Skip to main content

Carbon-Based Nanomaterials for Nanozymes

  • Chapter
  • First Online:
Nanozymes: Next Wave of Artificial Enzymes

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Carbon-based nanomaterials, such as fullerene, graphene, carbon nanotubes, and their derivatives, have been extensively studied to mimic various natural enzymes owing to their fascinating catalytic activities. In this chapter, their enzyme mimetic activities (such as nuclease mimics, superoxide dismutase mimics, peroxidase mimics, etc.) are discussed. The catalytic mechanisms are also discussed if they have been elucidated. Representative examples for applications, from biosensing to therapeutics, are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tokuyama, H., Yamago, S., Nakamura, E., Shiraki, T., & Sugiura, Y. (1993). Photoinduced biochemical-activity of fullerene carboxylic-acid. Journal of the American Chemical Society, 115, 7918–7919.

    Article  Google Scholar 

  2. Nakamura, E., & Isobe, H. (2003). Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Accounts of Chemical Research, 36, 807–815.

    Article  Google Scholar 

  3. Boutorine, A. S., Tokuyama, H., Takasugi, M., Isobe, H., Nakamura, E., & Helene, C. (1994). Fullerene-oligonucleotide conjugates: Photoinduced sequence-specific DNA cleavage. Angewandte Chemie-International Edition, 33, 2462–2465.

    Article  Google Scholar 

  4. Yamakoshi, Y. N., Yagami, T., Sueyoshi, S., & Miyata, N. (1996). Acridine adduct of 60 fullerene with enhanced DNA-cleaving activity. Journal of Organic Chemistry, 61, 7236–7237.

    Article  Google Scholar 

  5. Dugan, L. L., Gabrielsen, J. K., Yu, S. P., Lin, T. S., & Choi, D. W. (1996). Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiology of Disease, 3, 129–135.

    Article  Google Scholar 

  6. Ali, S. S., Hardt, J. I., Quick, K. L., Kim-Han, J. S., Erlanger, B. F., Huang, T. T., et al. (2004). A biologically effective fullerene (C-60) derivative with superoxide dismutase mimetic properties. Free Radical Biology and Medicine, 37, 1191–1202.

    Article  Google Scholar 

  7. Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R., & Preston, K. F. (1991). Radical reactions of C60. Science, 254, 1183–1185.

    Article  Google Scholar 

  8. Dugan, L. L., Turetsky, D. M., Du, C., Lobner, D., Wheeler, M., Almli, C. R., et al. (1997). Carboxyfullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences of the United States of America, 94, 9434–9439.

    Article  Google Scholar 

  9. Liu, G.-F., Filipovic, M., Ivanovic-Burmazovic, I., Beuerle, F., Witte, P., & Hirsch, A. (2008). High catalytic activity of dendritic C60 monoadducts in metal-free superoxide dismutation. Angewandte Chemie-International Edition, 47, 3991–3994.

    Article  Google Scholar 

  10. Osuna, S., Swart, M., & Sola, M. (2010). On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry-A European Journal, 16, 3207–3214.

    Article  Google Scholar 

  11. Chen, T., Li, Y.-Y., Zhang, J.-L., Xu, B., Lin, Y., Wang, C.-X., et al. (2011). Protective effect of C60-methionine derivate on lead-exposed human SH-SY5Y neuroblastoma cells. Journal of Applied Toxicology, 31, 255–261.

    Article  Google Scholar 

  12. Gharbi, N., Pressac, M., Hadchouel, M., Szwarc, H., Wilson, S. R., & Moussa, F. (2005). 60 Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Letters, 5, 2578–2585.

    Article  Google Scholar 

  13. Baati, T., Bourasset, F., Gharbi, N., Njim, L., Abderrabba, M., Kerkeni, A., et al. (2012). The prolongation of the lifespan of rats by repeated oral administration of 60 fullerene. Biomaterials, 33, 4936–4946.

    Article  Google Scholar 

  14. Okuda, K., Mashino, T., & Hirobe, M. (1996). Superoxide radical quenching and cytochrome c peroxidase-like activity of C60-dimalonic acid, C62(COOH)4. Bioorganic & Medicinal Chemistry Letters, 6, 539–542.

    Article  Google Scholar 

  15. Li, R. M., Zhen, M. M., Guan, M. R., Chen, D. Q., Zhang, G. Q., Ge, J. C., et al. (2013). A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosensors & Bioelectronics, 47, 502–507.

    Article  Google Scholar 

  16. Gao, L. Z., Zhuang, J., Nie, L., Zhang, J. B., Zhang, Y., Gu, N., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2, 577–583.

    Article  Google Scholar 

  17. Wei, H., & Wang, E. (2008). Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical Chemistry, 80, 2250–2254.

    Article  Google Scholar 

  18. Liu, T., Niu, X., Shi, L., Zhu, X., Zhao, H., & Lana, M. (2015). Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase. Electrochimica Acta, 176, 1280–1287.

