Skip to main content

Abstract

Transdermal drug delivery offers a patient-compliant mode of drug administration. Its applications, however, are limited to low-molecular-weight hydrophobic drugs. Application of ultrasound has been shown to enhance transdermal transport of drugs, a phenomenon known as sonophoresis. Ultrasound under various conditions has been used to perform sonophoresis. The use of low-frequency ultrasound (f < 100 kHz) is particularly effective in enhancing skin permeability. Low-frequency sonophoresis has been shown to enhance skin permeability to various small and large molecules including proteins. A device based on low-frequency ultrasound has also been approved for human use. This chapter provides an overview of the historical perspective, mechanisms, and applications of low-frequency ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexandrov AV (2002) Ultrasound-enhanced thrombolysis for stroke: clinical significance. Eur J Ultrasound 16(1-2):131–140

    Article  PubMed  Google Scholar 

  • Alvarez-Roman R, Merino G et al (2003) Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci 92(6):1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Becker B, Helfrich S et al (2005) Ultrasound with topical anesthetic rapidly decreases pain of intravenous cannulation. Acad Emerg Med 12(4):289

    Article  PubMed  Google Scholar 

  • Benjamin T, Ellis A (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans R Soc London Ser A 260:221–240

    Article  Google Scholar 

  • Benson HAE, McElnay JC et al (1988) Phonophoresis of lignocaine and prilocaine from Emla cream. Int J Pharm 44:65–69

    Article  CAS  Google Scholar 

  • Benson HAE, McElnay JC et al (1989) Use of ultrasound to enhance percutaneous absorption of benzydamine. Phys Ther 69(2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE, McElnay JC et al (1991) Influence of ultrasound on the percutaneous absorption of nicotinate esters. Pharm Res 9:1279–1283

    Google Scholar 

  • Black G (1993) Interaction between anionic surfactants and skin. In: Walters K, HAdgraft J (eds) Pharmaceutical skin penetration enhancement. Marcel Dekker, New York/Basel/Hong Kong, pp 145–174

    Google Scholar 

  • Bommannan D, Menon GK et al (1992a) Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm Res 9(8):1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Bommannan D, Okuyama H et al (1992b) Sonophoresis. I. The use of high-frequency ultrasound to enhance Transdermal drug delivery. Pharm Res 9(4):559–564

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Montharu J et al (2001) Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec 264:114–119

    Article  CAS  PubMed  Google Scholar 

  • Boucaud A, Garrigue MA et al (2002) Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Pharm Sci 91(3):113–119

    Google Scholar 

  • Byl NN, McKenzie A et al (1993) The effects of phonophoresis with corticosteroids: a controlled pilot study. J Orth Sports Phys Ther 18(5):590–600

    Article  CAS  Google Scholar 

  • Cameroy BM (1966) Ultrasound enhanced local anesthesia. Am J Orthoped 8:47

    Google Scholar 

  • Ciccone CD, Leggin BQ et al (1991) Effects of ultrasound and trolamine salicylate phonophoresis on delayed-onset muscle soreness. Phys Ther 71(9):666–678

    Article  CAS  PubMed  Google Scholar 

  • Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics 31(2):75–89

    Article  CAS  PubMed  Google Scholar 

  • Coodley GL (1960) Bursitis and post-traumatic lesions. Am Pract 11:181–187

    CAS  Google Scholar 

  • Diederich CJ, Hynnen K (1999) Ultrasound Technology for Hyperthermia. Ultrasound Med Biol 25(6):871–887

    Article  CAS  PubMed  Google Scholar 

  • Fellinger K, Schmidt J (1954) Klinik and Therapies des Chromischen Gelenkreumatismus. Maudrich Vienna, Austria, pp 549–552

    Google Scholar 

  • Gockel CM, Bao S et al (2000) Transcutaneous immunization induces mucosal and systemic immunity: a potent method for targeting immunity to the female reproductive tract. Mol Immunol 37(9):537–544

    Article  CAS  PubMed  Google Scholar 

  • Goes JC, Landecker A (2002) Ultrasound-induced lipoplasty (UAL) in breast surgery. Aesthetic Plast Surg 26(1):1–9

    Article  PubMed  Google Scholar 

  • Griffin JE (1966) Physiological effects of ultrasonic energy as it is used clinically. J Am Phys Ther Assoc 46:18–26

    CAS  Google Scholar 

  • Griffin JE, Touchstone J (1963) Ultrasonic movement of cortisol in to pig tissue. Am J Phys Med 44(1):20–25

    Google Scholar 

  • Griffin JE, Touchstone JC (1968) Low-intensity phonophoresis of cortisol in swine. Phys Ther 48(12):1136–1344

    Google Scholar 

  • Griffin JE, Touchstone JC (1972) Effects of ultrasonic frequency on phonophoresis of cortisol into swine tissues. Am J Phys Med 51(2):62–78

    CAS  PubMed  Google Scholar 

  • Griffin JE, Echternach JL et al (1967) Patients treated with ultrasonic driven hydrocortisone and with ultrasound alone. Phys Ther 47(7):600–601

    Google Scholar 

  • Gupta J, Prausnitz MR (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35(8):1405–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzman HR, Nguyen DX et al (2001) Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and viability. J Acoustical Soc Am 110(1):588–596

    Article  CAS  Google Scholar 

  • Hadjiargyrou MK, McLeod K et al (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop 355(Suppl):S216–S229

    Article  Google Scholar 

  • Hofman D, Moll F (1993) The effect of ultrasound on in vitro liberation and in vivo penetration of benzyl nicotinate. J Control Rel 27:187–192

    Google Scholar 

  • Johnson ME, Mitragotri S et al (1996) Synergistic effect of ultrasound and chemical enhancers on transdermal drug delivery. J Pharm Sci 85(7):670–679

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Raje J (2002) Sonicated transdermal drug transport. J Control Rel 83(1):13–22

    Article  CAS  Google Scholar 

  • Katz N, Shapiro D et al (2004) Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device. Anesth Analg IARS 98:371–376

    Article  CAS  Google Scholar 

  • Kim do K, Choi SW et al (2012) The effect of SonoPrep(R) on EMLA(R) cream application for pain relief prior to intravenous cannulation. Eur J Pediatr 171(6):985–988

    Article  PubMed  CAS  Google Scholar 

  • Kleinkort JA, Wood F (1975) Phonophoresis with 1 percent versus 10 percent hydrocortisone. Phys Ther 55(12):1320–1324

    CAS  PubMed  Google Scholar 

  • Kost J, Langer R (1993) Ultrasound-mediated transdermal drug delivery. In: Shah VP, Maibach HI (eds) Topical drug bioavailability, bioequivalence, and penetration. Plennum, New York, pp 91–103

    Chapter  Google Scholar 

  • Kost J, Leong K et al (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci 86:7663–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kost J, Pliquett U et al (1996) Enhanced transdermal delivery: synergistic effect of ultrasound and electroporation. Pharm Res 13(4):633–638

    Article  CAS  PubMed  Google Scholar 

  • Kost J, Mitragotri S et al (1999) Phonophoresis. In: Bronaugh R, Maibach HI (eds) Percutaneous absorption. Dekker, New York, pp 615–631

    Google Scholar 

  • Kost J, Mitragotri S et al (2000) Transdermal extraction of glucose and other analytes using ultrasound. Nat Med 6(3):347–350

    Article  CAS  PubMed  Google Scholar 

  • Kushner JT, Blankschtein D et al (2004) Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis. J Pharm Sci 93(11):2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Kushner JT, Kim D et al (2007) Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer. J Invest Dermatol 127(12):2832–2846

    Article  CAS  PubMed  Google Scholar 

  • Kushner JT, Blankschtein D et al (2008) Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate. J Pharm Sci 97(2):894–906

    Article  CAS  Google Scholar 

  • Kwok CS, Mourad PD et al (2001) Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile delivery. J Biomed Mater Res 57(2):151–164

    Article  CAS  PubMed  Google Scholar 

  • Lauterborn W, Bolle H (1975) Experimental investigations of cavitation bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391–399

    Article  Google Scholar 

  • Le L, Kost J et al (2000) Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17(9):1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Kost J et al (1989) Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Invest 83:2974–2078

    Article  Google Scholar 

  • Linder JR (2002) Evolving applications of contrast ultrasound. Am J Cardiol 90(Suppl 10A):72J–80J

    Article  Google Scholar 

  • Machet L, Boucaud A (2002) Phonophoresis: efficiency, mechanisms, and skin tolerance. Int J Pharm 243(1-2):1–15

    Article  CAS  PubMed  Google Scholar 

  • Machluf M, Kost J (1993) Ultrasonically enhanced transdermal drug delivery. Experimental approaches to elucidate the mechanism. J Biomat Sci 5:147–156

    Article  CAS  Google Scholar 

  • McElnay JC, Matthews MP et al (1985) The effect of ultrasound on the percutaneous absorption of lignocaine. Br J Clin Pharmacol 20:421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElnay JC, Benson HA et al (1993) Phonophoresis of methyl nicotinate: a preliminary study to elucidate the mechanism of action. Pharm Res 10(12):1726–1731

    Article  CAS  PubMed  Google Scholar 

  • Menon G, Bommanon D et al (1994) High-frequency sonophoresis: permeation pathways and structural basis for enhanced permeability. Skin Pharmacol 7(3):130–139

    Article  CAS  PubMed  Google Scholar 

  • Merino G, Kalia YN et al (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release 88(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Merrino G, Kalia YN et al (2003) Ultrasound-enhanced transdermal transport. J Pharm Sci 92(6):1125–1137

    Article  CAS  Google Scholar 

  • Merriono G, Kalia YN et al (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Rel 88(1):85–94

    Article  CAS  Google Scholar 

  • Miller D, Quddus J (2000) Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol 26(4):661–667

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2000) Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 17(11):1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2001) Effect of bilayer disruption on transdermal transport of Low-molecular weight hydrophobic solutes. Pharm Res 18:1022–1028

    Google Scholar 

  • Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Kost J (2000a) Low-frequency sonophoresis: a non-invasive method for drug delivery and diagnostics. Biotech Progress 16(3):488–492

    Article  CAS  Google Scholar 

  • Mitragotri S, Kost J (2000b) Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm Res 18(8):1151–1156

    Article  Google Scholar 

  • Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D et al (1995a) Ultrasound-mediated transdermal protein delivery. Science 269:850–853

    Google Scholar 

  • Mitragotri S, Edwards D et al (1995b) A mechanistic study of ultrasonically enhanced transdermal drug delivery. J Pharm Sci 84(6):697–706

    Google Scholar 

  • Mitragotri S, Blankschtein D et al (1996a) Sonophoresis: enhanced transdermal drug delivery by application of ultrasound. Encyl Pharm TEch Swarbrick J, Boylan J (eds), volume 14, Marcel Dekker, inc., New York, 103–122

    Google Scholar 

  • Mitragotri S, Blankschtein D et al (1996b) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13(3):411–420

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D et al (1997) An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug. J Pharm Sci 86(10):1190–1192

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Coleman M et al (2000a) Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels. J Appl Physiol 89(3):961–966

    CAS  PubMed  Google Scholar 

  • Mitragotri S, Coleman M et al (2000b) Transdermal extraction of analytes using low-frequency ultrasound. Pharm Res 17(4):466–470

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Farrell J et al (2000c) Determination of the threshold energy dose for ultrasound-induced transdermal drug delivery. J Control Rel 63:41–52

    Article  CAS  Google Scholar 

  • Mitragotri S, Ray D et al (2000d) Synergistic effect of ultrasound and sodium lauryl sulfate on transdermal drug delivery. J Pharm Sci 89:892–900

    Article  CAS  PubMed  Google Scholar 

  • Moll MA (1979) New approaches to pain. US Armed Forces Med Serv DIg 30:8–11

    Google Scholar 

  • Morimoto Y, Mutoh M et al (2005) Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute-water transport relationship and confocal microscopy. J Control Release 103(3):587–597

    Article  CAS  PubMed  Google Scholar 

  • Naude CF, Ellis A (1961) On the mechanisms of cavitation damage by non-hemispherical cavities in contact with solid boundary. Trans ASME J Basic Eng 83:648–556

    Article  CAS  Google Scholar 

  • Nelson JL, Roeder BL et al (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62(24):7280–7283

    CAS  PubMed  Google Scholar 

  • Paliwal S, Menon GK et al (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126(5):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Plesset M, Chapman R (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47:283–290

    Article  Google Scholar 

  • Polat BE, Hart D et al (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Mitragotri S et al (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Price RJ, Kaul S (2002) Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J Cardiovasc Pharmacol Ther 7(3):171–180

    Article  CAS  PubMed  Google Scholar 

  • Quillen WS (1980) Phonophoresis: a review of the literature and technique. Athelet Train 15:109–110

    Google Scholar 

  • Santoianni P, Nino M et al (2004) Intradermal drug delivery by low-frequency sonophoresis (25 kHz). Dermatol Online J 10(2):24

    PubMed  Google Scholar 

  • Scharton-Kersten T, Yu J et al (2000) Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect Immun 68(9):5306–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoellhammer CM, Polat BE et al (2012) Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound. J Control Release 163(2):154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AJ, Homan CS et al (1998) Low-frequency sonophoresis: pathologic and thermal effects in dogs. Acad Emerg Med 5(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Smith NB, Lee S et al (2003) Ultrasound-mediated transdermal in vivo transport of insulin with low-profile cymbal arrays. Ultrasound Med Biol 29(8):1205–1210

    Article  PubMed  Google Scholar 

  • Speed CA (2001) Therapeutic ultrasound in soft tissue lesions. Rheumatology 40(12):1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Sundaram J, Mellein B, Mitragotri S (2002) An experimental analysis of ultrasound-induced permeabilization. Biophys J 84(5):3087–3101

    Article  Google Scholar 

  • Suslick KS (1989) Ultrasound: its chemical. VCH Publishers, Physical and Biological Effects

    Google Scholar 

  • Tachibana K (1992) Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm Res 9(7):952–954

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Tachibana S (1991) Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol 43:270–271

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Tachibana S (1993) Use of ultrasound to enhance the local anesthetic effect of topically applied aqueous lidocaine. Anesthesiology 78(6):1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Mitragotri S et al (2001) Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. J Pharm Sci 90(5):545–568

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Blankschtein D et al (2002a) Effects of low-frequency ultrasound on the transdermal penetration of mannitol: comparative studies with in vivo and in vitro studies. J Pharm Sci 91(8):1776–1794

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Blankschtein D et al (2002b) An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res 19(8):1160–1169

    Article  CAS  PubMed  Google Scholar 

  • Terahara T, Mitragotri S et al (2002a) Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm 235(1-2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Terahara T, Mitragotri S et al (2002b) Porous resins as a cavitation enhancer for low-frequency sonophoresis. J Pharm Sci 91(3):753–759

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Mitragotri S (2003) Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J 85(6):3502–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezel A, Sanders A et al (2001a) Synergistic effect of low-frequency ultrasound and surfactant on skin permeability. J Pharm Sci 91(2):91–100

    Google Scholar 

  • Tezel A, Sens A et al (2001b) Frequency dependence of sonophoresis. Pharm Res 18(12):1694–1700

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2002a) Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J Pharm Sci 91(2):444–453

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2002b) A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density. Pharm Res 19(12):1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2002c) Synergistic effect of low-frequency ultrasound and surfactants on skin permeability. J Pharm Sci 91(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A et al (2003) A theoretical description of transdermal transport of hydrophilic solutes induced by low-frequency sonophoresis. J Pharm Sci 92(1):381–393

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Dokka S et al (2004) Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm Res 21(12):2219–2225

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Paliwal S et al (2005) Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 23(29):3800–3807

    Article  CAS  PubMed  Google Scholar 

  • Unger EC, Hersh E et al (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc 44(1):45–54

    Article  CAS  Google Scholar 

  • Walters KA (1990) Surfactants and Percutaneous Absorption. In: Scott RC, Guy RH, Hadgraft J (eds) Predictions of percutaneous penetration, vol 1. IBC Technical Services, London, pp 148–162

    Google Scholar 

  • Weimann LJ, Wu J (2002) Transdermal delivery of poly-l-lysine by sonomacroporation. Ultrasound Med Biol 28(9):1173–1180

    Article  PubMed  Google Scholar 

  • Williams AR (1990) Phonophoresis: an in vivo evaluation using three topical anaesthetic preparations. Ultrasonics 28(May):137–141

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Ross JP et al (2002) Reparable sonoporation generated by microstreaming. J Acoust Soc Amer 111(3):1460–1464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitragotri, S. (2017). Sonophoresis: Ultrasound-Mediated Transdermal Drug Delivery. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53273-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53273-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53271-3

  • Online ISBN: 978-3-662-53273-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics