013) The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol 163:207–222

    CAS  PubMed  Google Scholar 

  • Croda J, Figueira CP, Wunder EA Jr, Santos CS, Reis MG, Ko AI, Picardeau M (2008) Targeted mutagenesis in pathogenic Leptospira species: disruption of the LigB gene does not affect virulence in animal models of leptospirosis. Infect Immun 76:5826–5833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cullen PA, Cordwell SJ, Bulach DM, Haake DA, Adler B (2002) Global analysis of outer membrane proteins from Leptospira interrogans serovar Lai. Infect Immun 70:2311–2318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dang W, Hu YH, Sun L (2011) HtpG is involved in the pathogenesis of Edwardsiella tarda. Vet Microbiol 152:394–400

    CAS  PubMed  Google Scholar 

  • Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Hook M (2001) SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβ chain. J Biol Chem 276:27799–27805

    CAS  PubMed  Google Scholar 

  • del Real G, Segers RP, van der Zeijst BA, Gaastra W (1989) Cloning of a hemolysin gene from Leptospira interrogans serovar Hardjo. Infect Immun 57:2588–2590

    PubMed Central  PubMed  Google Scholar 

  • Domingos RF, Vieira ML, Romero EC, Goncales AP, de Morais ZM, Vasconcellos SA, Nascimento AL (2012) Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions. BMC Microbiol 12:50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong K, Li Q, Liu C, Zhang Y, Zhao G, Guo X (2010) Cloning and characterization of three cheB genes in Leptospira interrogans. Acta Biochim Biophys Sinica 42:216–223

    CAS  Google Scholar 

  • Edwards AM, Jenkinson HF, Woodward MJ, Dymock D (2005) Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 73:2891–2898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eshghi A, Becam J, Lambert A, Sismeiro O, Dillies MA, Jagla B, Wunder EA Jr, Ko AI, Coppee JY, Goarant C, Picardeau M (2014) A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect Immun 82:2542–2552

    CAS  PubMed  Google Scholar 

  • Eshghi A, Lourdault K, Murray GL, Bartpho T, Sermswan RW, Picardeau M, Adler B, Snarr B, Zuerner RL, Cameron CE (2012) Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 80:3892–3899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faine S (1957) Virulence in Leptospira. I. Reactions of guinea-pigs to experimental infection with Leptospira icterohaemorrhagiae. Br J Exp Pathol 38:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faine S (1959) Iron as a growth requirement for pathogenic Leptospira. J Gen Microbiol 20:246–251

    CAS  PubMed  Google Scholar 

  • Faine S (1962) The growth of Leptospira australis B in the kidneys of mice in the incipient experimental carrier state. J Hyg (Lond) 60:435–442

    CAS  Google Scholar 

  • Faine S (1964) Reticuloendothelial phagocytosis of virulent leptospires. Am J Vet Res 25:830–835

    CAS  PubMed  Google Scholar 

  • Faine S, van der Hoeden J (1964) Virulence-linked colonial and morphological variation in Leptospira. J Bacteriol 88:1493–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faine S, Adler B, Bolin C, Perolat P (1999) Leptospira and leptospirosis. MediSci, Melbourne

    Google Scholar 

  • Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276

    PubMed  Google Scholar 

  • Fenno JC, Tamura M, Hannam PM, Wong GW, Chan RA, McBride BC (2000) Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun 68:1884–1892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes LG, Vieira ML, Kirchgatter K, Alves IJ, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento AL (2012) OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp. Infect Immun 80:3679–3692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figueira CP, Croda J, Choy HA, Haake DA, Reis MG, Ko AI, Picardeau M (2011) Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin. BMC Microbiol 11:129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraga TR, Courrol DD, Castiblanco-Valencia MM, Hirata IY, Vasconcellos SA, Juliano L, Barbosa AS, Isaac L (2014) Immune evasion by pathogenic Leptospira strains: the secretion of proteases that directly cleave complement proteins. J Infect Dis 209:876–886

    Google Scholar 

  • Ganoza CA, Matthias MA, Saito M, Cespedes M, Gotuzzo E, Vinetz JM (2010) Asymptomatic renal colonization of humans in the peruvian Amazon by Leptospira. PLoS Negl Trop Dis 4:e612

    PubMed Central  PubMed  Google Scholar 

  • Goncalves-de-Albuquerque CF, Burth P, Silva AR, Younes-Ibrahim M, Castro-Faria-Neto HC, Castro-Faria MV (2012) Leptospira and inflammation. Mediators Inflamm 2012:317950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guégan R, Camadro JM, Saint Girons I, Picardeau M (2003) Leptospira spp. possess a complete haem biosynthetic pathway and are able to use exogenous haem sources. Mol Microbiol 49:745–754

    PubMed  Google Scholar 

  • Guo L, Ai J, Zheng Z, Howatt DA, Daugherty A, Huang B, Li XA (2013) High density lipoprotein protects against polymicrobe-induced sepsis in mice. J Biol Chem 288:17947–17953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D, Mazel M, Matsunaga J, Levett PN, Bolin CA (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 68:2276–2285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286:291–295

    CAS  PubMed  Google Scholar 

  • Hauck CR, Agerer F, Muenzner P, Schmitter T (2006) Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 85:235–242

    CAS  PubMed  Google Scholar 

  • Hauk P, Macedo F, Romero EC, Vasconcellos SA, de Morais ZM, Barbosa AS, Ho PL (2008) LipL32, the major leptospiral lipoprotein: the C-terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infect Immun 76:2642–2650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoke DE, Egan S, Cullen PA, Adler B (2008) LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun 76:2063–2069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu SH, Lo YY, Tung JY, Ko YC, Sun YJ, Hung CC, Yang CW, Tseng FG, Fu CC, Pan RL (2010) Leptospiral outer membrane lipoprotein LipL32 binding on toll-like receptor 2 of renal cells as determined with an atomic force microscope. Biochemistry 49:5408–5417

    CAS  PubMed  Google Scholar 

  • Hu W, Ge Y, Ojcius DM, Sun D, Dong H, Yang XF, Yan J (2013) p53 signalling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenic Leptospira species. Cell Microbiol 15:1624–1659

    CAS  Google Scholar 

  • Hussain M, Becker K, von Eiff C, Schrenzel J, Peters G, Herrmann M (2001) Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183:6778–6786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito T, Yanagawa R (1987) Leptospiral attachment to four structural components of extracellular matrix. Nihon Juigaku Zasshi 49:875–882

    CAS  PubMed  Google Scholar 

  • Jin D, Ojcius DM, Sun D, Dong H, Luo Y, Mao Y, Yan J (2009) Leptospira interrogans induces apoptosis in macrophages via caspase-8- and caspase-3-dependent pathways. Infect Immun 77:799–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jost BH, Adler B, Vinh T, Faine S (1986) A monoclonal antibody reacting with a determinant on leptospiral lipopolysaccharide protects guinea pigs against leptospirosis. J Med Microbiol 22:269–275

    CAS  PubMed  Google Scholar 

  • Kaiser GE, Doetsch RN (1975) Enhanced translational motion of Leptospira in viscous environments. Nature 255:656–657

    CAS  PubMed  Google Scholar 

  • Kasărov LB (1970) Degradiation of the erythrocyte phospholipids and haemolysis of the erythrocytes of different animal species by leptospirae. J Med Microbiol 3:29–37

    PubMed  Google Scholar 

  • Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J (2014) Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 209:1105–1115

    CAS  PubMed  Google Scholar 

  • King AM, Bartpho T, Sermswan RW, Bulach DM, Eshghi A, Picardeau M, Adler B, Murray GL (2013) Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis, but requires a small chaperone, Lep, for stable expression. Infect Immun 8:2768–2776

    Google Scholar 

  • King AM, Pretre G, Bartpho T, Sermswan RW, Toma C, Suzuki T, Eshghi A, Picardeau M, Adler B, Murray GL (2014) High temperature protein G (HtpG) is an essential virulence factor of Leptospira interrogans. Infect Immun 82:1123–1131

    Google Scholar 

  • Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592

    CAS  PubMed  Google Scholar 

  • Lacroix-Lamande S, d’Andon MF, Michel E, Ratet G, Philpott DJ, Girardin SE, Boneca IG, Vandewalle A, Werts C (2012) Downregulation of the Na/K-ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome. J Immunol 188:2805–2814

    CAS  PubMed  Google Scholar 

  • Lähteenmäki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552

    PubMed  Google Scholar 

  • Lambert A, Picardeau M, Haake DA, Sermswan RW, Srikram A, Adler B, Murray GL (2012a) FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect Immun 80:2019–2025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert A, Takahashi N, Charon NW, Picardeau M (2012b) Chemotactic behavior of pathogenic and nonpathogenic Leptospira species. Appl Environ Microbiol 78:8467–8469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lane GK, Faine S (1963) Urinary antibody during renal damage due to leptospiral infection in mice. J Infect Dis 113:110–112

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim KA, Park YG, Seong IW, Kim MJ, Lee YJ (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254:19–28

    CAS  PubMed  Google Scholar 

  • Lehmann JS, Fouts DE, Haft DH, Cannella AP, Ricaldi JN, Brinkac L, Harkins D, Durkin S, Sanka R, Sutton G, Moreno A, Vinetz JM, Matthias MA (2013) Pathogenomic inference of virulence-associated genes in Leptospira interrogans. PLoS Negl Trop Dis 7:e2468

    PubMed Central  PubMed  Google Scholar 

  • Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Ojcius DM, Liao S, Li L, Xue F, Dong H, Yan J (2010) Replication or death: distinct fates of pathogenic Leptospira strain Lai within macrophages of human or mouse origin. Innate Immun 16:80–92

    PubMed  Google Scholar 

  • Li Z, Ploplis VA, French EL, Boyle MD (1999) Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 179:907–914

    CAS  PubMed  Google Scholar 

  • Liao S, Sun A, Ojcius DM, Wu S, Zhao J, Yan J (2009) Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 9:253

    PubMed Central  PubMed  Google Scholar 

  • Lima SS, Ching AT, Favaro RD, Da Silva JB, Oliveira ML, Carvalho E, Abreu PA, Vasconcellos SA, Ho PL (2013) Adhesin activity of Leptospira interrogans lipoprotein identified by in vivo and in vitro shotgun phage display. Biochem Biophys Res Comm 431:342–347

    CAS  PubMed  Google Scholar 

  • Lin MH, Chang YC, Hsiao CD, Huang SH, Wang MS, Ko YC, Yang CW, Sun YJ (2013) LipL41, a hemin binding protein from Leptospira santarosai serovar Shermani. PLoS ONE 8:e83246

    PubMed Central  PubMed  Google Scholar 

  • Lin YP, Lee DW, McDonough SP, Nicholson LK, Sharma Y, Chang YF (2009) Repeated domains of Leptospira immunoglobulin-like proteins interact with elastin and tropoelastin. J Biol Chem 284:19380–19391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YP, McDonough SP, Sharma Y, Chang YF (2010) The terminal immunoglobulin-like repeats of LigA and LigB of Leptospira enhance their binding to gelatin binding domain of fibronectin and host cells. PLoS ONE 5:e11301

    PubMed Central  PubMed  Google Scholar 

  • Lin YP, McDonough SP, Sharma Y, Chang YF (2011) Leptospira immunoglobulin-like protein B (LigB) binding to the C-terminal fibrinogen alphaC domain inhibits fibrin clot formation, platelet adhesion and aggregation. Mol Microbiol 79:1063–1076

    CAS  PubMed  Google Scholar 

  • Lo M, Murray GL, Khoo CA, Haake DA, Zuerner RL, Adler B (2010) Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78:4850–4859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longhi MT, Oliveira TR, Romero EC, Goncales AP, de Morais ZM, Vasconcellos SA, Nascimento AL (2009) A newly identified protein of Leptospira interrogans mediates binding to laminin. J Med Microbiol 58:1275–1282

    CAS  PubMed  Google Scholar 

  • Lourdault K, Cerqueira GM, Wunder EA Jr, Picardeau M (2011) Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect Immun 79:3711–3717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, Strynadka NC (2000) Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–1077

    CAS  PubMed  Google Scholar 

  • Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762–765

    PubMed Central  PubMed  Google Scholar 

  • Marcsisin RA, Bartpho T, Bulach DM, Srikram A, Sermswan RW, Adler B, Murray GL (2013) Use of a high-throughput screen to identify Leptospira mutants unable to colonise the carrier host or cause disease in the acute model of infection. J Med Microbiol 62:1601–1608

    CAS  PubMed  Google Scholar 

  • Marshall RB (1974) Ultrastructural changes in renal tubules of sheep following experimental infection with Leptospira interrogans serotype Pomona. J Med Microbiol 7:505–508

    CAS  PubMed  Google Scholar 

  • Marshall RB (1976) The route of entry of leptospires into the kidney tubule. J Med Microbiol 9:149–152

    CAS  PubMed  Google Scholar 

  • Masuzawa T, Nakamura R, Hashiguchi Y, Shimizu T, Iwamoto Y, Morita T, Yanagihara Y (1990) Immunological reactivity and passive protective activity of monoclonal antibodies against protective antigen (PAg) of Leptospira interrogans serovar lai. Zentralbl Bakteriol 272:328–336

    CAS  PubMed  Google Scholar 

  • Matsunaga J, Barocchi MA, Croda J, Young TA, Sanchez Y, Siqueira I, Bolin CA, Reis MG, Riley LW, Haake DA, Ko AI (2003) Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Mol Microbiol 49:929–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunaga J, Sanchez Y, Xu X, Haake DA (2005) Osmolarity, a key environmental signal controlling expression of leptospiral proteins LigA and LigB and the extracellular release of LigA. Infect Immun 73:70–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, Haake DA (2007) Response of Leptospira interrogans to physiologic osmolarity: relevance in signaling the environment-to-host transition. Infect Immun 75:2864–2874

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride AJ, Cerqueira GM, Suchard MA, Moreira AN, Zuerner RL, Reis MG, Haake DA, Ko AI, Dellagostin OA (2009) Genetic diversity of the leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. Infect Genet Evol 9:196–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes RS, Von Atzingen M, de Morais ZM, Goncales AP, Serrano SM, Asega AF, Romero EC, Vasconcellos SA, Nascimento AL (2011) The novel leptospiral surface adhesin Lsa20 binds laminin and human plasminogen and is probably expressed during infection. Infect Immun 79:4657–4667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meri T, Murgia R, Stefanel P, Meri S, Cinco M (2005) Regulation of complement activation at the C3-level by serum resistant leptospires. Microb Pathog 39:139–147

    CAS  PubMed  Google Scholar 

  • Merien F, Baranton G, Perolat P (1997) Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect Immun 65:729–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merien F, Truccolo J, Rougier Y, Baranton G, Perolat P (1998) In vivo apoptosis of hepatocytes in guinea pigs infected with Leptospira interrogans serovar icterohaemorrhagiae. FEMS Microbiol Lett 169:95–102

    CAS  PubMed  Google Scholar 

  • Merien F, Truccolo J, Baranton G, Perolat P (2000) Identification of a 36-kDa fibronectin-binding protein expressed by a virulent variant of Leptospira interrogans serovar icterohaemorrhagiae. FEMS Microbiol Lett 185:17–22

    CAS  PubMed  Google Scholar 

  • Michel LV, Snyder J, Schmidt R, Milillo J, Grimaldi K, Kalmeta B, Khan MN, Sharma S, Wright LK, Pichichero ME (2013) Dual orientation of the outer membrane lipoprotein P6 of nontypeable Haemophilus influenzae. J Bacteriol 195:3252–3259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monahan AM, Callanan JJ, Nally JE (2008) Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76:4952–4958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4:e1000090

    PubMed Central  PubMed  Google Scholar 

  • Moriarty TJ, Shi M, Lin YP, Ebady R, Zhou H, Odisho T, Hardy PO, Salman-Dilgimen A, Wu J, Weening EH, Skare JT, Kubes P, Leong J, Chaconas G (2012) Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol 86:1116–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray GL, Ellis KM, Lo M, Adler B (2008) Leptospira interrogans requires a functional heme oxygenase to scavenge iron from hemoglobin. Microbes Infect 10:791–797

    CAS  PubMed  Google Scholar 

  • Murray GL, Morel V, Cerqueira GM, Croda J, Srikram A, Henry R, Ko AI, Dellagostin OA, Bulach DM, Sermswan RW, Adler B, Picardeau M (2009a) Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 77:810–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray GL, Srikram A, Henry R, Puapairoj A, Sermswan RW, Adler B (2009b) Leptospira interrogans requires heme oxygenase for disease pathogenesis. Microbes Infect 11:311–314

    CAS  PubMed  Google Scholar 

  • Murray GL, Srikram A, Hoke DE, Wunder EA Jr, Henry R, Lo M, Zhang K, Sermswan RW, Ko AI, Adler B (2009c) Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans. Infect Immun 77:952–958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray GL, Srikram A, Henry R, Hartskeerl RA, Sermswan RW, Adler B (2010) Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 78:701–709

    CAS  PubMed  Google Scholar 

  • Murray GL (2013) The lipoprotein LipL32, an enigma of leptospiral biology. Vet Microbiol 162:305–314

    CAS  PubMed  Google Scholar 

  • Murray GL, Lo M, Bulach DM, Srikram A, Seemann T, Quinsey NS, Sermswan RW, Allen A, Adler B (2013) Evaluation of 238 antigens of Leptospira borgpetersenii serovar Hardjo for protection against kidney colonisation. Vaccine 31:495–499

    CAS  PubMed  Google Scholar 

  • Nahori MA, Fournie-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, Raetz CR, Saint Girons I, Werts C (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175:6022–6031

    CAS  PubMed  Google Scholar 

  • Nally JE, Chow E, Fishbein MC, Blanco DR, Lovett MA (2005) Changes in lipopolysaccharide O antigen distinguish acute versus chronic Leptospira interrogans infections. Infect Immun 73:3251–3260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanavari SA, Sritharan M, Haake DA, Matsunaga J (2012) Multiple leptospiral sphingomyelinases (or are there?). Microbiol 158:1137–1146

    CAS  Google Scholar 

  • Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CF, Leite LC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MI, Furlan LR, Gamberini M, Giglioti EA, Goes-Neto A, Goldman GH, Goldman MH, Harakava R, Jeronimo SM, Junqueira-de-Azevedo IL, Kimura ET, Kuramae EE, Lemos EG, Lemos MV, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJ, Ferro JA, Camargo LE, Kitajima JP, Setubal JC, Van Sluys MA (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogueira SV, Backstedt BT, Smith AA, Qin JH, Wunder EA Jr, Ko A, Pal U (2013) Leptospira interrogans enolase is secreted extracellularly and interacts with plasminogen. PLoS ONE 8:e78150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira R, de Morais ZM, Goncales AP, Romero EC, Vasconcellos SA, Nascimento AL (2011) Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen. PLoS ONE 6:e21962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira R, Domingos RF, Siqueira GH, Fernandes LG, Souza NM, Vieira ML, de Morais ZM, Vasconcellos SA, Nascimento AL (2013) Adhesins of Leptospira interrogans mediate the interaction to fibrinogen and inhibit fibrin clot formation in vitro. PLoS Negl Trop Dis 7:e2396

    PubMed Central  PubMed  Google Scholar 

  • Oliveira TR, Longhi MT, Goncales AP, de Morais ZM, Vasconcellos SA, Nascimento AL (2010) LipL53, a temperature regulated protein from Leptospira interrogans that binds to extracellular matrix molecules. Microbes Infect 12:207–217

    CAS  PubMed  Google Scholar 

  • Palaniappan RU, Chang YF, Jusuf SS, Artiushin S, Timoney JF, McDonough SP, Barr SC, Divers TJ, Simpson KW, McDonough PL, Mohammed HO (2002) Cloning and molecular characterization of an immunogenic LigA protein of Leptospira interrogans. Infect Immun 70:5924–5930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Picardeau M, Brenot A, Saint Girons I (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40:189–199

    CAS  PubMed  Google Scholar 

  • Pinne M, Choy HA, Haake DA (2010) The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin. PLoS Negl Trop Dis 4:e815

    PubMed Central  PubMed  Google Scholar 

  • Pinne M, Matsunaga J, Haake DA (2012) A novel approach to identification of host ligand-binding proteins: leptospiral outer-membrane protein microarray. J Bacteriol 194:6074–6087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinne M, Haake DA (2013) LipL32 is a subsurface lipoprotein of Leptospira interrogans: presentation of new data and reevaluation of previous studies. PLoS ONE 8:e51025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM, Adler B, Girons IS, Werts C, Raetz CR (2004) A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem 279:25420–25429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao ZJ, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893

    CAS  PubMed  Google Scholar 

  • Ricaldi JN, Matthias MA, Vinetz JM, Lewis AL (2012) Expression of sialic acids and other nonulosonic acids in Leptospira. BMC Microbiol 12:161

    CAS  PubMed  Google Scholar 

  • Ristow P, Bourhy P, da Cruz McBride FW, Figueira CP, Huerre M, Ave P, Girons IS, Ko AI, Picardeau M (2007) The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog 3:e97

    PubMed Central  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Ann Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

  • Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ (2008) M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 22:2715–2722

    CAS  PubMed  Google Scholar 

  • Schoone GJ, Everard CO, Korver H, Carrington DG, Inniss VA, Baulu J, Terpstra WJ (1989) An immunoprotective monoclonal antibody directed against Leptospira interrogans serovar Copenhageni. J Gen Microbiol 135:73–78

    CAS  PubMed  Google Scholar 

  • Segers RP, van Gestel JA, van Eys GJ, van der Zeijst BA, Gaastra W (1992) Presence of putative sphingomyelinase genes among members of the family Leptospiraceae. Infect Immun 60:1707–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu T, Matsusaka E, Takayanagi K, Masuzawa T, Iwamoto Y, Morita T, Mifuchi I, Yanagihara Y (1987) Biological activities of lipopolysaccharide-like substance (LLS) extracted from Leptospira interrogans serovar canicola strain moulton. Microbiol Immunol 31:727–735

    CAS  PubMed  Google Scholar 

  • Souza NM, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA, Nascimento AL (2012) Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp. Microb Pathog 53:125–134

    CAS  PubMed  Google Scholar 

  • Srikram A, Zhang K, Bartpho T, Lo M, Hoke DE, Sermswan RW, Adler B, Murray GL (2011) Cross-protective immunity against leptospirosis elicited by a live, attenuated lipopolysaccharide mutant. J Infect Dis 203:870–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson B, Choy HA, Pinne M, Rotondi ML, Miller MC, Demoll E, Kraiczy P, Cooley AE, Creamer TP, Suchard MA, Brissette CA, Verma A, Haake DA (2007) Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS ONE 2:e1188

    PubMed Central  PubMed  Google Scholar 

  • Svensson MD, Sjobring U, Luo F, Bessen DE (2002) Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiol 148:3933–3945

    CAS  Google Scholar 

  • Szczepanski A, Furie MB, Benach JL, Lane BP, Fleit HB (1990) Interaction between Borrelia burgdorferi and endothelium in vitro. J Clin Invest 85:1637–1647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas DD, Navab M, Haake DA, Fogelman AM, Miller JN, Lovett MA (1988) Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc Natl Acad Sci USA 85:3608–3612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas DD, Higbie LM (1990) In vitro association of leptospires with host cells. Infect Immun 58:581–585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toma C, Okura N, Takayama C, Suzuki T (2011) Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 13:1783–1792

    CAS  PubMed  Google Scholar 

  • Toma C, Murray GL, Nohara T, Mizuyama M, Koizumi N, Adler B, Suzuki T (2014) Leptospiral outer membrane protein LMB216 is involved in enhancement of phagocytic uptake by macrophages. Cell Microbiol 16:1366–1377

    CAS  PubMed  Google Scholar 

  • Torres AG, Li Y, Tutt CB, Xin L, Eaves-Pyles T, Soong L (2006) Outer membrane protein A of Escherichia coli O157:H7 stimulates dendritic cell activation. Infect Immun 74:2676–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuchimoto M, Niikura M, Ono E, Kida H, Yanagawa R (1984) Leptospiral attachment to cultured cells. Zentralbl Bakteriol Mikrobiol Hyg A 258:268–274

    CAS  PubMed  Google Scholar 

  • Tucunduva de Faria M, Athanazio DA, Goncalves Ramos EA, Silva EF, Reis MG, Ko AI (2007) Morphological alterations in the kidney of rats with natural and experimental Leptospira infection. J Comp Pathol 137:231–238

    CAS  PubMed  Google Scholar 

  • Verma A, Artiushin S, Matsunaga J, Haake DA, Timoney JF (2005) LruA and LruB, novel lipoproteins of pathogenic Leptospira interrogans associated with equine recurrent uveitis. Infect Immun 73:7259–7266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verma A, Hellwage J, Artiushin S, Zipfel PF, Kraiczy P, Timoney JF, Stevenson B (2006) LfhA, a novel factor H-binding protein of Leptospira interrogans. Infect Immun 74:2659–2666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verma A, Brissette CA, Bowman AA, Shah ST, Zipfel PF, Stevenson B (2010a) Leptospiral endostatin-like protein A is a bacterial cell surface receptor for human plasminogen. Infect Immun 78:2053–2059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verma A, Kumar P, Babb K, Timoney JF, Stevenson B (2010b) Cross-reactivity of antibodies against leptospiral recurrent uveitis-associated proteins A and B (LruA and LruB) with eye proteins. PLoS Negl Trop Dis 4:e778

    PubMed Central  PubMed  Google Scholar 

  • Verma A, Stevenson B (2012) Leptospiral uveitis—there is more to it than meets the eye! Zoonoses Public Health 59(Suppl 2):132–141

    PubMed  Google Scholar 

  • Vieira ML, Vasconcellos SA, Goncales AP, de Morais ZM, Nascimento AL (2009) Plasminogen acquisition and activation at the surface of Leptospira species lead to fibronectin degradation. Infect Immun 77:4092–4101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira ML, Atzingen MV, Oliveira TR, Oliveira R, Andrade DM, Vasconcellos SA, Nascimento AL (2010a) In vitro identification of novel plasminogen-binding receptors of the pathogen Leptospira interrogans. PLoS ONE 5:e11259

    PubMed Central  PubMed  Google Scholar 

  • Vieira ML, de Morais ZM, Goncales AP, Romero EC, Vasconcellos SA, Nascimento AL (2010b) Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV. J Infect 60:52–64

    PubMed  Google Scholar 

  • Vieira ML, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento AL (2011) In vitro evidence for immune evasion activity by human plasmin associated to pathogenic Leptospira interrogans. Microb Pathog 51:360–365

    CAS  PubMed  Google Scholar 

  • Vieira ML, Alvarez-Flores MP, Kirchgatter K, Romero EC, Alves IJ, de Morais ZM, Vasconcellos SA, Chudzinski-Tavassi AM, Nascimento AL (2013) Interaction of Leptospira interrogans with human proteolytic systems enhances dissemination through endothelial cells and protease levels. Infect Immun 81:1764–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinh T, Faine S, Adler B (1984) Adhesion of leptospires to mouse fibroblasts (L929) and its enhancement by specific antibody. J Med Microbiol 18:73–85

    CAS  PubMed  Google Scholar 

  • Vinh T, Adler B, Faine S (1986) Glycolipoprotein cytotoxin from Leptospira interrogans serovar Copenhageni. J Gen Microbiol 132:111–123

    CAS  PubMed  Google Scholar 

  • Viriyakosol S, Matthias MA, Swancutt MA, Kirkland TN, Vinetz JM (2006) Toll-like receptor 4 protects against lethal Leptospira interrogans serovar icterohaemorrhagiae infection and contributes to in vivo control of leptospiral burden. Infect Immun 74:887–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vivian JP, Beddoe T, McAlister AD, Wilce MC, Zaker-Tabrizi L, Troy S, Byres E, Hoke DE, Cullen PA, Lo M, Murray GL, Adler B, Rossjohn J (2009) Crystal structure of LipL32, the most abundant surface protein of pathogenic Leptospira spp. J Mol Biol 387:1229–1238

    CAS  PubMed  Google Scholar 

  • Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci USA 104:6037–6042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werts C (2010) Leptospirosis: a toll road from B lymphocytes. Chang Gung Med J 33:591–601

    PubMed  Google Scholar 

  • Wolff DG, Castiblanco-Valencia MM, Abe CM, Monaris D, Morais ZM, Souza GO, Vasconcellos SA, Isaac L, Abreu PA, Barbosa AS (2013) Interaction of leptospira elongation factor Tu with plasminogen and complement Factor H: a metabolic leptospiral protein with moonlighting activities. PLoS ONE 8:e81818

    PubMed Central  PubMed  Google Scholar 

  • Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348

    CAS  PubMed  Google Scholar 

  • Yang CW, Wu MS, Pan MJ, Hsieh WJ, Vandewalle A, Huang CC (2002) The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells. J Am Soc Nephrol 13:2037–2045

    CAS  PubMed  Google Scholar 

  • Yang CW, Hung CC, Wu MS, Tian YC, Chang CT, Pan MJ, Vandewalle A (2006) Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int 69:815–822

    CAS  PubMed  Google Scholar 

  • Yuri K, Takamoto Y, Okada M, Hiramune T, Kikuchi N, Yanagawa R (1993) Chemotaxis of leptospires to hemoglobin in relation to virulence. Infect Immun 61:2270–2272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang K, Murray GL, Seemann T, Srikram A, Bartpho T, Sermswan RW, Adler B, Hoke DE (2013) Leptospiral LruA is required for virulence and modulates an interaction with mammalian Apolipoprotein A-I. Infect Immun 81:3872–3879

    Google Scholar 

  • Zhang L, Zhang C, Ojcius DM, Sun D, Zhao J, Lin X, Li L, Yan J (2012) The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 83:1006–1023

    CAS  PubMed  Google Scholar 

  • Zhang Y, Bao L, Zhu H, Huang B, Zhang H (2010) OmpA-like protein Loa22 from Leptospira interrogans serovar Lai is cytotoxic to cultured rat renal cells and promotes inflammatory responses. Acta Biochim Biophys Sin (Shanghai) 42:70–79

    CAS  Google Scholar 

  • Zhang YX, Geng Y, Yang JW, Guo XK, Zhao GP (2008) Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai. BMB Rep 41:119–125

    CAS  PubMed  Google Scholar 

  • Zhao JF, Chen HH, Ojcius DM, Zhao X, Sun D, Ge YM, Zheng LL, Lin X, Li LJ, Yan J (2013) Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS ONE 8:e75652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong Y, Chang X, Cao XJ, Zhang Y, Zheng H, Zhu Y, Cai C, Cui Z, Zhang Y, Li YY, Jiang XG, Zhao GP, Wang S, Li Y, Zeng R, Li X, Guo XK (2011) Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 21:1210–1229

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald L. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murray, G.L. (2015). The Molecular Basis of Leptospiral Pathogenesis. In: Adler, B. (eds) Leptospira and Leptospirosis. Current Topics in Microbiology and Immunology, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45059-8_7

Download citation

Publish with us

Policies and ethics