    Article  Google Scholar 

  19. Song, Y., Qu, K., Zhao, C., Ren, J., & Qu, X. (2010). Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Advanced Materials, 22, 2206–2210.

    Article  Google Scholar 

  20. Sun, H. J., Zhao, A. D., Gao, N., Li, K., Ren, J. S., & Qu, X. G. (2015). Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angewandte Chemie-International Edition, 54, 7176–7180.

    Article  Google Scholar 

  21. Sun, H., Gao, N., Dong, K., Ren, J., & Qu, X. (2014). Graphene quantum dots-band-aids used for wound disinfection. ACS Nano, 8, 6202–6210.

    Article  Google Scholar 

  22. Wang, G. L., Xu, X. F., Wu, X. M., Cao, G. X., Dong, Y. M., & Li, Z. J. (2014). Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing. Journal of Physical Chemistry C, 118, 28109–28117.

    Article  Google Scholar 

  23. Guo, Y. J., Deng, L., Li, J., Guo, S. J., Wang, E. K., & Dong, S. J. (2011). Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano, 5, 1282–1290.

    Article  Google Scholar 

  24. Wei, H., Li, B. L., Li, J., Wang, E. K., Dong, S. J. (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications, 3735–3737.

    Google Scholar 

  25. Wei, H., Li, B. L., Li, J., Dong, S. J., & Wang, E. K. (2008). DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology, 19, 095501.

    Article  Google Scholar 

  26. Yang, Z., Qian, J., Yang, X., Jiang, D., Du, X., Wang, K., et al. (2015). A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosensors & Bioelectronics, 65, 39–46.

    Article  Google Scholar 

  27. Liu, M., Zhao, H. M., Chen, S., Yu, H. T., & Quan, X. (2012). Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano, 6, 3142–3151.

    Article  Google Scholar 

  28. Liu, M., Zhao, H. M., Chen, S., Yu, H. T., & Quan, X. (2012). Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chemical Communications, 48, 7055–7057.

    Article  Google Scholar 

  29. Maji, S. K., Mandal, A. K., Nguyen, K. T., Borah, P., & Zhao, Y. L. (2015). Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Applied Materials & Interfaces, 7, 9807–9816.

    Article  Google Scholar 

  30. Wang, H., Li, S., Si, Y. M., Sun, Z. Z., Li, S. Y., & Lin, Y. H. (2014). Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. Journal of Materials Chemistry B, 2, 4442–4448.

    Article  Google Scholar 

  31. Dutta, S., Ray, C., Mallick, S., Sarkar, S., Sahoo, R., Negishi, Y., et al. (2015). A gel-based approach to design hierarchical cus decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. Journal of Physical Chemistry C, 119, 23790–23800.

    Article  Google Scholar 

  32. Shu, J., Qiu, Z., Wei, Q., Zhuang, J., & Tang, D. (2015). Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: A novel peroxidase mimetic system for improved electrochemical immunoassay. Scientific Reports, 5, 15113.

    Article  Google Scholar 

  33. Ma, Z., Qiu, Y. F., Yang, H. H., Huang, Y. M., Liu, J. J., Lu, Y., et al. (2015). Effective synergistic effect of dipeptide-polyoxometalate-graphene oxide ternary hybrid materials on peroxidase-like mimics with enhanced performance. ACS Applied Materials & Interfaces, 7, 22036–22045.

    Article  Google Scholar 

  34. Ge, S., Sun, M., Liu, W., Li, S., Wang, X., Chu, C., et al. (2014). Disposable electrochemical immunosensor based on peroxidase-like magnetic silica-graphene oxide composites for detection of cancer antigen 153. Sensors and Actuators B-Chemical, 192, 317–326.

    Article  Google Scholar 

  35. Yan, X., Gu, Y., Li, C., Tang, L., Zheng, B., Li, Y., et al. (2016). Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosensors & Bioelectronics, 77, 1032–1038.

    Article  Google Scholar 

  36. Zhang, L. N., Deng, H. H., Lin, F. L., Xu, X. W., Weng, S. H., Liu, A. L., et al. (2014). In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Analytical Chemistry, 86, 2711–2718.

    Article  Google Scholar 

  37. Lucente-Schultz, R. M., Moore, V. C., Leonard, A. D., Price, B. K., Kosynkin, D. V., Lu, M., et al. (2009). Antioxidant single-walled carbon nanotubes. Journal of the American Chemical Society, 131, 3934–3941.

    Article  Google Scholar 

  38. Zhang, B., He, Y., Liu, B., & Tang, D. (2014). NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay. Analytica Chimica Acta, 851, 49–56.

    Article  Google Scholar 

  39. Song, Y., Wang, X., Zhao, C., Qu, K., Ren, J., & Qu, X. (2010). Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry-A European Journal, 16, 3617–3621.

    Article  Google Scholar 

  40. Cui, R., Han, Z., & Zhu, J.-J. (2011). Helical carbon nanotubes: Intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chemistry-A European Journal, 17, 9377–9384.

    Article  Google Scholar 

  41. Song, Y., Qu, K., Xu, C., Ren, J., & Qu, X. (2010). Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chemical Communications, 46, 6572–6574.

    Article  Google Scholar 

  42. Wang, T., Fu, Y. C., Chai, L. Y., Chao, L., Bu, L. J., Meng, Y., et al. (2014). Filling carbon nanotubes with prussian blue nanoparticles of high peroxidase- like catalytic activity for colorimetric chemo and biosensing. Chemistry-A European Journal, 20, 2623–2630.

    Article  Google Scholar 

  43. Hayat, A., Haider, W., Raza, Y., & Marty, J. L. (2015). Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta, 143, 157–161.

    Article  Google Scholar 

  44. Haider, W., Hayat, A., Raza, Y., Chaudhry, A. A., Ihtesham Ur, R., & Marty, J. L. (2015). Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for D-alanine detection. RSC Advances, 5, 24853–24858.

    Article  Google Scholar 

  45. Liu, W. Y., Yang, H. M., Ding, Y. A., Ge, S. G., Yu, J. H., Yan, M., et al. (2014). Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4-multiwalled carbon nanotubes. Analyst, 139, 251–258.

    Article  Google Scholar 

  46. Zhu, S. Y., Zhao, X. E., You, J. M., Xu, G. B., & Wang, H. (2015). Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst, 140, 6398–6403.

    Article  Google Scholar 

  47. Tan, H. L., Ma, C. J., Gao, L., Li, Q., Song, Y. H., Xu, F. G., et al. (2014). Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry-a European Journal, 20, 16377–16383.

    Article  Google Scholar 

  48. Liu, S., Tian, J. Q., Wang, L., Luo, Y. L., & Sun, X. P. (2012). A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Advances, 2, 411–413.

    Article  Google Scholar 

  49. Wang, X. H., Qu, K. G., Xu, B. L., Ren, J. S., & Qu, X. G. (2011). Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Research, 4, 908–920.

    Article  Google Scholar 

  50. Dong, Y. M., Zhang, J. J., Jiang, P. P., Wang, G. L., Wu, X. M., Zhao, H., et al. (2015). Superior peroxidase mimetic activity of carbon dots-Pt nanocomposites relies on synergistic effects. New Journal of Chemistry, 39, 4141–4146.

    Article  Google Scholar 

  51. Shi, W. B., Wang, Q. L., Long, Y. J., Cheng, Z. L., Chen, S. H., Zheng, H. Z., et al. (2011). Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chemical Communications, 47, 6695–6697.

    Article  Google Scholar 

  52. Qian, F. M., Wang, J. M., Ai, S. Y., & Li, L. F. (2015). As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors and Actuators B-Chemical, 216, 418–427.

    Article  Google Scholar 

  53. Samuel, E. L. G., Marcano, D. C., Berka, V., Bitner, B. R., Wu, G., Potter, A., et al. (2015). Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proceedings of the National Academy of Sciences of the United States of America, 112, 2343–2348.

    Article  Google Scholar 

  54. Bitner, B. R., Marcano, D. C., Berlin, J. M., Fabian, R. H., Cherian, L., Culver, J. C., et al. (2012). Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano, 6, 8007–8014.

    Article  Google Scholar 

  55. Marcano, D. C., Bitner, B. R., Berlin, J. M., Jarjour, J., Lee, J. M., Jacob, A., et al. (2013). Design of poly(ethylene glycol)-functionalized hydrophilic carbon clusters for targeted therapy of cerebrovascular dysfunction in mild traumatic brain injury. Journal of Neurotrauma, 30, 789–796.

    Article  Google Scholar 

  56. Samuel, E. L. G., Duong, M. T., Bitner, B. R., Marcano, D. C., Tour, J. M., & Kent, T. A. (2014). Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends in Biotechnology, 32, 501–505.

    Article  Google Scholar 

  57. Nilewski, L. G., Sikkema, W. K. A., Kent, T. A., & Tour, J. M. (2015). Carbon nanoparticles and oxidative stress: Could an injection stop brain damage in minutes? Nanomedicine, 10, 1677–1679.

    Article  Google Scholar 

  58. Xu, Z.-Q., Lan, J.-Y., Jin, J.-C., Dong, P., Jiang, F.-L., & Liu, Y. (2015). Highly photoluminescent nitrogen-doped carbon nanodots and their protective effects against oxidative stress on cells. ACS Applied Materials & Interfaces, 7, 28346–28352.

    Article  Google Scholar 

  59. Clark, A., Zhu, A. P., Sun, K., & Petty, H. R. (2011). Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. Journal of Nanoparticle Research, 13, 5547–5555.

    Article  Google Scholar 

  60. Cheng, H., Wang, X., & Wei, H. (2015). Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains. Analytical Chemistry, 87, 8889–8895.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Wang, X., Guo, W., Hu, Y., Wu, J., Wei, H. (2016). Carbon-Based Nanomaterials for Nanozymes. In: Nanozymes: Next Wave of Artificial Enzymes. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53068-9_2

Download citation

Publish with us

Policies and ethics