Skip to main content

Electrolyte Materials for IT-SOFCs

  • Chapter
  • First Online:
Intermediate-Temperature Solid Oxide Fuel Cells

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1412 Accesses

Abstract

Among the various types of alternative energy production technologies, solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C) offer the advantage of possible use in both stationary and mobile energy production. To reach the goal of reducing the SOFC operating temperature, new types of electrolyte materials have attracted increasing attention. This chapter presents an overview of the various classes of oxide materials that exhibit fast oxygen-ion and proton conductivity and dual-phase mixture materials for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the approach used to reduce the fuel cell operating temperature and increase the performance of the electrolyte materials in the intermediate-temperature range. We also review the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. In addition, the new technique of electrolyte preparation is also an efficient way to decrease the operating temperature of SOFCs. Herein, we describe the advantages and disadvantages of selected preparation process for the thin-film electrolyte layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Tade M, Shao Z (2013) Chapter 2: Electrolyte materials for solid oxide fuel cells (SOFCs). In: Menga N, Zhao TS (eds) Solid oxide fuel cells: from materials to system modeling. The Royal Society of Chemistry, Cambridge, pp 26–55

    Chapter  Google Scholar 

  2. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    Article  Google Scholar 

  3. Steele BCH (1995) Interfacial reactions associated with ceramic ion transport membranes. Solid State Ionics 75:157–165

    Article  Google Scholar 

  4. Chour K-W, Chen J, Xu R (1997) Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications. Thin Solid Films 304:106–112

    Article  Google Scholar 

  5. Ogumi Z, Ioroi T, Uchimoto Y, Takehara Z-i (1995) Novel method for preparing nickel/YSZ cermet by a vapor-phase process. J Am Ceram Soc 78:593–598

    Article  Google Scholar 

  6. Mineshige A, Inaba M, Ogumi Z, Takahashi T, Kawagoe T, Tasaka A, Kikuchi K (1995) Preparation of yttria-stabilized zirconia microtube by electrochemical vapor deposition. J Am Ceram Soc 78:3157–3159

    Article  Google Scholar 

  7. Inaba M, Mineshige A, Nakanishi S, Nishimura I, Tasaka A, Kikuchi K, Ogumi Z (1998) Preparation of ceria thin films and microtubes by vapor-phase deposition using NiO as oxygen source. Thin Solid Films 323:18–22

    Article  Google Scholar 

  8. Mineshinge A, Inaba M, Ogumi Z, Takahashi T, Kawagoe T, Tasaka A, Kikuchi K (1996) Preparation of hollow YSZ fibre by electrochemical vapour deposition. Solid State Ionics 86–88, Part 2:1251–1254

    Google Scholar 

  9. Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrogen Energy 33:1758–1768

    Article  Google Scholar 

  10. Wang Z, Qian J, Cao J, Wang S, Wen T (2007) A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs). J Alloys Compd 437:264–268

    Article  Google Scholar 

  11. Ihringer R, Van herle J, McEvoy AJ (1997) Development of thin film electrolytes co-fired with NIO-YSZ substrates, vol 97. Electrochemical Society Inc, Pennington

    Google Scholar 

  12. Zhang Y, Huang X, Lu Z, Liu Z, Ge X, Xu J, Xin X, Sha X, Su W (2006) A screen-printed Ce0.8Sm0.2O1.9 film solid oxide fuel cell with a Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode. J Power Sources 160:1217–1220

    Article  Google Scholar 

  13. Peng R, Xia C, Liu X, Peng D, Meng G (2002) Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing. Solid State Ionics 152–153:561–565

    Article  Google Scholar 

  14. Xia C, Chen F, Liu M (2001) Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem Solid-State Lett 4:A52–A54

    Article  Google Scholar 

  15. Pergolesi D, Fabbri E, D’Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E (2010) High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat Mater 9:846–852

    Article  Google Scholar 

  16. Pergolesi D, Fabbri E, Traversa E (2010) Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem Commun 12:977–980

    Article  Google Scholar 

  17. Cho S, Kim Y, Kim J-H, Manthiram A, Wang H (2011) High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim Acta 56:5472–5477

    Article  Google Scholar 

  18. Kharton VV, Marques FMB, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174:135–149

    Article  Google Scholar 

  19. Ishihara T, Tabuchi J, Ishikawa S, Yan J, Enoki M, Matsumoto H (2006) Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs. Solid State Ionics 177:1949–1953

    Article  Google Scholar 

  20. Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes—structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826

    Article  Google Scholar 

  21. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  22. Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674

    Article  Google Scholar 

  23. Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39:4370–4387

    Article  Google Scholar 

  24. Nernst W (1890) Über die Verteilung eines Stoffes zwischen zwei Lösungsmitteln, Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 1890:401–416

    Google Scholar 

  25. Baur E, Preis H (1937) Über Brennstoff‐Ketten mit Festleitern. Z Elektrochem Angew Phys Chem 43:727–732

    Google Scholar 

  26. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16

    Article  Google Scholar 

  27. Gong J, Li Y, Zhang Z, Tang Z (2000) ac impedance study of zirconia doped with yttria and calcia. J Am Ceram Soc 83:648–650

    Article  Google Scholar 

  28. Strickler DW, Carlson WG (1965) Electrical conductivity in the ZrO2-rich region of several M2O3—ZrO2 systems. J Am Ceram Soc 48:286–289

    Article  Google Scholar 

  29. Li Y, Tang Z, Zhang Z, Gong J (1999) Electrical conductivity of zirconia stabilized with yttria and calcia. J Mater Sci Lett 18:443–444

    Article  Google Scholar 

  30. Bućko MM (2004) Ionic conductivity of CaO–Y2O3–ZrO2 materials with constant oxygen vacancy concentration. J Eur Ceram Soc 24:1305–1308

    Article  Google Scholar 

  31. Gong J, Li Y, Tang Z, Zhang Z (2000) Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia. Mater Lett 46:115–119

    Article  Google Scholar 

  32. Li Y, Gong J, Xie Y, Tang Z, Zhang Z (2002) Low-temperature ionic conductivity of the solid solution in the system ZrO2–Y2O3–Yb2O3. Mater Sci Eng: B 90:287–290

    Article  Google Scholar 

  33. Lee JH, Mori T, Li JG, Ikegami T, Komatsu M, Haneda H (2000) Improvement of grain-boundary conductivity of 8 mol % yttria-stabilized zirconia by precursor scavenging of siliceous phase. J Electrochem Soc 147:2822–2829

    Article  Google Scholar 

  34. Yuzaki A, Kishimoto A (1999) Effects of alumina dispersion on ionic conduction of toughened zirconia base composite. Solid State Ionics 116:47–51

    Article  Google Scholar 

  35. Gorelov V, Pal’guev S (1979) Maxima in electrical conductivity and the extent of the fluorite phase in ZrO2–rare-earth oxide systems. In DoklAkadNauk SSSR, pp 1356–1358

    Google Scholar 

  36. Lee D, Lee I, Jeon Y, Song R (2005) Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC. Solid State Ionics 176:1021–1025

    Article  Google Scholar 

  37. Okamoto M, Akimune Y, Furuya K, Hatano M, Yamanaka M, Uchiyama M (2005) Phase transition and electrical conductivity of scandia-stabilized zirconia prepared by spark plasma sintering process. Solid State Ionics 176:675–680

    Article  Google Scholar 

  38. Varanasi C, Juneja C, Chen C, Kumar B (2005) Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia. J Power Sources 147:128–135

    Article  Google Scholar 

  39. Kurumada M, Hara H, Iguchi E (2005) Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics. Acta Mater 53:4839–4846

    Article  Google Scholar 

  40. Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics 86–88, Part 2:1131–1149

    Google Scholar 

  41. Fujimori H, Yashima M, Kakihana M, Yoshimura M (1998) Structural changes of scandia-doped zirconia solid solutions: rietveld analysis and raman scattering. J Am Ceram Soc 81:2885–2893

    Article  Google Scholar 

  42. Du K, Kim C-H, Heuer AH, Goettler R, Liu Z (2008) Structural evolution and electrical properties of Sc2O3-stabilized ZrO2 aged at 850°C in air and wet-forming gas ambients. J Am Ceram Soc 91:1626–1633

    Article  Google Scholar 

  43. Haering C, Roosen A, Schichl H, Schnöller M (2005) Degradation of the electrical conductivity in stabilised zirconia system: Part II: Scandia-stabilised zirconia. Solid State Ionics 176:261–268

    Article  Google Scholar 

  44. Bannister MJ, Skilton PF (1983) The cubic ⇌ tetragonal equilibrium in the system zirconia-scandia at 1800°C: effect of alumina. J Mater Sci Lett 2:561–564

    Article  Google Scholar 

  45. Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics 132:235–239

    Article  Google Scholar 

  46. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79:137–142

    Article  Google Scholar 

  47. Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176:33–39

    Article  Google Scholar 

  48. Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582

    Article  Google Scholar 

  49. Liu M, He C, Wang J, Wang WG, Wang Z (2010) Investigation of (CeO2)x(Sc2O3)(0.11−x)(ZrO2)0.89 (x=0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J Alloys Compd 502:319–323

    Article  Google Scholar 

  50. Arachi Y, Asai T, Yamamoto O, Takeda Y, Imanishi N, Kawate K, Tamakoshi C (2001) Electrical conductivity of ZrO2-Sc2 O 3 doped with HfO2, CeO2, and Ga2 O 3. J Electrochem Soc 148:A520–A523

    Article  Google Scholar 

  51. Chiba R, Yoshimura F, Yamaki J, Ishii T, Yonezawa T, Endou K (1997) Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol–gel method. Solid State Ionics 104:259–266

    Article  Google Scholar 

  52. Sarat S, Sammes N, Smirnova A (2006) Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells. J Power Sources 160:892–896

    Article  Google Scholar 

  53. Hirano M, Oda T, Ukai K, Mizutani Y (2002) Suppression of rhombohedral-phase appearance and low-temperature sintering of scandia-doped cubic-zirconia. J Am Ceram Soc 85:1336–1338

    Article  Google Scholar 

  54. Hirano M, Oda T, Ukai K, Mizutani Y (2003) Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties. Solid State Ionics 158:215–223

    Article  Google Scholar 

  55. Ciacchi FT, Badwal SPS, Drennan J (1991) The system Y2O3-Sc2O3-ZrO2: phase characterisation by XRD, TEM and optical microscopy. J Eur Ceram Soc 7:185–195

    Article  Google Scholar 

  56. Ciacchi FT, Badwal SPS (1991) The system Y2O3-Sc2O3-ZrO2: phase stability and ionic conductivity studies. J Eur Ceram Soc 7:197–206

    Article  Google Scholar 

  57. Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1998) An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3–Y2O3)–ZrO2(Al2O3). Solid State Ionics 109:167–186

    Article  Google Scholar 

  58. Politova TI, Irvine JTS (2004) Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2). Solid State Ionics 168:153–165

    Article  Google Scholar 

  59. Arachi Y, Yamamoto O, Takeda Y, Imanishi N (1996) The electrical conductivity of the ZrO2-Sc2O3-Y2O3 and ZrO2-Sc2O3-Yb2O3 systems. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 64:638–641

    Google Scholar 

  60. Irvine JTS, Politova T, Zakowsky N, Kruth A, Tao S, Travis R, and Attia O. (2005) Scandia-zirconia electrolytes and electrodes for SOFCS. In: Sammes N, Smirnova A, Vasylyev O (eds) Fuel cell technologies: state and perspectives. Springer, Dordrecht, pp 35–47

    Google Scholar 

  61. Shuk P, Wiemhöfer HD, Guth U, Göpel W, Greenblatt M (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89:179–196

    Article  Google Scholar 

  62. Takahashi T, Iwahara H, Nagai Y (1972) High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3. J Appl Electrochem 2:97–104

    Article  Google Scholar 

  63. Takahashi T, Iwahara H, Arao T (1975) High oxide ion conduction in sintered oxides of the system Bi2O3-Y2O3. J Appl Electrochem 5:187–195

    Article  Google Scholar 

  64. Harwig HA, Gerards AG (1978) Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J Solid State Chem 26:265–274

    Article  Google Scholar 

  65. Mairesse G, Scrosati B, Magistris A, Mari C, Mariotto G (1993) Fast ion transport in solids. Kluwer Academic Publishers, Dordrecht, p 271

    Book  Google Scholar 

  66. Takahashi T, Iwahara H (1973) High oxide ion conduction in sintered oxides of the system Bi2O3-WO3. J Appl Electrochem 3:65–72

    Article  Google Scholar 

  67. Takahashi T, Esaka T, Iwahara H (1975) High oxide ion conduction in the sintered oxides of the system Bi2O3-Gd2O3. J Appl Electrochem 5:197–202

    Article  Google Scholar 

  68. Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10:81–90

    Article  Google Scholar 

  69. Verkerk MJ, Burggraaf AJ (1981) High oxygen ion conduction in sintered oxides of the Bi2O 3-Dy2O3 system. J Electrochem Soc 128:75–82

    Article  Google Scholar 

  70. Iwahara H, Esaka T, Sato T, Takahashi T (1981) Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb). J Solid State Chem 39:173–180

    Article  Google Scholar 

  71. Takahashi T, Iwahara H, Esaka T (1977) High oxide ion conduction in sintered oxide of the system Bi2O3-M2O5. J Electrochem Soc 124:1563–1569

    Article  Google Scholar 

  72. Esaka T, Iwahara H, Kunieda H (1982) Oxide ion and electron mixed conduction in sintered oxides of the system Bi2O3-Pr6O11. J Appl Electrochem 12:235–240

    Article  Google Scholar 

  73. Shuk P, Jakobs S, Möbius HH (1985) Mischphasen des bismutoxids mit terbium- und praseodymiumoxid. Z Anorg Allg Chem 524:144–156

    Article  Google Scholar 

  74. Esaka T, Iwahara H (1985) Oxide ion and electron mixed conduction in the fluorite-type cubic solid solution in the system Bi2O3-Tb2O3.5. J Appl Electrochem 15:447–451

    Article  Google Scholar 

  75. Sillén LG, Aurivillius B (1939) Oxide phases with a defect oxygen lattice. Zeitschrift für Kristallographie-Crystalline Materials 101:483–495

    Article  Google Scholar 

  76. Smirnov M, Shumov YA, Khokhlov V, Stepanov V, Noskevich E, Antonenko A (1973) Transactions of the institute of electrochemistry. Consultants Bureau, New York

    Google Scholar 

  77. Takahashi T, Esaka T, Iwahara H (1976) Electrical conduction in the sintered oxides of the system Bi2O3-BaO. J Solid State Chem 16:317–323

    Article  Google Scholar 

  78. Kale KV, Jadhav KM, Bichile GK (1999) Investigations on a high-conductivity solid electrolyte system, Bi2O3–Y2O3. J Mater Sci Lett 18:9–11

    Article  Google Scholar 

  79. Datta RK, Meehan JP (1971) The system Bi2O3–R2O3 (R=Y, Gd). Z Anorg Allg Chem 383:328–337

    Article  Google Scholar 

  80. Takahashi T, Iwahara H (1978) Oxide ion conductors based on bismuthsesquioxide. Mater Res Bull 13:1447–1453

    Article  Google Scholar 

  81. Yaremchenko AA, Kharton VV, Naumovich EN, Vecher AA (1998) Oxygen ionic transport in Bi2O3-based oxides: the solid solutions Bi2O3–Nb2O5. J Solid State Electrochem 2:146–149

    Article  Google Scholar 

  82. Yaremchenko AA, Kharton VV, Naumovich EN, Tonoyan AA, Samokhval VV (1998) Oxygen ionic transport in Bi2O3-based oxides: II. The Bi2O3–ZrO2–Y2O3 and Bi2O3–Nb2O5–Ho2O3 solid solutions. J Solid State Electrochem 2:308–314

    Article  Google Scholar 

  83. Azad AM, Larose S, Akbar SA (1994) Bismuth oxide-based solid electrolytes for fuel cells. J Mater Sci 29:4135–4151

    Article  Google Scholar 

  84. Mercurio D, El Farissi M, Frit B, Reau JM, Senegas J (1990) Fast ionic conduction in new oxide materials of the Bi2O3-Ln2O3-TeO2 systems (Ln=La, Sm, Gd, Er). Solid State Ionics 39:297–304

    Article  Google Scholar 

  85. Mercurio D, Farissi ME, Champarnaud-Mesjard JC, Frit B, Conflant P, Roult G (1989) Etude structurale par diffraction X sur monocristal et diffraction neutronique sur poudre de l’oxyde mixte Bi0.7La0.3O1.5. J Solid State Chem 80:133–143

    Article  Google Scholar 

  86. Nasonova S, Serebrennikov V, Narnov G (1973) Preparation and certain properties of rare earth bismuthites

    Google Scholar 

  87. Jurado JR, Moure C, Duran P, Valverde N (1988) Preparation and electrical properties of oxygen ion conductors in the Bi2O3−Y2O3 (Er2O3) systems. Solid State Ionics 28–30, Part 1:518–523

    Google Scholar 

  88. Bouwmeester HJM, Kruidhof H, Burggraaf AJ, Gellings PJ (1992) Oxygen semipermeability of erbia-stabilized bismuth oxide. Solid State Ionics 53–56, Part 1:460–468

    Google Scholar 

  89. Verkerk MJ, Hammink MWJ, Burggraaf AJ (1983) Oxygen transfer on substituted ZrO2, Bi2O3, and CeO2 electrolytes with platinum electrodes: I. electrode resistance by D‐C polarization. J Electrochem Soc 130:70–78

    Article  Google Scholar 

  90. Tare V, Schmalzried H (1964) Ionen-und Elektronenleitung in einigen seltenen Erdoxiden. Z Phys Chem 43:30–32

    Article  Google Scholar 

  91. Bloom I, Hash MC, Zebrowski JP, Myles KM, Krumpelt M (1992) Oxide-ion conductivity of bismuth aluminates. Solid State Ionics 53–56, Part 2:739–747

    Google Scholar 

  92. Van herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Sintering behaviour and ionic conductivity of yttria-doped ceria. J Eur Ceram Soc 16:961–973

    Article  Google Scholar 

  93. Kudo T, Obayashi H (1975) Oxygen ion conduction of the fluorite-type Ce1−xLnx O2−x/2 (Ln = Lanthanoid Element). J Electrochem Soc 122:142–147

    Article  Google Scholar 

  94. Bevan DJM, Kordis J (1964) Mixed oxides of the type MO2 (fluorite)—M2O3—I oxygen dissociation pressures and phase relationships in the system CeO2-Ce2O3 at high temperatures. J Inorg Nucl Chem 26:1509–1523

    Article  Google Scholar 

  95. Tuller HL, Nowick AS (1979) Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J Electrochem Soc 126:209–217

    Article  Google Scholar 

  96. Panlener RJ, Blumenthal RN, Garnier JE (1975) A thermodynamic study of nonstoichiometric cerium dioxide. J Phys Chem Solids 36:1213–1222

    Article  Google Scholar 

  97. Sørensen OT (1976) Thermodynamic studies of the phase relationships of nonstoichiometric cerium oxides at higher temperatures. J Solid State Chem 18:217–233

    Article  Google Scholar 

  98. Milliken C, Guruswamy S, Khandkar A (2002) Properties and performance of cation-doped ceria electrolyte materials in solid oxide fuel cell applications. J Am Ceram Soc 85:2479–2486

    Article  Google Scholar 

  99. Tuller HL, Nowick AS (1975) Doped ceria as a solid oxide electrolyte. J Electrochem Soc 122:255–259

    Article  Google Scholar 

  100. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94

    Article  Google Scholar 

  101. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172

    Article  Google Scholar 

  102. Beckel D, Bieberle-Hütter A, Harvey A, Infortuna A, Muecke UP, Prestat M, Rupp JLM, Gauckler LJ (2007) Thin films for micro solid oxide fuel cells. J Power Sources 173:325–345

    Article  Google Scholar 

  103. Gauckler LJ, Gödickemeier M, Schneider D (1997) Nonstoichiometry and defect chemistry of ceria solid solutions. J Electroceram 1:165–172

    Google Scholar 

  104. Kudo T, Obayashi H (1976) Mixed electrical conduction in the fluorite-type Ce1−x Gd x O2−x/2. J Electrochem Soc 123:415–419

    Article  Google Scholar 

  105. Rupp JLM, Gauckler LJ (2006) Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ionics 177:2513–2518

    Article  Google Scholar 

  106. Suzuki T, Kosacki I, Anderson HU (2002) Microstructure–electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ionics 151:111–121

    Article  Google Scholar 

  107. Stoermer AO, Rupp JLM, Gauckler LJ (2006) Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC. Solid State Ionics 177:2075–2079

    Article  Google Scholar 

  108. Riess I, Braunshtein D, Tannhauser DS (1981) Density and ionic conductivity of sintered (CeO2)0.82(GdO1.5)0.18. J Am Ceram Soc 64:479–485

    Article  Google Scholar 

  109. Peng R, Xia C, Fu Q, Meng G, Peng D (2002) Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine–nitrate process. Mater Lett 56:1043–1047

    Article  Google Scholar 

  110. Peng R, Xia C, Peng D, Meng G (2004) Effect of powder preparation on (CeO2)0.8(Sm2O3)0.1 thin film properties by screen-printing. Mater Lett 58:604–608

    Article  Google Scholar 

  111. Song XW, Peng J, Zhao YW, Zhao WG, An SL (2005) Synthesis and electrical conductivities of Sm2O3-CeO2 systems. J Rare Earths 23:167–171

    Google Scholar 

  112. Mori T, Drennan J, Wang Y, Auchterlonie G, Li J-G, Yago A (2003) Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci Technol Adv Mater 4:213–220

    Article  Google Scholar 

  113. Van herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Low temperature fabrication of (Y,Gd,Sm)-doped ceria electrolyte. Solid State Ionics 86–88, Part 2:1255–1258

    Google Scholar 

  114. Djuričić B, Pickering S (1999) Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders. J Eur Ceram Soc 19:1925–1934

    Article  Google Scholar 

  115. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40

    Article  Google Scholar 

  116. Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75

    Article  Google Scholar 

  117. Butler V, Catlow CRA, Fender BEF, Harding JH (1983) Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8:109–113

    Article  Google Scholar 

  118. Suda E, Pacaud B, Mori M (2006) Sintering characteristics, electrical conductivity and thermal properties of La-doped ceria powders. J Alloys Compd 408–412:1161–1164

    Article  Google Scholar 

  119. Seo DJ, Ryu KO, Park SB, Kim KY, Song R-H (2006) Synthesis and properties of Ce1−xGdxO2−x/2 solid solution prepared by flame spray pyrolysis. Mater Res Bull 41:359–366

    Article  Google Scholar 

  120. Mori T, Drennan J, Lee J-H, Li J-G, Ikegami T (2002) Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 154–155:461–466

    Article  Google Scholar 

  121. Lübke S, Wiemhöfer HD (1999) Electronic conductivity of Gd-doped ceria with additional Pr-doping 1. Solid State Ionics 117:229–243

    Article  Google Scholar 

  122. Wang F-Y, Chen S, Wang Q, Yu S, Cheng S (2004) Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catal Today 97:189–194

    Article  Google Scholar 

  123. Kim N, Kim B-H, Lee D (2000) Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources 90:139–143

    Article  Google Scholar 

  124. Sha X, Lü Z, Huang X, Miao J, Jia L, Xin X, Su W (2006) Preparation and properties of rare earth co-doped Ce0.8Sm0.2−xYxO1.9 electrolyte materials for SOFC. J Alloys Compd 424:315–321

    Article  Google Scholar 

  125. Chen P-L, Chen IW (1996) Grain growth in CeO2: Dopant effects, defect mechanism, and solute Drag. J Am Ceram Soc 79:1793–1800

    Article  Google Scholar 

  126. Cutler RA, Meixner DL, Henderson BT, Hutchings KN, Taylor DM, Wilson MA (2005) Solid electrolytes and electrical interconnects for oxygen delivery devices. Solid State Ionics 176:2589–2598

    Article  Google Scholar 

  127. Pikalova EY, Maragou VI, Demin AK, Murashkina AA, Tsiakaras PE (2008) Synthesis and electrophysical properties of (1−x)Ce0.8Gd0.2O2−1+xTiO2 (x=0–0.06) solid-state solutions. Solid State Ionics 179:1557–1561

    Article  Google Scholar 

  128. Zhu T, Lin Y, Yang Z, Su D, Ma S, Han M, Chen F (2014) Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. J Power Sources 261:255–263

    Article  Google Scholar 

  129. Shidong LZLZS, Minfang YLH (2011) Doped zirconia/ceria electrolyte fabricated at low temperature. Prog Chem 23(0203):470–476

    Google Scholar 

  130. Zhang Z, Sigle W, Rühle M, Jud E, Gauckler LJ (2007) Microstructure characterization of a cobalt-oxide-doped cerium-gadolinium-oxide by analytical and high-resolution TEM. Acta Mater 55:2907–2917

    Article  Google Scholar 

  131. Jud E, Gauckler L, Halim S, Stark W (2006) Sintering behavior of in situ cobalt oxide-doped cerium–gadolinium oxide prepared by flame spray pyrolysis. J Am Ceram Soc 89:2970–2973

    Google Scholar 

  132. Esposito V, Zunic M, Traversa E (2009) Improved total conductivity of nanometric samaria-doped ceria powders sintered with molten LiNO3 additive. Solid State Ionics 180:1069–1075

    Article  Google Scholar 

  133. Li S, Xian C, Yang K, Sun C, Wang Z, Chen L (2012) Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.2Oδ electrolyte. J Power Sources 205:57–62

    Article  Google Scholar 

  134. Harwig HA (1978) On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase, zeitschrift für anorganische und allgemeine. Chemie 444:151–166

    Google Scholar 

  135. Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2−δ ceramics. Solid State Ionics 168:187–195

    Article  Google Scholar 

  136. Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578

    Article  Google Scholar 

  137. Wachsman ED, Jayaweera P, Jiang N, Lowe DM, Pound BG (1997) Stable high conductivity ceria/bismuth oxide bilayered electrolytes. J Electrochem Soc 144:233–236

    Article  Google Scholar 

  138. Yahiro H, Baba Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080

    Article  Google Scholar 

  139. Virkar AV (1991) Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes: electrolyte stability. J Electrochem Soc 138:1481–1487

    Article  Google Scholar 

  140. Lu Z, Hardy J, Templeton J, Stevenson J, Fisher D, Wu N, Ignatiev A (2012) Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition. J Power Sources 210:292–296

    Article  Google Scholar 

  141. Kim-Lohsoontorn P, Laosiripojana N, Bae J (2011) Performance of solid oxide electrolysis cell having bi-layered electrolyte during steam electrolysis and carbon dioxide electrolysis. Curr Appl Phys 11:S223–S228

    Article  Google Scholar 

  142. Niu Y, Zhou W, Sunarso J, Ge L, Zhu Z, Shao Z (2010) High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J Mater Chem 20:9619–9622

    Article  Google Scholar 

  143. Huang K, Wan J, Goodenough JB (2001) Oxide-ion conducting ceramics for solid oxide fuel cells. J Mater Sci 36:1093–1098

    Article  Google Scholar 

  144. George RA, Bessette NF (1998) Reducing the manufacturing cost of tubular solid oxide fuel cell technology. J Power Sources 71:131–137

    Article  Google Scholar 

  145. Huijsmans JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC – a promise for the 21st century. J Power Sources 71:107–110

    Article  Google Scholar 

  146. Choy K, Bai W, Charojrochkul S, Steele BCH (1998) The development of intermediate-temperature solid oxide fuel cells for the next millennium. J Power Sources 71:361–369

    Article  Google Scholar 

  147. Yamada T, Chitose N, Akikusa J, Murakami N, Akbay T, Miyazawa T, Adachi K, Hasegawa A, Yamada M, Hoshino K, Hosoi K, Komada N, Yoshida H, Kawano M, Sasaki T, Inagaki T, Miura K, Ishihara T, Takita Y (2004) Development of intermediate-temperature SOFC module using doped lanthanum gallate. J Electrochem Soc 151:A1712–A1714

    Article  Google Scholar 

  148. Ishiham T, Kudo T, Matsuda H, Takita Y (1994) Doped perovskite oxide, PrMnO3, as a new cathode for solid-oxide fuel cells that decreases the operating temperature. J Am Ceram Soc 77:1682–1684

    Article  Google Scholar 

  149. Feng M, Goodenough J (1994) A superior oxide-ion electrolyte. Eur J Solid State Inorg Chem 31:663–672

    Google Scholar 

  150. Huang K, Tichy RS, Goodenough JB (1998) Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J Am Ceram Soc 81:2565–2575

    Article  Google Scholar 

  151. Yamaji K, Horita T, Ishikawa M, Sakai N, Yokokawa H (1999) Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics 121:217–224

    Article  Google Scholar 

  152. Shi M, Xu Y, Liu A, Liu N, Wang C, Majewski P, Aldinger F (2009) Synthesis and characterization of Sr- and Mg-doped Lanthanum gallate electrolyte materials prepared via the Pechini method. Mater Chem Phys 114:43–46

    Article  Google Scholar 

  153. Datta P, Majewski P, Aldinger F (2007) Structural studies of Sr- and Mg-doped LaGaO3. J Alloys Compd 438:232–237

    Article  Google Scholar 

  154. Stijepovic I, Darbandi AJ, Srdic VV (2013) Conductivity of Co and Ni doped lanthanum-gallate synthesized by citrate sol–gel method. Ceram Int 39:1495–1502

    Article  Google Scholar 

  155. Djurado E, Labeau M (1998) Second phases in doped lanthanum gallate perovskites. J Eur Ceram Soc 18:1397–1404

    Article  Google Scholar 

  156. Lerch M, Boysen H, Hansen T (2001) High-temperature neutron scattering investigation of pure and doped lanthanum gallate. J Phys Chem Solids 62:445–455

    Article  Google Scholar 

  157. Kajitani M, Matsuda M, Hoshikawa A, Harjo S, Kamiyama T, Ishigaki T, Izumi F, Miyake M (2005) In situ neutron diffraction study on fast oxide ion conductor LaGaO3-based perovskite compounds. Chem Mater 17:4235–4243

    Article  Google Scholar 

  158. Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    Article  Google Scholar 

  159. Kuwabara A, Tanaka I (2004) First principles calculation of defect formation energies in Sr- and Mg-doped LaGaO3. J Phys Chem B 108:9168–9172

    Article  Google Scholar 

  160. Stevenson JW, Armstrong TR, McCready DE, Pederson LR, Weber WJ (1997) Processing and electrical properties of alkaline earth-doped lanthanum gallate. J Electrochem Soc 144:3613–3620

    Article  Google Scholar 

  161. Kharton VV, Viskup AP, Yaremchenko AA, Baker RT, Gharbage B, Mather GC, Figueiredo FM, Naumovich EN, Marques FMB (2000) Ionic conductivity of La(Sr)Ga(Mg, M)O3−δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants. Solid State Ionics 132:119–130

    Article  Google Scholar 

  162. Polini R, Falsetti A, Traversa E, Schäf O, Knauth P (2007) Sol–gel synthesis, X-ray photoelectron spectroscopy and electrical conductivity of Co-doped (La, Sr)(Ga, Mg)O3−δ perovskites. J Eur Ceram Soc 27:4291–4296

    Article  Google Scholar 

  163. Wang S, Wu L, Liang Y (2007) Electrical conductivity of cobalt doped La0.8Sr0.2Ga0.8Mg0.2O3−δ. J Power Sources 166:22–29

    Article  Google Scholar 

  164. Lee D, Han J-H (2009) Characterization of Co-doped LSGM electrolyte prepared by GNP for IT-SOFC. ECS Trans 25:1717–1722

    Article  Google Scholar 

  165. Choi J-J, Cho K-S, Choi J-H, Ryu J, Hahn B-D, Yoon W-H, Kim J-W, Ahn C-W, Park D-S, Yun J (2012) Electrochemical effects of cobalt doping on (La, Sr)(Ga, Mg)O3−δ electrolyte prepared by aerosol deposition. Int J Hydrogen Energy 37:6830–6835

    Article  Google Scholar 

  166. Stevenson JW, Hasinska K, Canfield NL, Armstrong TR (2000) Influence of cobalt and iron additions on the electrical and thermal properties of (La, Sr) (Ga, Mg) O3− δ. J Electrochem Soc 147:3213–3218

    Article  Google Scholar 

  167. Raghvendra SRK, Singh P (2014) Electrical conductivity of barium substituted LSGM electrolyte materials for IT-SOFC. Solid State Ionics 262:428–432

    Article  Google Scholar 

  168. Ishihara T, Higuchi M, Furutani H, Fukushima T, Nishiguchi H, Takita Y (1997) Potentiometric oxygen sensor operable in low temperature by applying LaGaO3‐based oxide for electrolyte. J Electrochem Soc 144:L122–L125

    Article  Google Scholar 

  169. Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118:215–227

    Article  Google Scholar 

  170. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  Google Scholar 

  171. Ishihara T, Ishikawa S, Hosoi K, Nishiguchi H, Takita Y (2004) Oxide ionic and electronic conduction in Ni-doped LaGaO3-based oxide. Solid State Ionics 175:319–322

    Article  Google Scholar 

  172. Steele BCH (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129:95–110

    Article  Google Scholar 

  173. Hibino T, Hashimoto A, Inoue T, J-i T, S-i Y, Sano M (2000) A Low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 288:2031–2033

    Article  Google Scholar 

  174. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369

    Article  Google Scholar 

  175. Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98

    Article  Google Scholar 

  176. Shima D, Haile SM (1997) The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics 97:443–455

    Article  Google Scholar 

  177. Yamazaki Y, Hernandez-Sanchez R, Haile SM (2009) High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem Mater 21:2755–2762

    Article  Google Scholar 

  178. Zuo C, Zha S, Liu M, Hatano M, Uchiyama M (2006) Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv Mater 18:3318–3320

    Article  Google Scholar 

  179. Iwahara H, Uchida H, Ono K, Ogaki K (1988) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529–533

    Article  Google Scholar 

  180. Iwahara H (1988) High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production. Solid State Ionics 28–30, Part 1:573–578

    Google Scholar 

  181. Yajima T, Kazeoka H, Yogo T, Iwahara H (1991) Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics 47:271–275

    Article  Google Scholar 

  182. Yajima T, Suzuki H, Yogo T, Iwahara H (1992) Protonic conduction in SrZrO3-based oxides. Solid State Ionics 51:101–107

    Article  Google Scholar 

  183. Iwahara H (1992) Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications. Solid State Ionics 52:99–104

    Article  Google Scholar 

  184. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69

    Article  Google Scholar 

  185. Iwahara H (1996) Proton conducting ceramics and their applications. Solid State Ionics 86–88, Part 1:9–15

    Google Scholar 

  186. Uchida H, Maeda N, Iwahara H (1983) Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics 11:117–124

    Article  Google Scholar 

  187. Iwahara H, Yajima T, Hibino T, Ushida H (1993) Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1− xSmxO3 − α. J Electrochem Soc 140:1687–1691

    Article  Google Scholar 

  188. Bonanos N, Knight KS, Ellis B (1995) Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ionics 79:161–170

    Article  Google Scholar 

  189. Norby T, Wideroe M, Glockner R, Larring Y (2004) Hydrogen in oxides. Dalton Trans 19:3012–3018

    Google Scholar 

  190. Kreuer K (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    Article  Google Scholar 

  191. Bonanos N (2001) Oxide-based protonic conductors: point defects and transport properties. Solid State Ionics 145:265–274

    Article  Google Scholar 

  192. Norbya T (1990) Proton conduction in oxides. Solid State Ionics 40–41, Part 2:857–862

    Google Scholar 

  193. Kreuer KD (2000) On the complexity of proton conduction phenomena. Solid State Ionics 136–137:149–160

    Article  Google Scholar 

  194. Pionke M, Mono T, Schweika W, Springer T, Schober H (1997) Investigation of the hydrogen mobility in a mixed perovskite: Ba[Ca(1+x)/3Nb(2−x)/3]O3−x/2 by quasielastic neutron scattering. Solid State Ionics 97:497–504

    Article  Google Scholar 

  195. Münch W, Seifert G, Kreuer KD, Maier J (1997) A quantum molecular dynamics study of the cubic phase of BaTiO3 and BaZrO3. Solid State Ionics 97:39–44

    Article  Google Scholar 

  196. Bohn HG, Schober T (2000) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83:768–772

    Article  Google Scholar 

  197. Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179:558–564

    Article  Google Scholar 

  198. Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A, Tsiakaras P (2014) BaCeO3: materials development, properties and application. Prog Mater Sci 60:72–129

    Article  Google Scholar 

  199. Jacobson A, Tofield B, Fender B (1972) The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites. Acta Crystallogr B: Structur Crystallogr Cryst Chem 28:956–961

    Article  Google Scholar 

  200. Iwahara H (1995) Technological challenges in the application of proton conducting ceramics. Solid State Ionics 77:289–298

    Article  Google Scholar 

  201. Takeuchi K, Loong CK, Richardson JW Jr, Guan J, Dorris SE, Balachandran U (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ionics 138:63–77

    Article  Google Scholar 

  202. Münch W, Kreuer KD, Adams SG, Maier J (1999) The relation between crystal structure and the formation and mobility of protonic charge carriers in perovskite-type oxides: a case study of Y-doped BaCeO3 and SrCeO3. Phase Transit 68:567–586

    Article  Google Scholar 

  203. Iwahara H, Yajima T, Ushida H (1994) Effect of ionic radii of dopants on mixed ionic conduction (H++O2−) in BaCeO3-based electrolytes. Solid State Ionics 70–71, Part 1:267–271

    Google Scholar 

  204. Bonanos N, Ellis B, Knight KS, Mahmood MN (1989) Ionic conductivity of gadolinium-doped barium cerate perovskites. Solid State Ionics 35:179–188

    Article  Google Scholar 

  205. Ma G, Shimura T, Iwahara H (1998) Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics 110:103–110

    Article  Google Scholar 

  206. Virkar AN, Maiti HS (1985) Oxygen ion conduction in pure and yttria-doped barium cerate. J Power Sources 14:295–303

    Article  Google Scholar 

  207. Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P (2008) Investigation of the protonic conduction in Sm doped BaCeO3. J Power Sources 181:207–213

    Article  Google Scholar 

  208. Yajima T, Iwahara H, Uchida H (1991) Protonic and oxide ionic conduction in BaCeO3-based ceramics—effect of partial substitution for Ba in BaCe0.9O3−α with Ca. Solid State Ionics 47:117–124

    Article  Google Scholar 

  209. Bhella SS, Fürstenhaupt T, Paul R, Thangadurai V (2011) Synthesis, structure, chemical stability, and electrical properties of Nb-, Zr-, and Nb- codoped BaCeO3 perovskites. Inorg Chem 50:6493–6499

    Article  Google Scholar 

  210. Amsif M, Marrero-Lopez D, Ruiz-Morales JC, Savvin SN, Gabás M, Nunez P (2011) Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors. J Power Sources 196:3461–3469

    Article  Google Scholar 

  211. Gu Y-J, Liu Z-G, Ouyang J-H, Yan F-Y, Zhou Y (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3−δ (Ln=Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553

    Article  Google Scholar 

  212. Sun W, Liu M, Liu W (2013) Chemically stable yttrium and tin co-doped barium zirconate electrolyte for next generation high performance proton-conducting solid oxide fuel cells. Adv Energy Mater 3:1041–1050

    Article  Google Scholar 

  213. Xie K, Yan R, Xu X, Liu X, Meng G (2009) A stable and thin BaCe0.7Nb0.1Gd0.2O3−δ membrane prepared by simple all-solid-state process for SOFC. J Power Sources 187:403–406

    Article  Google Scholar 

  214. Zhong Z (2007) Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems. Solid State Ionics 178:213–220

    Article  Google Scholar 

  215. Guo Y, Lin Y, Ran R, Shao Z (2009) Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0≤y≤0.8) for fuel cell applications. J Power Sources 193:400–407

    Article  Google Scholar 

  216. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326:126–129

    Article  Google Scholar 

  217. Shi Z, Sun W, Liu W (2014) Synthesis and characterization of BaZr0.3Ce0.5Y0.2−xYbxO3−δ proton conductor for solid oxide fuel cells. J Power Sources 245:953–957

    Article  Google Scholar 

  218. Su X-T, Yan Q-Z, Ma X-H, Zhang W-F, Ge C-C (2006) Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ionics 177:1041–1045

    Article  Google Scholar 

  219. Zhao F, Liu Q, Wang S, Brinkman K, Chen F (2010) Synthesis and characterization of BaIn0.3−xYxCe0.7O3−δ (x = 0, 0.1, 0.2, 0.3) proton conductors. Int J Hydrogen Energy 35:4258–4263

    Article  Google Scholar 

  220. Matsumoto H, Kawasaki Y, Ito N, Enoki M, Ishihara T (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett 10:B77–B80

    Article  Google Scholar 

  221. Taniguchi N, Yasumoto E, Gamo T (1996) Operating properties of solid oxide fuel cells using BaCe0.8Gd0.2 O 3−α electrolyte. J Electrochem Soc 143:1886–1890

    Article  Google Scholar 

  222. Wu Z, Liu M (1997) Stability of BaCe0.8Gd0.2 O 3 in a H 2 O -containing atmosphere at intermediate temperatures. J Electrochem Soc 144:2170–2175

    Article  Google Scholar 

  223. Bi L, Zhang S, Fang S, Tao Z, Peng R, Liu W (2008) A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochem Commun 10:1598–1601

    Article  Google Scholar 

  224. Xie K, Yan R, Liu X (2009) Stable BaCe0.7Ti0.1Y0.2O3−δ proton conductor for solid oxide fuel cells. J Alloys Compd 479:L40–L42

    Article  Google Scholar 

  225. Xie K, Yan R, Liu X (2009) The chemical stability and conductivity of BaCe0.9−xYxSn0.1O3−δ solid proton conductor for SOFC. J Alloys Compd 479:L36–L39

    Article  Google Scholar 

  226. Pasierb P, Osiadły M, Komornicki S, Rekas M (2011) Structural and electrical properties of BaCe(Ti, Y)O3 protonic conductors. J Power Sources 196:6205–6209

    Article  Google Scholar 

  227. Bi L, Zhang S, Zhang L, Tao Z, Wang H, Liu W (2009) Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. Int J Hydrogen Energy 34:2421–2425

    Article  Google Scholar 

  228. Di Bartolomeo E, D’Epifanio A, Pugnalini C, Giannici F, Longo A, Martorana A, Licoccia S (2012) Structural analysis, phase stability and electrochemical characterization of Nb doped BaCe0.9Y0.1O3−x electrolyte for IT-SOFCs. J Power Sources 199:201–206

    Article  Google Scholar 

  229. Zhang C, Zhao H (2012) Chemical and structural stability of Sm- and In- co-doped proton conductor BaCe0.80–xSm0.20InxO3–δ in various atmospheres. J Electrochem Soc 159:F316–F321

    Article  Google Scholar 

  230. Matskevich NI, Wolf T, Matskevich MY, Chupakhina TI (2009) Preparation, stability and thermodynamic properties of Nd- and Lu-doped BaCeO3 proton-conducting ceramics. Eur J Inorg Chem 2009:1477–1482

    Article  Google Scholar 

  231. Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ionics 181:1043–1051

    Article  Google Scholar 

  232. Kreuer KD, Adams S, Münch W, Fuchs A, Klock U, Maier J (2001) Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145:295–306

    Article  Google Scholar 

  233. Babilo P, Haile SM (2005) Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc 88:2362–2368

    Article  Google Scholar 

  234. Shim JH, Park JS, An J, Gür TM, Kang S, Prinz FB (2009) Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem Mater 21:3290–3296

    Article  Google Scholar 

  235. Snijkers FMM, Buekenhoudt A, Luyten JJ, Cooymans J, Mertens M (2004) Proton conductivity in perovskite type yttrium doped barium hafnate. Scr Mater 51:1129–1134

    Article  Google Scholar 

  236. Veith M, Mathur S, Lecerf N, Huch V, Decker T, Beck H, Eiser W, Haberkorn R (2000) Sol-Gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3oxides via single-source alkoxide precursors and semi-alkoxide routes. J Sol-Gel Sci Technol 17:145–158

    Article  Google Scholar 

  237. Rock C, Qiu J, Okazaki K (1998) Electro-discharge consolidation of nanocrystalline Nb—Al powders produced by mechanical alloying. J Mater Sci 33:241–246

    Article  Google Scholar 

  238. Robertz B, Boschini F, Rulmont A, Cloots R, Vandriessche I, Hoste S, Lecomte-Beckers J (2003) Preparation of BaZrO3 powders by a spray-drying process. J Mater Res 18:1325–1332

    Article  Google Scholar 

  239. Ito N, Matsumoto H, Kawasaki Y, Okada S, Ishihara T (2008) Introduction of In or Ga as second dopant to BaZr0.9Y0.1O3−δ to achieve better sinterability. Solid State Ionics 179:324–329

    Article  Google Scholar 

  240. Imashuku S, Uda T, Nose Y, Kishida K, Harada S, Inui H, Awakura Y (2008) Improvement of grain-boundary conductivity of trivalent cation-doped barium zirconate sintered at 1600°C by co-doping scandium and yttrium. J Electrochem Soc 155:B581–B586

    Article  Google Scholar 

  241. Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E (2011) Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv Funct Mater 21:158–166

    Article  Google Scholar 

  242. Liu Y, Guo Y, Ran R, Shao Z (2012) A new neodymium-doped BaZr0.8Y0.2O3−δ as potential electrolyte for proton-conducting solid oxide fuel cells. J Membr Sci 415–416:391–398

    Article  Google Scholar 

  243. Gu Y-J, Liu Z-G, Ouyang J-H, Zhou Y, Yan F-Y (2012) Synthesis, structure and electrical conductivity of BaZr1–xDyxO3–δ ceramics. Electrochim Acta 75:332–338

    Article  Google Scholar 

  244. Tao SW, Irvine JTS (2006) A Stable, Easily sintered proton- conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv Mater 18:1581–1584

    Article  Google Scholar 

  245. Tao S, Irvine JTS (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J Solid State Chem 180:3493–3503

    Article  Google Scholar 

  246. Duval SBC, Holtappels P, Stimming U, Graule T (2008) Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ. Solid State Ionics 179:1112–1115

    Article  Google Scholar 

  247. Peng C, Melnik J, Li J, Luo J, Sanger AR, Chuang KT (2009) ZnO-doped BaZr0.85Y0.15O3−δ proton-conducting electrolytes: characterization and fabrication of thin films. J Power Sources 190:447–452

    Article  Google Scholar 

  248. Kreuer KD (2003) Proton-conducting electrolytes. Annu Rev Mater Res 33:333–359

    Article  Google Scholar 

  249. Sun Z, Fabbri E, Bi L, Traversa E (2011) Lowering grain boundary resistance of BaZr0.8Y0.2O3-δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys Chem Chem Phys 13:7692–7700

    Article  Google Scholar 

  250. Zhu B (2001) Advantages of intermediate temperature solid oxide fuel cells for tractionary applications. J Power Sources 93:82–86

    Article  Google Scholar 

  251. Huang J, Xie F, Wang C, Mao Z (2012) Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. Int J Hydrogen Energy 37:877–883

    Article  Google Scholar 

  252. Zhu B (2003) Functional ceria–salt-composite materials for advanced ITSOFC applications. J Power Sources 114:1–9

    Article  Google Scholar 

  253. Zhu B, Liu X, Sun M, Ji S, Sun J (2003) Calcium doped ceria-based materials for cost-effective intermediate temperature solid oxide fuel cells. Solid State Sci 5:1127–1134

    Article  Google Scholar 

  254. Zhu B, Mat MD (2006) Studies on dual phase ceria-based composites in electrochemistry. Int J Electrochem Sci 1:383–402

    Google Scholar 

  255. Huang J, Mao Z, Liu Z, Wang C (2007) Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem Commun 9:2601–2605

    Article  Google Scholar 

  256. Bodén A, Di J, Lagergren C, Lindbergh G, Wang CY (2007) Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres. J Power Sources 172:520–529

    Article  Google Scholar 

  257. Huang J, Yang L, Gao R, Mao Z, Wang C (2006) A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite electrolyte at low temperatures. Electrochem Commun 8:785–789

    Article  Google Scholar 

  258. Huang J, Mao Z, Yang L, Peng R (2005) SDC-carbonate composite electrolytes for low-temperature SOFCs. Electrochem Solid-State Lett 8:A437–A440

    Article  Google Scholar 

  259. Gao Z, Raza R, Zhu B, Mao Z, Wang C, Liu Z (2011) Preparation and characterization of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolyte for low-temperature solid oxide fuel cells. Int J Hydrogen Energy 36:3984–3988

    Article  Google Scholar 

  260. Huang J, Mao Z, Liu Z, Wang C (2008) Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes. J Power Sources 175:238–243

    Article  Google Scholar 

  261. Zhu B (1999) Fast ionic conducting film ceramic membranes with advanced applications. Solid State Ionics 119:305–310

    Article  Google Scholar 

  262. Tao S, Zhan Z, Wang P, Meng G (1999) Chemical stability study of Li2SO4 on the operation condition of a H2/O2 fuel cell. Solid State Ionics 116:29–33

    Article  Google Scholar 

  263. Tao S, Meng G (1999) The proton and oxygen ion conduction in a NaCl based composite electrolyte. J Mater Sci Lett 18:81–84

    Article  Google Scholar 

  264. Fu QX, Zha SW, Zhang W, Peng DK, Meng GY, Zhu B (2002) Intermediate temperature fuel cells based on doped ceria–LiCl–SrCl2 composite electrolyte. J Power Sources 104:73–78

    Article  Google Scholar 

  265. Guo R, Deng Y, Gao Y, Zhang L (2011) Fabrication and properties of Ba(Zr1−xCex)0.9Y0.1O2.95/NaCl composite electrolyte materials. J Alloys Compd 509:8894–8900

    Article  Google Scholar 

  266. Haugsrud R, Norby T (2006) Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat Mater 5:193–196

    Article  Google Scholar 

  267. StubiČAn VS (1964) High-temperature transitions in rare-earth niobates and tantalates. J Am Ceram Soc 47:55–58

    Article  Google Scholar 

  268. Brixner LH, Whitney JF, Zumsteg FC, Jones GA (1977) Ferroelasticity in the LnNbO4-type rare earth niobates. Mater Res Bull 12:17–24

    Article  Google Scholar 

  269. Mokkelbost T, Kaus I, Haugsrud R, Norby T, Grande T, Einarsrud M-A (2008) High-temperature proton-conducting lanthanum ortho-niobate-based materials. Part II: sintering properties and solubility of alkaline earth oxides. J Am Ceram Soc 91:879–886

    Article  Google Scholar 

  270. Haugsrud R, Norby T (2007) High-temperature proton conductivity in acceptor-substituted rare-earth ortho-tantalates, LnTaO4. J Am Ceram Soc 90:1116–1121

    Article  Google Scholar 

  271. Kendrick E, Kendrick J, Knight KS, Islam MS, Slater PR (2007) Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat Mater 6:871–875

    Article  Google Scholar 

  272. Li S, Schonberger F, Slater P (2003) La1−xBa1+xGaO4−x/2: a novel high temperature proton conductor. Chem Commun 2694–2695

    Google Scholar 

  273. Schönberger F, Kendrick E, Islam MS, Slater PR (2005) Investigation of proton conduction in La1−xBa1+xGaO4−x/2 and La1−xSr2+xGaO5−x/2. Solid State Ionics 176:2951–2953

    Article  Google Scholar 

  274. Norby T, Larring Y (1997) Concentration and transport of protons in oxides. Curr Opin Solid State Mater Sci 2:593–599

    Article  Google Scholar 

  275. Kitamura N, Usuki T, Idemoto Y (2009) Crystal and electronic structures and high temperature protonic conduction of LaBaGa0.95Mg0.05O4−δ. Electrochemistry 77:158–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z., Tadé, M.O. (2016). Electrolyte Materials for IT-SOFCs. In: Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52936-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52936-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52934-8

  • Online ISBN: 978-3-662-52936-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics