Skip to main content

RIOT – das freundliche Echtzeitbetriebssystem für das IoT

  • Conference paper
  • First Online:
Internet der Dinge

Part of the book series: Informatik aktuell ((INFORMAT))

  • 9253 Accesses

Zusammenfassung

Das „Internet der Dinge“ (IoT) beschreibt die Entwicklung, wie maschinengebundene, eingebettete Systeme schrittweise Standardprotokolle der Internet-Welt adaptieren und damit selbst Teil des globalen Inter-Netzwerks werden. Das IoT wächst gegenwärtig sehr schnell und eine zunehmende Professionalisierung erfordert den Einsatz einer Systemarchitektur, die Hardware und Kommunikationskomponenten in der Abstraktionsschicht eines Betriebssystems zusammenführt.

In dieser Arbeit stellen wir die Grundarchitektur von RIOT vor und fokussieren insbesondere auf (i) den echtzeitfähigen Mikro-Kernel mit seinem tickless Scheduler sowie (ii) den frisch aktualisierten Netzwerk-Stack von RIOT, welcher heterogene Interface-Treiber mit gängigen IoT-Protokollen in einer modular geschichteten Architektur vereint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • 1. L. Atzori et al. .The Internet of Things: A survey. Computer Networks, 2010.

    Google Scholar 

  • 2. C. Bormann et al. . Terminology for Constrained-Node Networks. RFC 7228, 2014.

    Google Scholar 

  • 3. mbed OS. https://mbed.org/technology/os.

  • 4. A. Dunkels et al. . Contiki - a Lightweight and Flexible Operating System for Tiny Networked Sensors. Local Computer Networks, 2004.

    Google Scholar 

  • 5. P. Levis. Experiences from a Decade of TinyOS Development. OSDI, 2012.

    Google Scholar 

  • 6. O. Hahm et al. .Operating Systems for Low-End Devices in the Internet of Things: a Survey. IEEE IoT Journal, 2015.

    Google Scholar 

  • 7. D. Gay et al. .The NesC Language: A Holistic Approach to Networked Embedded Systems. ACM SIGPLAN PLDI, 2003.

    Google Scholar 

  • 8. A. Dunkels et al. . Protothreads: Simplifying Event-Driven Programming of Memory-Constrained Embedded Systems. ACM SenSys, 2006.

    Google Scholar 

  • 9. Zephyr Project. https://www.zephyrproject.org.

  • 10. H. Will et al. . A Real-Time Kernel for Wireless Sensor Networks Employed in Rescue Scenarios. IEEE LCN, 2009.

    Google Scholar 

  • 11. N. Kushalnagar et al. . IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals. RFC 4919.

    Google Scholar 

  • 12. Z. Sheng et al. .A Survey on the IETF Protocol Suite for the Internet of Things: Standards, Challenges, and Opportunities. IEEE Wireless Communications, 2013.

    Google Scholar 

  • 13. E. Baccelli et al. . RIOT OS: Towards an OS for the Internet of Things. IEEE INFOCOM, 2013.

    Google Scholar 

  • 14. E. Baccelli et al. . Information Centric Networking in the IoT: Experiments with NDN in the Wild. ACM ICN, 2014.

    Google Scholar 

  • 15. O. Hahm et al. . A Case for Time Slotted Channel Hopping for ICN in the IoT. Open Archive: Nr. arXiv:1602.08591, 2016.

    Google Scholar 

  • 16. R. Min et al. .A. Chandrakasan. Energy-centric Enabling Technologies for Wireless Sensor Networks. IEEE Wireless Communications, 2002.

    Google Scholar 

  • 17. T. Watteyne et al. .Industrial Wireless IP-Based Cyber–Physical Systems. IEEE.

    Google Scholar 

  • 18. K. Moskvitch. Tactile Internet: 5g and the Cloud on Steroids. Engineering & Technology, 2015.

    Google Scholar 

  • 19. R. Barry. FreeRTOS, a FREE open source RTOS for small embedded real time systems. http://www.freertos.org.

  • 20. ITRON project archive. http://www.ertl.jp/ITRON/home-e.html.

  • 21. J.-H. Hoepman and B. Jacobs. Increased security through open source. Communications of the ACM, 2007.

    Google Scholar 

  • 22. D. Ritchie. The UNIX System: A Stream Input-Output System. AT&T Bell Laboratories Technical Journal, 1984.

    Google Scholar 

  • 23. C. Adjih et al. . FIT IoT-LAB: A Large Scale Open Experimental IoT Testbed. IEEE WF-IoT, 2015.

    Google Scholar 

  • 24. A. Minaburo et al. . LPWAN GAP Analysis. IETF Std. draft-minaburo-lpwangap-analysis-01 [work-in-progress], 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kietzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kietzmann, P., Schmidt, T.C., Wählisch, M. (2016). RIOT – das freundliche Echtzeitbetriebssystem für das IoT. In: Halang, W., Unger, H. (eds) Internet der Dinge. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53443-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53443-4_5

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53442-7

  • Online ISBN: 978-3-662-53443-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics