Skip to main content

Abstract

During the development of semiconductor science and technology, Si and Ge were the first-generation semiconductor material, while GaAs, InP are known as the second-generation semiconductor material. In recent years, rapid developments have occurred in GaN and related materials (including AlN, AlGaN, GaN, InGaN, and InN), thus becoming the third-generation of semiconductor material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura S, Pearton S, Fasol G. The blue laser diode. Berlin: Springer; 2000.

    Book  Google Scholar 

  2. Nakamura S. The role of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science. 1998;281(5379):956–61.

    Article  Google Scholar 

  3. Johnson WC, Parsons JB, Crew MC. Nitrogen compounds of gallium III Gallic nitride. J Phys Chem. 1932;36:2561–72.

    Google Scholar 

  4. Tiede E, Thimann M, Sensse K. Phosphorescence-capable by silicon activated aluminum nitride. Chem Berichte. 1928;61:1568–73.

    Article  Google Scholar 

  5. Juza R, Hahn J. Crystal structures of Cu3N, GaN and InN—metallic amides and metallic nitrides V announcement. Zeitschr Anorgan Allgem Chem. 1938;239:282–7.

    Article  Google Scholar 

  6. Zetterstrom RB. Synthesis and growth of single crystals of gallium nitride. J Mater Sci. 1970;12(5):1102–4.

    Article  ADS  Google Scholar 

  7. Dingle R, Shakee KL, Leheny EF, Zetterstrom RB. Stimulated emission and laser action in gallium nitride. Appl Phys Lett. 1971;1(19):5–7.

    Google Scholar 

  8. Hovel HJ, Cuomo JJ. Electrical and optical propertied of RF-sputtered GaN and InN. Appl Phys Lett. 1972;2(20):71–3.

    Article  ADS  Google Scholar 

  9. Puychevrier N, Menoret M. Synthesis of 3–5 semiconductor nitride by reactive cathodic sputtering. Thin Solid Films. 1976;1(36):141–5.

    Article  Google Scholar 

  10. Maruska HP, Tietjen JJ. Preparation and propertied of vapor-deposited single-crystalline GaN. Appl Phys Lett. 1969;10(15):327–9.

    Article  ADS  Google Scholar 

  11. Ban VS. Mass spectrometric studies of vapor-phase crystal growth GaN. J Electrochem Soc. 1972;6(119):761–5.

    Article  Google Scholar 

  12. Llegems M, Dingle T, Logan TA. Luminescence of Zn- and Cd-doped GaN. J Appl Phys. 1972;9(43):3797–800.

    Article  Google Scholar 

  13. Pankove JI, Berkeuheiser JE, Maruska SP, Wittke J. Luminescent properties of GaN. Solid State Commun. 1970;13(8):1051–3.

    Article  ADS  Google Scholar 

  14. Ilegems M. Vapour epitaxy of gallium nitride. J Cryst Growth. 1972;13–14:360-4-364.

    Google Scholar 

  15. Matsumoto T, Sano M, Aoki M. Pair luminescence from Zn-doped GaN. Jpn J Appl Phys. 1974;13(2):373–4.

    Article  ADS  Google Scholar 

  16. Seifert W, Fitzl G, Butter E. Study on the growth-rate in VPE of GaN. J Crystal Growth. 1981;52:257–62.

    Article  ADS  Google Scholar 

  17. Naniwae K, Itoh S, Amano H, Itoh K, Hiramatsu K, Akasaki I. Growth of single-crystal GaN substrate using hydride vapor-phase epitaxy. J Crystal Growth. 1990;99(1–4):381–4.

    Article  ADS  Google Scholar 

  18. Manasevit HM, Simpson WI. Use of metal-organics in preparation of semiconductor materials epitaxial gallium-V compounds. Appl Phys Lett. 1969;116(12):1725–32.

    Google Scholar 

  19. Gotoh H, Suga T, Suzuki H, Kimata M. Low-temperature growth of Gallium nitride. Jpn J Appl Phys. 1981;20(7):L545–8.

    Article  ADS  Google Scholar 

  20. Amano H, Sawaki N, Akasaki I, Toyoda Y. Metalorganic wapor-phase epitaxial-growth of a high-quality GaN film using an AIN buffer layer. Appl Phys Lett. 1986;48(5):353–5.

    Article  ADS  Google Scholar 

  21. Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys. 1991;30(10A):L1705–7.

    Article  ADS  Google Scholar 

  22. Amano H, Akasaki I, Hiramatsu K, Koide N, Sawaki N. Effects of the buffer layer in metalorganic vapor-phase epitaxy of GaN on sapphire substrate. Thin Solid films. 1988;163:415–420.

    Google Scholar 

  23. Nakamura S, Mukai T, Senoh M, Iwasa N. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys. 1992;Part 2 31(2B):L139–L142.

    Google Scholar 

  24. Fen J. MOVPE lateral eptaxial growth of GaN and research of its structure and properties. Doctoral dissertation of Institute of semiconductor, Chinese Academy of Sciences; 2003.

    Google Scholar 

  25. Asif Khan M, Kuznia JN, Skogman RA, Olson DT, Millan M, Choyke WJ. Low pressure metalorganic chemical vapor deposition of AlN over sapphire substrates. Appl Phys Lett. 1992;61(21):2539–41.

    Article  ADS  Google Scholar 

  26. McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M. 320 × 256 solar-blind focal plane arrays based on Al x Ga1−x N. Appl Phys Lett. 2005;86(1):011117.

    Article  ADS  Google Scholar 

  27. Zhang JP, Hu X, Bilenko Y, Deng J, Lunev A, Shur MS, Gaska R, Shatalov M, Yang JW, Khan MA. AlGaN-based 280 nm light-emitting diodes with continuous-wave power exceeding 1 mW at 25 mA. Appl Phys Lett. 2004;85(23):5532–4.

    Article  ADS  Google Scholar 

  28. Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nm. Nature. 2006;441(7091):325–8.

    Article  ADS  Google Scholar 

  29. Pankove JI, Moustakas TD. Gallium Nitride (GaN) I. CA: Academic Press; 1998.

    Google Scholar 

  30. Yang H, Zheng LX, Li JB, Wang XJ, Xu DP, Wang YT, Hu XW, Han PD. Cubic-phase GaN light-emitting diodes. Appl Phys Lett. 1999;74(17):2498–500.

    Article  ADS  Google Scholar 

  31. Poroswki S, Grzegory I. Chapter 9. In: Pearton SJ editor. GaN and related materials. Gordon and Breach Science Publishers; 1997.

    Google Scholar 

  32. Manasevit HM. Single-crystal gallium arsenide on insulating substrates. Appl Phys Lett. 1968;12(4):156–9.

    Article  ADS  Google Scholar 

  33. Manasevit HM, Simpson WI. Use of metal-organic in preparation of semiconductor materials epitaxial Gallium-Vcompounds. J Electrochem Soc. 1969;116(12):1725–32.

    Article  Google Scholar 

  34. Manasevit HM, Hess KL. Use of metal-organic in preparation of semiconductor materials gallium antimonide. J Electrochem Soc. 1979;126(11):2031–3.

    Article  Google Scholar 

  35. Yang SR, Ding MY. Chapter 3. Epitaxial growth technique. Beijing: National defence industry press.

    Google Scholar 

  36. Denbaars SP, MaaYB Dapkus PD, Lee HC. Homogeneous and heretogeneous thermal-decomposition rates of trimethyl gallium and arsine and their relevance to the growth of GaAs by MOCVD. J Crystal Growth. 1986;77(1–3):188–93.

    Article  ADS  Google Scholar 

  37. Ng TB, Han J, Biefeld RM, Weckwerth MV. In-situ reflectance monitoring during MOCVD of AlGaN. J Electron Mater. 1998;27(4):190–5.

    Article  ADS  Google Scholar 

  38. Nakamura S. Analysis of real-time monitoring using interference effects. Jpn J Appl Phys. 1991;30(7):1348–53.

    Article  ADS  Google Scholar 

  39. Nakamura S. In-situ monitoeing of GaN growth using interference effects. Jpn J Appl Phys. 1991;30:1620–7.

    Article  ADS  Google Scholar 

  40. Nakamura S, Mukai T, Senoh M. In-situ monitoring and hall measurement of GaN growth with GaN buffer layers. J Appl Phys. 1992;71(11):5543–9.

    Article  ADS  Google Scholar 

  41. Azzam RMA, Bashara NM. North Holland New York: Ellipsometry and Polarized Light; 1988. p. 332.

    Google Scholar 

  42. Mohammad SN, Salvador AA, Morkoc H. Emerging gallium nitride based devices. Proc IEEE. 1995;83(10):1306–55.

    Article  Google Scholar 

  43. Stafford A, Irvine SJC, Hess KL, Bajaj J. The use of in situ laser interferometry for MOCVD process control. Semicond Sci Technol. 1998;13(12):1407–11.

    Article  ADS  Google Scholar 

  44. Figge S, Bottcher T, Einfeldt S, Hommel D. In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers. J Crystal Growth. 2000;221:262–6.

    Article  ADS  Google Scholar 

  45. Nakamura S, Harada Y, Seno M. Novel metalorganic chemical vapor-deposition system for GaN growth. Appl Phys Lett. 1991;58(18):2021–3.

    Article  ADS  Google Scholar 

  46. Lester SD, Ponce FA, Craford MG, Steigerwald DA. High dislocation densities in high-sfficiency GaN-based light-emitting-diodes. Appl Phys Lett. 1995;66(10):1249–51.

    Article  ADS  Google Scholar 

  47. Akasaki I, Amano H, Koide Y, Hiramatsu K, Sawaki N. Effects of AlN buffer layer on crystallographic structure and on electrical and optical-properties of GaN and AlGaN films grown on sapphire substrate by MOVPE. J Crystal Growth. 1989;98(1–2):209–19.

    Article  ADS  Google Scholar 

  48. Hiramatsu K, Itoh S, Amano H, Akasaki I, Kuwano N, Shiraishi T, Oki K. Growth-mechanism of GaN growth on sapphire with AlN buffer layer by MOVPE. J Cryst Growth. 1991;115(1–4):628–33.

    Article  ADS  Google Scholar 

  49. Ponce FA. Defects and interfaces in GaN epitaxy. MRS Bull. 1997;22(2):51–7.

    Google Scholar 

  50. Hiramatsu K, Detchprohm T, Akasaki I. Relaxation mechanism of thermal-stresses in the heterostructure of GaN grown on sapphire by vapor-phase epitaxy. Jpn J Appl Phys. 1993;Part 1 32(4):1528–1533.

    Google Scholar 

  51. Chen J. MOCVD epitaxial growth of hexagonal Ga. Master’s thesis of Sichuan University; 2003.

    Google Scholar 

  52. Chen J, Zhang SM, Zhang BS, Zhu JJ, Feng G, Shen XM, Wang YT, Yang H, Zheng WC. Effects of reactor pressure on GaN nucleation layers and subsequent GaN epilayers grown on sapphire substrate. J Crystal Growth. 2003;254(3–4):348–52.

    Article  ADS  Google Scholar 

  53. Zhang JC, Zhao DG, Wang JF, Wang YT, Chen J, Liu JP, Yang H. The influence of AlN buffer layer thickness on the properties of GaN epilayer. J Crystal Growth. 2004;268(1–2):24–29.

    Google Scholar 

  54. Heinke H, Kirchner V, Einfeldt S, Hommel D. X-ray diffraction analysis of the defect structure in epitaxial GaN. Appl Phys Lett. 2000;77(22):2145–7.

    Article  ADS  Google Scholar 

  55. Heying B, Wu XH, Keller S, Li Y, Kapolnek D, Keller BP, DenBaars SP, Speck JS. Role of threading dislocation structure on the x-ray diffraction peak width in epitaxial GaN films. Appl Phys Lett. 1996;68(5):643–5.

    Article  ADS  Google Scholar 

  56. Chen J, Zhang SM, Zhang BS, Zhu JJ, Shen XM, Feng G, Liu JP, Wang YT, Yang H, Zheng WC. Influence of reactor pressure of GaN buffer layers on moephological evolution of GaN grown by MOCVD. J Crystal Growth. 2003;256(3–4):248–53.

    Article  ADS  Google Scholar 

  57. Yang T, Uchida K, Mishima T, Kasai J, Gotoh J. Control of initial nucleation by reducing theV/III ratio duting the early stages of GaN growtn. Phys Stat Sol A. 2000;180(1):45–50.

    Article  ADS  Google Scholar 

  58. Han J, Ng TB, Biefeld RM, Crawford MH, Follstaedt DM. The effect of H-2 on morphology evolution during metalorganic chemical vapor deposition. Appl Phys Lett. 1997;71(20):3114–6.

    Article  ADS  Google Scholar 

  59. Koleske DD, Fischer AJ, Allerman AA, Mitchell CC, Cross KC, Kurtz SR, Figiel JJ, Fullmer KW, Breiland WG. Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Appl Phys Lett. 2002;81(11):1940–2.

    Article  ADS  Google Scholar 

  60. Mihopoulos TG, Gupta V, Jensen KF. A reaction-transport model for AlGaN MOVPE growth. J Crystal Growth. 1998;195(1–4):733–9.

    Article  ADS  Google Scholar 

  61. Makino O, Nakamura K, Tachibana A, Tokunaga H, Akustu N, Matsumoto K. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation. Appl Surf Sci. 2000;159:374–9.

    Article  ADS  Google Scholar 

  62. Shih CF, Chen NC, Lin SY, Liu KS. AlGaN films grown on (0001) sapphire by a two-step method. Appl Phys Lett. 2005;86(21):211103.

    Article  ADS  Google Scholar 

  63. Bremser MD, Perry WG, Zheleva T, Edwards NV, Nam OH, Parikh N, Aspnes DE, Davis RF. Growth, doping and characterization of AlGaN thin film alloys on 6H–SiC(0001) structures. MRS Internet J Nitride Semicond Res. 1996;1(1–46):U59–71.

    Google Scholar 

  64. Zhao DG, Liu ZS, Zhu JJ, Zhang SM, Jiang DS, Yang H, Liang JW, Li XY, Gong HM. Effects of Al incorporation on the AlGaN grown by metalorganic chemical vapor deposition. Appl Surf Sci. 2006;253(5):2452–5.

    Article  ADS  Google Scholar 

  65. Zhao DG, JiangDS, ZhuJJ, Liu ZS, Zhang SM, Yang H, Liang JW. The influence of V/III ratio in the initial growth stage on the properties of GaN epitalyer deposited on low temperature AlN buffer layer. J Crystal Growth. 2007;303(2):414–418.

    Google Scholar 

  66. Xu ZJ. Test and analysis of semiconductor. The second edition: Science press; 2007.

    Google Scholar 

  67. Zhao DG, Zhu JJ, Liu ZS, Zhang SM, Yang H, Jiang DS, Zhao DG, Zhu JJ, Liu ZS, Zhang SM, Yang H, Jiang DS. Surface morphology of AlN buffer layer and its effect on GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett. 2004;85(9):1499–501.

    Article  ADS  Google Scholar 

  68. Reshchikov MA, Morkoc H. Luminescence properties of defects in GaN. J Appl Phys. 2005;97(6):061301.

    Article  ADS  Google Scholar 

  69. Khan MA, Shatalov M, Maruska HP, Wang HM, Kuokstis E. III-nitride devices. Jpn J Appl Phys. 2005;44(10):7191–206.

    Article  ADS  Google Scholar 

  70. Lada M, Cullis AG, Parbrook PJ. Effect of annealing temperature on GaN nucleation layer transformation. J Crystal Growth. 2003;258(1–2):89–99.

    Article  ADS  Google Scholar 

  71. Zhou HL, Chua SJ, Peng C. Al incorppration in AlGaN on (11(2) over-bar-2) and (0001) surface orientation. J Crystal Growth. 2006;292(1):5–9.

    Article  ADS  Google Scholar 

  72. Ke WC, Ku CS, Huang HY, Chen WC, Lee L, Chen WK, Chou WC, Chen WH, Lee MC, Lin WJ, Cheng YC, Cheng YT. Microphoto-luminescence spectra of hillocks in Al0.11Ga0.89N films. Appl Phys Lett. 2004;85(15):3047–9.

    Article  ADS  Google Scholar 

  73. Chen P, Chua SJ, Miao ZL. Phase separation in AlGaN/GaN heterojunction grown by matalorganic chemical vapor deposition. J Crystal Growth. 2004;273(1–2):74–8.

    Article  ADS  Google Scholar 

  74. Jahn U, Jiang DS, Ploog KH, Wang XL, Zhao DG, Yang H. Correlation between optical and structural properties of (Al, Ga)N layers grown by MOCVD. Phys Stat Sol (a). 2007;204(1):294–8.

    Article  ADS  Google Scholar 

  75. Brown JD, Yu ZH, Matthews J, Harney S, Boney J, Schetzina JF, Benson JD, Dang KW, Terrill C, Nohava T, Yang W. Visible-blind UV digital cameta based on a 32 × 32 array of GaN/AlGaN p–i–n photodiodes. MRS Internet J Nitride Semicond Res. 1999;4(9):art. no. 9.

    Google Scholar 

  76. Brown JD, Boney J, Matthews J, Srinivasan P, Schetzina JF, Nohava T, Yang W. Solar-blind AlGaN heterostructure photodiodes. MRS Internet J Nitride Semicond Res. 2000;5(9):1–7.

    Google Scholar 

  77. Ito T, Ohtsuka K, Kuwahara K, Sumiya M, Takano Y, Fuke S. Effect of AlN buffer layer deposition conditions on the properties of GaN layer. J Crystal Growth. 1999;205(1–2):20–4.

    Article  ADS  Google Scholar 

  78. Sasaki T, Matsuoka T. Analysis of 2-step-growth conditions for GaN on an AlN buffer layer. J Appl Phys. 1995;77(1):192–200.

    Article  ADS  Google Scholar 

  79. Kuznia JN, Asif Khan M, Olson DT. Influence of buffer layers on the deposition of high-quality single-crystal GaN over sapphire substrate. J Appl Phys. 1993;73(9):47004702.

    Article  Google Scholar 

  80. Kobayashi Y, Akasaka T, Kobayashi N. Thermal stability of low-temperature GaN and AlN buffer layers during metalorganic vapor phase epitaxy monitored by in situ shallow angle reflectance using ultraviolet light. Jpn J Appl Phys. 1998;37(10B):L1208–10.

    Article  ADS  Google Scholar 

  81. Nakamura F, Hashimoto S, Hara M, Imanaga S, Ikeda M, Kawai H. AlN and AlGaN growth using low-pressure metalorganic chemical vapor deposition. J Crystal Growth. 1998;195(1–4):280–5.

    Article  ADS  Google Scholar 

  82. Kim S, Seo J, Lee K, Lee H, Park K, Kim Y, Kim CS. Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD. J Crystal Growth. 2002;245(3–4):247–53.

    Article  ADS  Google Scholar 

  83. Creighton JR, Wang GT, Breiland WG, Coltrin ME. Nature of the parasitic chemistry during AlGaInN OMVPE. J Crystal Growth. 2004;261(2–3):204–13.

    Article  ADS  Google Scholar 

  84. Ruffenach-Clur S, Briot O, Rouviere JL, Gil B, Aulombard RL. MOVPE growth and characterization of Al x Ga1−x N. Mater Sci Eng B. 1997;50(1–3):219–22.

    Article  Google Scholar 

  85. Chen CH, Liu H, Steigerwald D, Imler W, Kuo CP, Craford MG, Ludowise M, Lester S, Amano J. A study of parasitic reactions between NH3 and TMGa or TMAI. J Electronic Materials. 1996;25(6):1004–8.

    Article  ADS  Google Scholar 

  86. Nakamura K, Makino O, Tachibana A, Matsumoto K. Quantum chemical study of parasitic reaction in III-V nitride semiconductor crystal growth. J Organomet Chem. 2000;611(1–2):514–24.

    Article  Google Scholar 

  87. Zhao DG, Zhu JJ, Jiang DS, Yang H, Liang JW, Li XY, Gong HM. Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition. J Crystal Growth. 2006;289(1):72–5.

    Article  ADS  Google Scholar 

  88. Reshchikov MA, Yi GC, Wessels BW. Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities. Phys Rev B. 1999;59(20):13176–83.

    Article  ADS  Google Scholar 

  89. Wang XL. MOCVD growth and properties research of high Al content AlGaN film. Doctoral dissertation of Institute of Semiconductor, Chinese Academy of Science; 2007.

    Google Scholar 

  90. Wang XL, Zhao DG, Li XY, Gong HM, Yang H, Liang JW. The effects of LT AlN buffer thickness on the properties of high Al composition AlGaN epilayers. Mater Lett. 2006;60(29–30):3693–6.

    Article  Google Scholar 

  91. Wang XL, Zhao DG, Yang H, Liang JW. Growth of AlGaN epitaxial film with high Al content by metalorganic chemical vapour deposition. Chin Phys Lett. 2007;24(3):774–7.

    Article  ADS  Google Scholar 

  92. Wang XL, Zhao DG, Jahn U, Ploog K, Jiang DS, Yang H, Liang JW. The effects of LT AlN buffer thickness on the optical properties of AlGaN grown by MOCVD and Al composition inhomogeneity analysis. J Phys D Appl Phys. 2007;40(4):1113–7.

    Article  ADS  Google Scholar 

  93. Yu HB, Strupinski W, Butun S. Mg-doped AlGaN grown on an AlN/sapphire template by metalorganic chemical vapour deposition. Phys Status Solidi A. 2006;203(5):868–73.

    Article  ADS  Google Scholar 

  94. Adivarahan V, Simin G, Tamulaitis G, Srinivasan R, Yang J, Asif Khan M, Shur MS, Gaska R. Indium–silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett. 2001;79(12):1903–5.

    Article  ADS  Google Scholar 

  95. Keller S, Heikman S, Ben-Yaacov I, Shen L, Denbaars SP, Mishra UK. Indium surfactant assisted growth of AlN/GaN heterostructures by metal-organic chemical vapor deposition. Phys Stat Sol (a). 2001;188(2):775–8.

    Article  ADS  Google Scholar 

  96. Widmann F, Daudin B, Feuillet G, Pelekanos N, Rouviére JL. Improved quality GaN grown by molecular beam epitaxy using In as a surfactant. Appl Phys Lett. 1998;73(18):2642–4.

    Article  ADS  Google Scholar 

  97. Shen XQ, Ramvall P, Riblet P, Aoyagi Y. Improvements of the optical and electrical properties of GaN films by using in-doping method during growth. Jpn J Appl Phys. 1999;38(4B):L411–3.

    Article  ADS  Google Scholar 

  98. Mochizuki S, Detchprohm T, Sano S, Nakamura T, Amano H, Akasaki I. Reduction of threading dislocation density in Al(X)Ga(1-X)N grown on periodically grooved substrates. J Cryst Growth. 2002;237:1065–9.

    Article  ADS  Google Scholar 

  99. Hirayama H, Ainoya M, Kinoshita A, Hirata A, Aoyagi Y. Fabrication of a low-threading-dislocation-density Al x Ga1−x N buffer on SiC using highly Si-doped Al x Ga1−x N superlattices. Appl Phys Lett. 2002;80(12):2057–9.

    Article  ADS  Google Scholar 

  100. Tsai YL, Wang CL, Lin PH, Liao WT, Gong JL. Observation of compositional pulling phenomenon in Al x Ga1−x N (0.4 < x < 1.0) films grown on (0001) sapphire substrates. Appl Phys Lett. 2003;82(1):31–3.

    Article  ADS  Google Scholar 

  101. Chang L, Lai SK, Chen FR, Kai JJ. Observation of Al segregation around dislocation in AlGaN. Appl Phys Lett. 2001;79(7):928–30.

    Article  ADS  Google Scholar 

  102. Wang XL, Zhao DG, Jiang DS, Yang H, Liang JW, Jahn U, Ploog K. Al composition inhomogeneity of AlGaN epilayer with a high Al composition grown by matal-organic chemical vapour deposition. J Phys Conden Matter 2007;19(17):176005.

    Google Scholar 

  103. Yan F, Tsukihara M, Nakamura A, Yadani T, Fukumoto T, Naoi Y, Sakai S. Surface smoothing mechanism of AlN film by initially alternating supply of ammonia. Jpn J Appl Phys. 2004;43(8B):L1057–9.

    Article  ADS  Google Scholar 

  104. Zhang JP, Asif Khan M, Sun WH, Wang HM, Chen CQ, Fareed Q, Kuokstis E, Yang JW. Pulsed atomic-layer epitaxy of ultrahigh-quality Al x Ga1−x N structures for deep ultraviolet emissions below 230 nm. Appl Phys Lett. 2002;81(23):4392–4.

    Article  ADS  Google Scholar 

  105. Zhang JP, Wang HM, Sun WH, Adivarahan V, Wu S, Chitnis A, Chen CQ, Shatalov M, Kuokstis E, Yang JW, Asif Khan M. High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J Electron Mater. 2003;32(5):364–70.

    Article  ADS  Google Scholar 

  106. Götz W, Johnson NM, Bour DP, McCluskey MD, Haller EE. Local vibrational modes of the Mg–H acceptor complex in GaN. Appl Phys Lett. 1996;69(24):3725–7.

    Article  ADS  Google Scholar 

  107. Reboredo FA, Pantelides ST. Novel defect complexes and their role in the p-type doping of GaN. Appl Phys Lett. 1999;82(9):1887–90.

    Article  Google Scholar 

  108. Amano H, Kito M, Hiramatsu K, Akasaki I. P-type conduction in Mg-doped GaN and treated with low-energy electron-beam irradiation. Jpn J Appl Phys. 1989;Part 2 28(12): L2112–L2114.

    Google Scholar 

  109. Nakamura S, Iwasa N, Senoh M, Mukai T. Hole compensation mechanism of P-type GaN films. Jpn J Appl Phys. 1992;Part1 31(5A):1258–1266.

    Google Scholar 

  110. Chung HYA, Pelzmann A, Drechsler M, Scherer M, Schwegler V, Seyboth M, Kirchner C, Kamp M. Multiple-step annealing for 50 % enhanced p-conductivity of GaN. J Crystal Growth. 2001;230(3–4):549–53.

    Article  ADS  Google Scholar 

  111. Götz W, Johnson NM, Walker J, Bour DP, RA Street. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett. 1996;68(5):667–9.

    Article  ADS  Google Scholar 

  112. Look DC, Reynolds DC, Hemsky JW, Sizelove JR, Jones RL, Molnar RJ. Defect donor and acceptor in GaN. Phys Rev Lett. 1997;79(12):2273–6.

    Article  ADS  Google Scholar 

  113. Seifert W, Franzheld R, Butter E, Sobotta H, Riede V. On the opigin of free-carriers in high-conducting normal GaN. Cryst Res Technol. 1983;18(3):383–90.

    Article  Google Scholar 

  114. Hautakangas S, Oila J, Alatalo M, Saarinen K, Liszkay L, Seghier D, Gislason HP. Vacancy defects as compensating centers in Mg-doped GaN. Phys Rev Lett. 2003;90(13):137402.

    Article  ADS  Google Scholar 

  115. Obloh H, Bachem KH, Kaufmann U, Kunzer M, Maier M, Ramakrishnan A, Schlotter P. Self-compensation in Mg doped p-type GaN grown by MOCVD. J Crystal Growth. 1998;195(1–4):270–3.

    Article  ADS  Google Scholar 

  116. Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N. Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment. J Phys Condens Matter. 2001;13(40):89018914.

    Google Scholar 

  117. Yamamoto T, Katayamo YH. Materials design for the fabrication of low-resistivity p-type GaN using a codoping method. Jpn J Appl Phys. 1997;36(2B):L180–3.

    Article  ADS  Google Scholar 

  118. Viswanath AK, Shin EJ, Lee JI, Yu S, Kim D, Kim B, Choi Y, Hong CH. J Appl Phys. 1998;83(4):2272–5.

    Article  ADS  Google Scholar 

  119. Van deWalle CG. Interactions of hydrogen with native defects in GaN. Phys Rev B. 1997;56:R10020–3.

    Article  Google Scholar 

  120. Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett. 1998;72(2):211–3.

    Article  ADS  Google Scholar 

  121. Zhao DG, Jiang DS, Zhu JJ, Wang H, Liu ZS, Zhang SM, Yang H. Hole concentration test of p-type GaN by analyzing the spectral response of p–n(+) structure GaN ultraviolet photodetector. J Alloy Compd. 2010;492(1–2):300–2.

    Article  Google Scholar 

  122. Chen Y, Gulino DA. Residual stress in GaN films grown by metalorganic chemical vapor deposition. J Vac Sci Technol A. 1999;17(5):3029–32.

    Article  ADS  Google Scholar 

  123. Ponce FA, Bour DP, Gotz W, Wright PJ. Spatial distribution of the luminescence in GaN thin films. Appl Phys Lett. 1996;68(1):57–9.

    Article  ADS  Google Scholar 

  124. Li G, Chua SJ, Xu SJ, Wang W. Nature and elimination of yellow-band luminescence and donor-acceptor emission of undoped GaN. Appl Phys Lett. 1999;74(19):2821–3.

    Article  ADS  Google Scholar 

  125. Saarinen K, Seppala P, Olila J, Hautojarvi P, Corbel C, Briot O, Aulombard RL. Gallium vacancies and the growth stoichiometry of GaN studied by positron annihilation spectroscopy. Appl Phys Lett. 1998;73(22):3253–5.

    Article  ADS  Google Scholar 

  126. Basak D, Lachab M, Nakanishi T, Sakai S. Effect of reactive ion etching on the yellow luminescence of GaN. Appl Phys Lett. 1999;75(23):3710–2.

    Article  ADS  Google Scholar 

  127. Saarinen K, Laine T, Kuisma S, Nissilä J, HautoJärvi P, Dobrzynski L, Baranowski J, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I, Porowski S. Observation of native Ga vacancies in GaN by positron annihilation. Phys Rev Lett. 1997;79(16):3030–3.

    Article  ADS  Google Scholar 

  128. Korotkov RY, Reshchikov MA, Wessels BW. Acceptors in undoped GaN studied by transient photo luminescence. Phys B. 2003;325(1–4):1–7.

    Article  ADS  Google Scholar 

  129. Kwon YH, Shee SK, Park GH, Hwang SJ, Song JJ. Time-resolved study of yellow and blue luminescence in Si- and Mg-doped GaN. Appl Phys Lett. 2000;76(7):840–2.

    Article  ADS  Google Scholar 

  130. Zhao DG, Jiang DS, Yang H, Zhu JJ, Liu ZS, Zhang SM, Liang JW, Li X, Li XY, Gong HM. Role of edge dislocations in enhancing the yellow luminescence of n-type GaN. Appl Phys Lett. 2006;88(25):241917.

    Article  ADS  Google Scholar 

  131. Read WT. Theory of dislocations in germanium. Philos Mag. 1954;45(367):775–96.

    Article  MATH  Google Scholar 

  132. Podor B. Electron mobility in plastically defoemed germanium. Phys Status Solidi. 1966;16(2):K167–70.

    Article  ADS  Google Scholar 

  133. Shiojima K, Suemitsu T, Ogura M. Correlation between current-voltage characteristics and dislocations for n-GaN Schottky contacts. Appl Phys Lett. 2001;78(23):3636–8.

    Article  ADS  Google Scholar 

  134. Krtschil A, Dadgar A, Krost A. Decoration effects as origin of dislocation-related charges in gallium nitride layers investigated by scanning surface potential microscopy. Appl Phys Lett. 2003;82(14):2263–5.

    Article  ADS  Google Scholar 

  135. Ng HM, Doppalapudi D, Moustakas TD, Weimann NG, Eastman LF. The role of dislocation scattering in n-type GaN films. Appl Phys Lett. 1998;73(6):821–3.

    Article  ADS  Google Scholar 

  136. Weimann NG, Eastman LF. Scattering of electrons at threading dislocations in GaN. J Appl Phys. 1998;83(7):3656–9.

    Article  ADS  Google Scholar 

  137. Look DC, Sizelove JR. Dislocation scattering in GaN. Phys Rev Lett. 1999;82(6):1237–40.

    Article  ADS  Google Scholar 

  138. Ilegems M, Montgomery HC. Electrical properties of n-type vapor-grown gallium nitride. J Phys Chem Solids. 1973;34(5):885–95.

    Article  ADS  Google Scholar 

  139. Soh CB, Chua SJ, Lim HF, Chi DZ, Tripathy S, Liu W. Assignment of deep levels causing yellow luminescence in GaN. J Appl Phys. 2004;96(3):1341–7.

    Article  ADS  Google Scholar 

  140. Kaufmann U, Kunzer M, Obloh H, Maier M, Manz C, Ramakrishnan A, Santic B. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys Rev B. 1999;59(8):5561–7.

    Article  ADS  Google Scholar 

  141. Lee IH, Choi IH, Lee CR, Noh SK. Evolution of stress relaxation and yellow luminescence in GaN/sapphire by Si incorporation. Appl Phys Lett. 1997;71(10):1359–61.

    Article  ADS  Google Scholar 

  142. Neugebauer J, Van De Walle CG. Atomic geometry and electronic-structure of native defects in GaN. Phys Rev B. 1994;50(11):8067–70.

    Article  ADS  Google Scholar 

  143. Reshchikov MA, Morkoc H. Luminescence properties of defects in GaN. J Appl Phys. 2005;97(6):061301.

    Article  ADS  Google Scholar 

  144. Zhao DG, Jiang DS, Zhu JJ, Liu ZS, Wang H, Zhang SM, Wang YT, Yang H. Role of edge dislocation and Si impurity in linking the blue luminescence and yellow luminescence in n-type GaN films. Appl Phys Lett. 2009;95(4):041901.

    Article  ADS  Google Scholar 

  145. Zhao DG, Jiang DS, Zhu JJ, Guo X, Liu ZS, Zhang SM, Wang YT, Yang H. Defect evolution and accompanied change of electrical properties during the GaN growth by metalorganic chemical vapor deposition. J Alloy Compd. 2009;487(1–2):400–3.

    Article  Google Scholar 

  146. Zhao DG, Yang H, Zhu JJ, Jiang DS, Liu ZS, Zhang SM, Wang YT, Liang JW. Effects of edge dislocations and intentional Si doping on the electron mobility of n-type GaN films. Appl Phys Lett. 2006;89(11):112106.

    Article  ADS  Google Scholar 

  147. Zhao DG, Jiang DS, Yang H, Zhu JJ, Liu ZS, Zhang SM, Liang JW, Hao XP, Wei L, Li X, Li XY, Gong HM. Effect of lightly Si doping on the minority carrier diffusion length in n-type GaN films. Appl Phys Lett. 2006;88(25):252101.

    Google Scholar 

  148. Zhao DG, Jiang DS, Zhu JJ, Liu ZS, Zhang SM, Liang JW, Yang H, Li X, Li XY, Gong HM. Influence of defects in n(-)-GaN layer on the responsivity of Schottky barrier ultraviolet photodetectors. Appl Phys Lett. 2007;90(6):062106.

    Article  ADS  Google Scholar 

  149. Zhao DG, Zhang S, Liu WB, Hao XP, Jiang DS, Zhu JJ, Liu ZS, Wang H, Zhang SM, Yang H, Wei L. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors. Chin Phys B. 2010;19(5):057802.

    Google Scholar 

  150. Zhao DG, Xu SJ, Xie MH, Tong SY, Yang H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H–SiC(0001), and c-plane sapphire. Appl Phys Lett. 2003;83(4):677–9.

    Article  ADS  Google Scholar 

  151. Singh R, Doppalapudi D, Moustakas TD, Romano LT. Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition. Appl Phys Lett. 1997;70(9):1089–91.

    Article  ADS  Google Scholar 

  152. El-Masty NA, Piner EL, Liu SX, Bedair SM. Phase separation in InGaN grown by matalorganic chemical vapor deposition. Appl Phys Lett. 1998;72(1):40–2.

    Article  ADS  Google Scholar 

  153. Wu MF, Vantomme A, Hogg S, Langouche G, Van der Strich W, Jacobs K, Moerman I. Rutherford backscattering/channeling study of a thin AlGaN layer on Al(2)O(0)3(0001). Nucl Instrum Methods Phys Res B. 2001;174(1–2):181–6.

    Article  ADS  Google Scholar 

  154. Zhang JC. Research of structure and optical properties of group III nitride. Doctoral dissertation of Institute of semiconductor. Dissertation, Chinese Academy of Science; 2005.

    Google Scholar 

  155. Wright AF. Elastic properties of zinc-blend and wurtzite AlN, GaN, and AlN. J Appl Phys. 1997;82(6):2833–9.

    Article  ADS  Google Scholar 

  156. Zheng XH, Wang YT, Feng ZH, Yang H, Chen H, Zhou JM, Liang JW. Method for measurement of lattice parameter of cubic GaN layers on GaAs(001). J Cryst Growth. 2003;250(3–4):345–8.

    Article  ADS  Google Scholar 

  157. Zhao DG, Jiang DS, Zhu JJ, Liu ZS, Zhang SM, Yang H, Jahn U, Ploog KH. Al composition variations in AlGaN films grown on low-temperature GaN buffer layer by metalorganic chemical vapor deposition. J Crystal Growth. 2008;310(24):5266–9.

    Article  ADS  Google Scholar 

  158. Watkins NJ, Wicks GW, Gao YL. Oxidation study of GaN using x-ray photoemission spectroscopy. Appl Phys Lett. 1999;75(17):2602–4.

    Article  ADS  Google Scholar 

  159. Wolter SD, Luther BP, Waltemyer DL, Önneby C, Mohney S, Molnar RJ. Appl Phys Lett. 1997;70(16):2156–8.

    Article  ADS  Google Scholar 

  160. Hashizume T, Ootomo S, Nakasaki R, Oyama S, Kihara M. X-ray photoelectron spectroscopy characterization of AlGaN surfaces exposed to air and treated in NH4OH solution. Appl Phys Lett. 2000;76(20):2880–2.

    Article  ADS  Google Scholar 

  161. Wang XL, Zhao DG, Chen J, Li XY, Gong HM, Yang H. Effect of oxidation on the optical and surface properties of AlGaN. Appl Surf Sci. 2006;252(24):8706–9.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li He .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, L., Yang, D., Ni, G. (2016). AlGaN Epitaxial Technology. In: Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52718-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52718-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52716-0

  • Online ISBN: 978-3-662-52718-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics