Skip to main content

Frequentist Model Averaging

  • Chapter
  • First Online:
Model Averaging

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

Abstract

We provide an overview of frequentist model averaging. For point estimation, we consider different methods for selecting the model weights, including those based on AIC, bagging, weighted AIC, stacking and focussed methods. For interval estimation, we consider Wald, MATA and percentile-bootstrap intervals. Use of the methods are illustrated by examples involving real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can come as a surprise; see [159] for a useful discussion of the assumptions underlying AIC.

  2. 2.

    As discussed in Sect. 2.2, when counting the number of parameters in a model we include any scale parameters, such as the error variance in a normal linear model.

  3. 3.

    See [24] for a discussion of the connection between the model-selection probabilities \(p \left( S = m \right) \) \((m=1,\dots ,M)\) and AIC weights.

  4. 4.

    Throughout the rest of the chapter, it will be implicit that constrained-optimisation is used whenever we determine the weights by minimising an objective function.

  5. 5.

    For normal linear models, AIC(w) is equivalent to Mallows model averaging (MMA) [79, 121, 143, 190, 220, 223]. Although MMA was developed without the assumption of normal errors, for simplicity we use the more general name AIC(w) when referring to MMA.

  6. 6.

    As with AIC(w), the choice of estimate of any scale parameter will not affect the weights.

  7. 7.

    This name is potentially confusing as the original jackknife is somewhat different, involving the use of pseudo-values to reduce the bias of an estimate obtained from a single model [48, 154, 175].

  8. 8.

    Other modifications to AIC(w) in this setting have been proposed [129, 220, 226].

  9. 9.

    This assumption has also been used in interval estimation (Sect. 3.4.1).

  10. 10.

    An alternative derivation avoids the notion of selecting a random sample from a population of models [24]. However this involves regarding \(\theta \) as a weighted mean of least-false values of \(\theta \).

  11. 11.

    It has been wrongly claimed that \(\widehat{\theta }\) is often assumed to be unbiased [48]. The only theory that involves this assumption (asymptotically) is the local misspecification framework (Sect. 3.2.3).

  12. 12.

    Even if \(\widehat{b}_m\) is unbiased, \(\widehat{b}_m^{\,2}\) will be biased as an estimate of \(b_m^{2}\), but analytical bias-adjustment would involve estimation of the correlation between \(\widehat{\theta }_{m_1}\) and \(\widehat{\theta }_{m_2}\) \((m_1 \ne m_2)\), and any decrease in bias might be offset by an increase in variance.

  13. 13.

    There is also a logical problem associated with use of (3.18) [24].

  14. 14.

    Both [21] and [24] wanted to avoid assuming that the true model is in the model set.

  15. 15.

    This estimate is not simply the standard deviation of the \(\widehat{\theta }_{\left( b \right) }\) in (3.8) [21].

  16. 16.

    It has been wrongly claimed that use of this interval involves assuming that the largest model is not in the model set [48].

  17. 17.

    Unfortunately, the work of [106] has led to the impression that the MATA interval will not perform well in general [48].

  18. 18.

    A similar issue arises when using a technique such as RJMCMC in the Bayesian setting (Sect. 2.2.1), where a large number of iterations may be required in order to visit each model often enough to obtain reliable estimates of both the posterior model probabilities and the posteriors for those parameters in models with low posterior model probabilities.

  19. 19.

    This example also provides evidence that the Wald interval can perform well, despite the issues raised in Sect. 3.4.1.

  20. 20.

    Unless we use DIC weights, which can depend on the paramtetrisation (Sect. 2.5).

  21. 21.

    Conversely, we could adjust the nominal confidence level for each interval until they all have the same width, and then choose the one with the highest true coverage rate [150].

  22. 22.

    This procedure is similar to use of all possible singleton models in the context of focussed model averaging (Sect. 3.6.2) [32]. In order for \(\widehat{\theta }\) to be consistent, however, [32] require the weights to sum to one, as each \(\widehat{\theta }_m\) is consistent [88].

  23. 23.

    This constraint can also be useful for generalisation of the conclusions [15].

References

  1. Aiolfi, M., Capistran, C., Timmermann, A.: Forecast combinations. In: Clements, M.P., Hendry, D.F. (eds.) Oxford Handbook of Economic Forecasting. Oxford University Press (2010)

    Google Scholar 

  2. Akaike, H.: Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)

    Google Scholar 

  3. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control. 19, 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akaike, H.: A Bayesian analysis of the minimum AIC procedure. Ann. I. Stat. Math. 30, 9–14 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akaike, H.: A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66, 237–242 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aksu, C., Gunter, S.I.: An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. Int. J. Forecast. 8, 27–43 (1992)

    Article  Google Scholar 

  7. Amemiya, T.: Selection of regressors. Int. Econ. Rev. 21, 331–354 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amini, S.M., Parmeter, C.F.: Comparisons of model averaging techniques: assessing growth determinants. J. Appl. Econ. 27, 870–876 (2012)

    Article  MathSciNet  Google Scholar 

  9. Anderson, D.R., Burnham, K.P., White, G.C.: AIC model selection in overdispersed capture-recapture data. Ecology 75, 1780–1793 (1994)

    Article  Google Scholar 

  10. Ando, T., Li, K.-C.: A model-averaging approach for high-dimensional regression. J. Am. Stat. Assoc. 109, 254–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ando, T., Li, K.-C.: A weight-relaxed model averaging approach for high-dimensional generalized linear models. Ann. Stat. 45, 2654–2679 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Augustin, N., Sauerbrei, W., Schumacher, M.: The practical utility of incorporating model selection uncertainty into prognostic models for survival data. Stat. Model. 5, 95–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bozdogan, H.: Akaike’s information criterion and recent developments in information complexity. J. Math. Psychol. 44, 62–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Breiman, L.: Stacked regressions. Mach. Learn. 24, 49–64 (1996)

    MATH  Google Scholar 

  16. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  17. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  19. Brewer, M.J., Butler, A., Cooksley, S.L.: The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 7, 679–692 (2016)

    Article  Google Scholar 

  20. Buchholz, A., Hollnder, N., Sauerbrei, W.: On properties of predictors derived with a two-step bootstrap model averaging approach—a simulation study in the linear regression model. Comput. Stat. Data Anal. 52, 2778–2793 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Buckland, S.T., Burnham, K.P., Augustin, N.H.: Model selection: an integral part of inference. Biometrics 53, 603–618 (1997)

    Article  MATH  Google Scholar 

  22. Buckland, S.T., Burnham, K.P., Augustin, N.H.: Rejoinder to the Letter to the Editors from Wagenmakers, E.-J., Farrell, S., Ratcliff, R. Biometrics 60, 283 (2004)

    Article  MathSciNet  Google Scholar 

  23. Burnham, K.P., Anderson, D.R., White, G.C.: Evaluation of the Kullback-Leibler discrepancy for model selection in open population capture-recapture models. Biometrical. J. 36, 299–315 (1994)

    Article  MATH  Google Scholar 

  24. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer (2002)

    Google Scholar 

  25. Burnham, K.P., Anderson, D.R.: Multimodel inference understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004)

    Article  MathSciNet  Google Scholar 

  26. Cade, B.S.: Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015)

    Article  Google Scholar 

  27. Candolo, C., Davison, A.C., Demtrio, C.G.B.: A note on model uncertainty in linear regression. J. R. Stat. Soc. D-Stat. 52, 165–177 (2003)

    Article  MathSciNet  Google Scholar 

  28. Carney, M., Cunningham, P.: Calibrating probability density forecasts with multi-objective search. Technical Report TCD-CS-2006-07, Trinity College, Dublin (2006)

    Google Scholar 

  29. Cavanaugh, J.E.: Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probabil. Lett. 33, 201–208 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cavanaugh, J.E., Shumway, R.H.: A bootstrap variant of AIC for state-space model selection. Stat. Sin. 7, 473–496 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Cavanaugh, J.E.: A large-sample model selection criterion based on Kullback’s symmetric divergence. Stat. Probab. Lett. 42, 333–343 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Charkhi, A., Claeskens, G., Hansen, B.E.: Minimum mean squared error model averaging in likelihood models. Stat. Sin. 26, 809–840 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Chen, X., Zou, G., Zhang, X.: Frequentist model averaging for linear mixed-effects models. Front. Math. China 8, 497–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chung, H.-Y., Lee, K.-W., Koo, J.-Y.: A note on bootstrap model selection criterion. Stat. Probab. Lett. 26, 35–41 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Claeskens, G., Hjort, N.L.: The focused information criterion. J. Am. Stat. Assoc. 98, 900–916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Claeskens, G., Croux, C., Kerckhoven, J.V.: Variable selection for logistic regression using a prediction-focused information criterion. Biometrics 62, 972–979 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Claeskens, G., Carroll, R.J.: An asymptotic theory for model selection inference in general semiparametric problems. Biometrika 94, 249–265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Claeskens, G., Hjort, N.L.: Model Selection and Model Averaging. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  39. Claeskens, G., Magnus, J.R., Vasnev, A.L., Wang, W.: The forecast combination puzzle: a simple theoretical explanation. J. Forecast. 32, 754–762 (2016)

    Article  Google Scholar 

  40. Clyde, M.: Model uncertainty and health effect studies for particulate matter. Environmetrics 11, 745–763 (2000)

    Article  Google Scholar 

  41. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dardanoni, V., Modica, S., Peracchi, F.: Regression with imputed covariates: a generalized missing-indicator approach. J. Econ. 162, 362–368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dardanoni, V., de Luca, G., Modica, S., Peracchi, F.: Bayesian model averaging for generalized linear models with missing covariates. No. 1311. Einaudi Institute for Economics and Finance (2013)

    Google Scholar 

  44. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and their Applications. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  45. Debray, T.P.A., Koffijberg, H., Nieboer, D., Vergouwe, Y., Steyerbergb, E.W., Moonsa, K.G.M.: Meta-analysis and aggregation of multiple published prediction models. Stat. Med. 33, 2341–2362 (2014)

    Article  MathSciNet  Google Scholar 

  46. De Luca, G., Magnus, J.R., Peracchi, F.: Weighted-average least squares estimation of generalized linear models. J. Econ. (2018). https://doi.org/10.1016/j.jeconom.2017.12.007

    Article  MathSciNet  MATH  Google Scholar 

  47. Donohue, M.C., Overholser, R., Xu, R., Vaida, F.: Conditional Akaike information under generalized linear and proportional hazards mixed models. Biometrika 98, 685–700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Dormann, C.F., Calabrese, J.M., GuilleraArroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C.M., Ciuti, S., Elith, J., Gerstner, K., Guelat, J., Keil, P., LahozMonfort, J.J., Pollock, L.J., Reineking, B., Roberts, D.R., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Wood, S.N., Wüest, R.O., Hartig, F.: Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol. Monogr. (2018). https://doi.org/10.1002/ecm.1309

    Article  Google Scholar 

  49. Draper, D.: Model uncertainty yes, discrete model averaging maybe. Stat. Sci. 14, 405–409 (1999)

    Google Scholar 

  50. Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., Vapnik, V.: Boosting and other ensemble methods. Neural Comput. 6, 1289–1301 (1994)

    Article  MATH  Google Scholar 

  51. Efron, B.: Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Stat. Assoc. 78, 316–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Efron, B.: How biased is the apparent error rate of a prediction rule? J. Am. Stat. Assoc. 81, 461–470 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  53. Efron, B., Tibshirani, R.: Improvements on cross-validation: the 632+ bootstrap method. J. Am. Stat. Assoc. 92, 548–560 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Efron, B.: The estimation of prediction error: covariance penalties and cross-validation. J. Am. Stat. Assoc. 99, 619–632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Efron, B.: Estimation and accuracy after model selection. J. Am. Stat. Assoc. 109, 991–1007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Efron, B., Hastie, T.: Computer Age Statistical Inference, vol. 5. Cambridge University Press (2016)

    Google Scholar 

  57. Ewald, K., Schneider, U.: Uniformly valid confidence sets based on the Lasso. Electron. J. Stat. 12, 1358–1387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fang, Y.: Asymptotic equivalence between cross-validations and Akaike information criteria in mixed-effects models. J. Data Sci. 9, 15–21 (2011)

    MathSciNet  Google Scholar 

  59. Fletcher, D., Dillingham, P.W.: Model-averaged confidence intervals for factorial experiments. Comput. Stat. Data. An. 55, 3041–3048 (2011)

    Article  MathSciNet  Google Scholar 

  60. Fletcher, D., Turek, D.: Model-averaged profile likelihood intervals. J. Agr. Biol. Environ. Stat. 17, 38–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Fletcher, D.: Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika 99, 230–237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Foster, D.P., George, E.I.: The risk inflation criterion for multiple regression. Ann. Stat. 22, 1947–1975 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  63. Freund, Y.: Boosting a weak learning algorithm by majority. Inform. Comput. 121, 256–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MATH  Google Scholar 

  65. Fu, P., Pan, J.: A review on high-dimensional frequentist model averaging. Open. J. Sta. 8, 513–518 (2018)

    Article  Google Scholar 

  66. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  67. Galipaud, M., Gillingham, M.A.F., David, M., Dechaume-Moncharmont, F.-X.: Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014)

    Article  Google Scholar 

  68. Galipaud, M., Gillingham, M.A.F., DechaumeMoncharmont, F.-X.: A farewell to the sum of Akaike weights: the benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evol. 8, 1668–1678 (2017)

    Article  Google Scholar 

  69. Gao, Y., Zhang, X., Wang, S., Zou, G.: Model averaging based on leave-subject-out cross-validation. J. Econ. 192, 139–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Gao, Y., Zhang, X., Wang, S., Chong, T.T., Zou, G. Frequentist model averaging for threshold models. Ann. I. Stat. Math. (2018). https://doi.org/10.1007/s10463-017-0642-9

  71. Genre, V., Kenny, G., Meyler, A., Timmermann, A.: Combining expert forecasts: can anything beat the simple average? Int. J. Forecast. 29, 108–121 (2013)

    Article  Google Scholar 

  72. George, E., Foster, D.P.: Calibration and empirical Bayes variable selection. Biometrika 87, 731–747 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  73. Geweke, J., Amisano, G.: Optimal prediction pools. J. Econ. 164, 130–141 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  74. Giam, X., Olden, J.D.: Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016)

    Article  Google Scholar 

  75. Graefe, A., Kchenhoff, H., Stierle, V., Riedl, B.: Limitations of ensemble Bayesian model averaging for forecasting social science problems. Int. J. Forecast. 31, 943–951 (2015)

    Article  Google Scholar 

  76. Greven, S., Kneib, T.: On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97, 773–789 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Hall, S.G., Mitchell, J.: Combining density forecasts. Int. J. Forecast. 23, 1–13 (2007)

    Article  Google Scholar 

  78. Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. J. Am. Stat. Assoc. 96, 746–774 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hansen, B.E.: Least squares model averaging. Econometrica 75, 1175–1189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Hansen, B.E.: Least-squares forecast averaging. J. Econ. 146, 342–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  81. Hansen, B.E.: Averaging estimators for regressions with a possible structural break. Economet. Theor. 25, 1498–1514 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econometrica 79, 453–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. Hansen, B.E., Racine, J.S.: Jackknife model averaging. J. Econ. 167, 38–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hastie, T., Tibshirani, R., Friedman, J.J.H.: The Elements of Statistical Learning, vol. 1. Springer, New York (2001)

    Chapter  MATH  Google Scholar 

  85. Hauenstein, S., Wood, S.N., Dormann, C.F.: Computing AIC for black-box models using generalized degrees of freedom: a comparison with cross-validation. Commun. Stat.-Simul. C. 47, 1382–1396 (2018)

    Article  MathSciNet  Google Scholar 

  86. Henderson, D.J., Parmeter, C.F.: Model averaging over nonparametric estimators. In: Essays in Honor of Aman Ullah. Advances in Econometrics, vol. 36, pp. 539–560. Emerald Group Publishing Limited, UK (2016)

    Google Scholar 

  87. Hinde, J., Demtrio, C.G.B.: Overdispersion: models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998)

    Article  MATH  Google Scholar 

  88. Hjort, N.L., Claeskens, G.: Frequentist model average estimators. J. Am. Stat. Assoc. 98, 879–945 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  89. Hjort, N.L., Claeskens, G.: Rejoinder to the Discussion of Hjort, N.L., Claeskens, G.: Frequentist model average estimators. J. Am. Stat. Assoc. 98, 938–945 (2003)

    Google Scholar 

  90. Hjort, N.L., Claeskens, G.: Focused information criteria and model averaging for the Cox hazard regression model. J. Am. Stat. Assoc. 101, 1449–1464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  91. Hobbs, N.T., Hilborn, R.: Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol. Appl. 16, 5–19 (2006)

    Article  Google Scholar 

  92. Holbrook, A., Gillen, D.: Estimating prediction error for complex samples (2017). arXiv preprint: arXiv:1711.04877

  93. Hong, C.Y.: Focussed model averaging in generalised linear models. Thesis, Doctor of Philosophy, University of Otago (2018)

    Google Scholar 

  94. Hoogerheide, L., Kleijn, R., Ravazzolo, F., Van Dijk, H.K., Verbeek, M.: Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights. J. Forecast. 29, 251–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  95. Hurvich, C.M., Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  96. Hurvich, C.M., Tsai, C.-L.: Model selection for extended quasi-likelihood models in small samples. Biometrics 51, 1077–1084 (1995)

    Article  MATH  Google Scholar 

  97. Ishiguro, M., Sakamoto, Y.: WIC: An Estimation-free Information Criterion. Research Memorandum, Institute of Statistical Mathematics, Tokyo (1991)

    Google Scholar 

  98. Ishiguro, M., Sakamoto, Y., Kitagawa, G.: Bootstrapping log likelihood and EIC, an extension of AIC. Ann. Inst. Stat. Math. 49, 411–434 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  99. Jacobs, R.A.: Methods for combining experts’ probability assessments. Neural Comput. 7, 867–888 (1995)

    Article  Google Scholar 

  100. Jensen, S.M., Ritz, C.: Simultaneous inference for model averaging of derived parameters. Risk Anal. 35, 68–76 (2015)

    Article  Google Scholar 

  101. Jiang, J., Rao, J.S., Gu, Z., Nguyen, T.: Fence methods for mixed model selection. Ann. Stat. 36, 1669–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  102. Jin, S., Ankargren, S.: Frequentist model averaging in structural equation modelling. Psychometrika (2018). https://doi.org/10.1007/s11336-018-9624-y

  103. Johnson, W.O.: Discussion of Hjort, N.L., Claeskens, G.: Frequentist model average estimators. J. Am. Stat. Assoc. 98, 919–921 (2003)

    Google Scholar 

  104. Jullum, M., Hjort, N.L.: Parametric or nonparametric: the FIC approach. Stat. Sin. 27, 951–981 (2017)

    MathSciNet  MATH  Google Scholar 

  105. Kabaila, P., Leeb, H.: On the large-sample minimal coverage probability of confidence intervals after model selection. J. Am. Stat. Assoc. 101, 619–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  106. Kabaila, P., Welsh, A.H., Abeysekera, W.: Model-averaged confidence intervals. Scand. J. Stat. 43, 35–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  107. Kabaila, P., Welsh, A.H., Mainzer, R.: The performance of model averaged tail area confidence intervals Commun. Stat-Theor. M. 46, 10718–10732 (2016)

    Article  MATH  Google Scholar 

  108. Kabaila, P., Wijethunga, C.: Confidence intervals centered on bootstrap smoothed estimators (2016). arXiv preprint: arXiv:1610.09802

  109. Kabaila, P.: On the minimum coverage probability of model averaged tail area confidence intervals. Can. J. Stat. 46, 279–297 (2018)

    Article  MathSciNet  Google Scholar 

  110. Kapetanios, G., Mitchell, J., Price, S., Fawcett, N.: Generalised density forecast combinations. J. Econ. 188, 150–165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  111. LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Am. Stat. Assoc. 91, 1641–1650 (1996)

    MathSciNet  MATH  Google Scholar 

  112. Lee, H., Jogesh Babu, G., Rao, C.R.R.: A jackknife type approach to statistical model selection. J. Stat. Plan. Inference 142, 301–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  113. Leeb, H., Pötscher, B.M.: Model selection and inference: facts and fiction. Econ. Theory 21, 21–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  114. Leeb, H., Pötscher, B.M.: Can one estimate the conditional distribution of post-model-selection estimators? Ann. Stat. 34, 2554–2591 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  115. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44, 117–130 (2015)

    Article  Google Scholar 

  116. Lenkoski, A., Eicher, T.S., Raftery, A.E.: Two-stage Bayesian model averaging in endogenous variable models. Econ. Rev. 33, 122–151 (2014)

    Article  MathSciNet  Google Scholar 

  117. Leung, G., Barron, A.R.: Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory 52, 3396–3410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  118. Li, C., Li, Q., Racine, J.S., Zhang, D.: Optimal model averaging of varying-coefficient models. Stat. Sin. (2018). https://doi.org/10.5705/ss.202017.0034

  119. Li, J., Xia, X., Wong, W.K., Nott, D.: Varying-coefficient semiparametric model averaging prediction. Biometrics (2018). https://doi.org/10.1111/biom.12904

  120. Liang, H., Wu, H., Zou, G.: A note on conditional AIC for linear mixed-effects models. Biometrika 95, 773–778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  121. Liang, H., Zou, G., Wan. A.T.K., Zhang, X.: Optimal weight choice for frequentist model average estimators: J. Am. Stat. Assoc. 106, 1053–1066 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  122. Lieb, L., Smeekes, S.: Inference for impulse responses under model uncertainty (2017). arXiv preprint: arXiv:1709.09583

  123. Lin, B., Wang, Q., Zhang, J., Pang, Z.: Stable prediction in high-dimensional linear models. Stat. Comput. 27, 1401–1412 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  124. Link, W., Barker, R.: Model weights and the foundations of multimodel inference. Ecology 87, 2626–2635 (2006)

    Article  Google Scholar 

  125. Liu, Q., Okui, R.: Heteroscedasticity-robust \(\text{ C }_{\text{ p }}\) model averaging. Econ. J. 16, 463–472 (2013)

    MathSciNet  Google Scholar 

  126. Liu, S., Yang, Y.: Combining models in longitudinal data analysis. Ann. Inst. Stat. Math. 64, 233–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  127. Liu, S., Yang, Y.: Mixing partially linear regression models. Sankhyā 75, 74–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  128. Liu, C.A.: Distribution theory of the least squares averaging estimator. J. Econ. 186, 142–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  129. Liu, Q., Okui, R., Yoshimura, A.: Generalized least squares model averaging. Econ. Rev. 35, 1692–1752 (2016)

    Article  MathSciNet  Google Scholar 

  130. Longford, N.T.: An alternative to model selection in ordinary regression. Stat. Comput. 13, 67–80 (2003)

    Article  MathSciNet  Google Scholar 

  131. Longford, N.T.: An alternative analysis of variance. SORT Stat. Oper. Res. T. 32, 77–92 (2008)

    MathSciNet  MATH  Google Scholar 

  132. Lu, X., Su, L.: Jackknife model averaging for quantile regressions. J. Econ. 188, 40–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  133. Lumley, T., Scott, A.: AIC and BIC for modeling with complex survey data. J. Surv. Stat. Methodol. 3, 1–18 (2015)

    Article  Google Scholar 

  134. Lv, J., Liu, J.S.: Model selection principles in misspecified models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 76, 141–167 (2014)

    Article  MathSciNet  Google Scholar 

  135. Magnus, J.R., Wan, A.T.K., Zhang, X: Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market. Comput. Stat. Data Anal. 55, 1331–1341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  136. Magnus, J.R., De Luca, G.: Weighted-average least squares (WALS): a survey. J. Econ. Surv. 30, 117–148 (2016)

    Article  Google Scholar 

  137. Mallows, C.L.: Some comments on Cp. Technometrics 42, 87–94 (2000)

    Google Scholar 

  138. Martins, L.F., Gabriel, V.J.: Linear instrumental variables model averaging estimation. Comput. Stat. Data. Anal. 71, 709–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  139. McQuarrie, A., Shumway, R., Tsai, C.-L.: The model selection criterion AICu. Stat. Probabil. Lett. 34, 285–292 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  140. McQuarrie, A.D.R., Tsai, C.-L.: Regression and Time Series Model Selection. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  141. Mead, R.: The Design of Experiments: Statistical Principles for Practical Applications. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  142. Mitra, P., Lian, H., Mitra, R., Liang, H., Xie, M.: A general framework for frequentist model averaging (2018). arXiv preprint: arXiv:1802.03511

  143. Moody, J.E.: The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (eds.) Advances in Neural Information Processing Systems, vol. 4, pp. 847–854. Morgan Kaufmann, San Mateo, California (1992)

    Google Scholar 

  144. Müller, S., Scealy, J.L., Welsh, A.H.: Model selection in linear mixed models. Stat. Sci. 28, 135–167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  145. Murata, N., Yoshizawa, S., Amari, S.: Network information criterion-determining the number of hidden units for artificial neural network models. IEEE Trans. Neural Netw. 5, 865–872 (1994)

    Article  Google Scholar 

  146. Murray, K., Conner, M.M.: Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009)

    Article  Google Scholar 

  147. Naftaly, U., Intrator, N., Horn, D.: Optimal ensemble averaging of neural networks. Network-Comp. Neural 8, 283–296 (1997)

    Article  MATH  Google Scholar 

  148. Nakagawa, S., Freckleton, R.P.: Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011)

    Article  Google Scholar 

  149. Neath, A.A., Cavanaugh, J.E., Weyhaupt, A.G.: Model evaluation, discrepancy function estimation, and social choice theory. Comput. Stat. 29, 1–19 (2014)

    Article  MATH  Google Scholar 

  150. Owen, A.B.: Small sample central confidence intervals for the mean. Technical Report 302, Department of Statistics, Stanford University (1988)

    Google Scholar 

  151. Polley, E.C., van der Laan, M.J.: Super learner in prediction. UC Berkeley Division of Biostatistics Working Paper Series. Working Paper 266 (2010). http://biostats.bepress.com/ucbbiostat/paper266

  152. Poeter, E.P., Hill, M.C.: MMA, a computer code for multi-model analysis. U.S. Geological Survey Techniques and Methods TM6-E3. Reston, Virginia (2007)

    Google Scholar 

  153. Pötscher, B.M.: The distribution of model averaging estimators and an impossibility result regarding its estimation. Inst. Math. S. 52, 113–129 (2006)

    MathSciNet  MATH  Google Scholar 

  154. Quenouille, M.H.: Notes on bias in estimation. Biometrika 43, 353–360 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  155. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/

  156. Raftery, A.E., Zheng, Y.: Discussion of Hjort, N.L., Claeskens, G.: Frequentist model average estimators. J. Am. Stat. Assoc. 98, 931–938 (2003)

    Google Scholar 

  157. Rao, J.S., Tibshirani, R.: The out-of-bootstrap method for model averaging and selection. University of Toronto (1997)

    Google Scholar 

  158. Richards, S.A.: Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86, 2805–2814 (2005)

    Article  Google Scholar 

  159. Ripley, B.D.: Selecting amongst large classes of models. In: Adams, N., Crowder, M., Hand, D.J., Stephens, D. (eds.) Methods and Models in Statistics: in Honor of Professor John Nelder, FRS, pp. 155–170. Imperial College Press, London (2004)

    Chapter  Google Scholar 

  160. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  161. Saefken, B., Kneib, T., van Waveren, C.-S., Greven, S.: A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models. Electron. J. Stat. 8, 201–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  162. Sapp, S., van der Laan, M.J., Canny, J.: Subsemble: an ensemble method for combining subset-specific algorithm fits. J. Appl. Stat. 41, 1247–1259 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  163. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  164. Schomaker, M.: Shrinkage averaging estimation. Stat. Pap. 53, 1015–1034 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  165. Schomaker, M., Wan, A.T.K., Heumannm, C.: Frequentist model averaging with missing observations. Comput. Stat. Data. Anal. 54, 3336–3347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  166. Schomaker, M., Heumannm, C.: Model selection and model averaging after multiple imputation. Comput. Stat. Data. Anal. 71, 758–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  167. Schomaker, M., Heumann, C.: When and when not to use optimal model averaging (2018). arXiv preprint: arXiv:1802.04589

  168. Shan, K., Yang, Y.: Combining regression quantile estimators. Stat. Sin. 19, 1171–1191 (2009)

    MathSciNet  MATH  Google Scholar 

  169. Shang, J., Cavanaugh, J.E.: Bootstrap variants of the Akaike information criterion for mixed model selection. Comput. Stat. Data. Anal. 52, 2004–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  170. Shen, X., Huang, H.-C., Ye, J.: Adaptive model selection and assessment for exponential family distributions. Technometrics 46, 306–317 (2004)

    Article  MathSciNet  Google Scholar 

  171. Shen, X., Huang, Huang.-C.: Optimal model assessment, selection, and combination. J. Am. Stat. Assoc. 101, 554–568 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  172. Shibata, R.: Bootstrap estimate of Kullback-Leibler information for model selection. Stat. Sin. 7, 375–394 (1997)

    MathSciNet  MATH  Google Scholar 

  173. Smith, A.C., Koper, N., Francis, C.M., Fahrig, L.: Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol. 24, 1271–1285 (2009)

    Article  Google Scholar 

  174. Smyth, P., Wolpert, D.: Linearly combining density estimators via stacking. Mach. Learn. 36, 59–83 (1999)

    Article  Google Scholar 

  175. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B. (Methodol.) 36, 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  176. Stone, M.: An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J. R. Stat. Soc. Ser. B. (Methodol.) 39, 44–47 (1977)

    MathSciNet  MATH  Google Scholar 

  177. Sugiura, N.: Further analysts of the data by Akaike’s information criterion and the finite corrections: further analysts of the data by Akaike’s. Commun. Stat. Theory 7, 13–26 (1978)

    Article  MATH  Google Scholar 

  178. Takeuchi, K.: Distribution of informational statistics and a criterion of model fitting. Suri-Kagaku (Math. Sci.) 153, 12–18 (1976)

    Google Scholar 

  179. Timmermann, A.: Forecast combinations. In: Elliott, G., Granger, C.W.J., Timmermann, A. (eds.) Handbook of Economic Forecasting, pp. 135–196. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  180. Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Intell. Res. 10, 271–289 (1999)

    Article  MATH  Google Scholar 

  181. Turek, D., Fletcher, D.: Model-averaged Wald confidence intervals. Comput. Stat. Data. Anal. 56, 2809–2815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  182. Turek, D.: Comparison of the frequentist MATA confidence interval with Bayesian model-averaged confidence intervals. J. Probab. Stat. (2015). https://doi.org/10.1155/2015/420483

    Article  MathSciNet  MATH  Google Scholar 

  183. Ullah, A., Wang, H.: Parametric and nonparametric frequentist model selection and model averaging. Econ. J. 1, 157–179 (2013)

    Google Scholar 

  184. Vaida, F., Blanchard, S.: Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  185. van der Laan, M.J., Dudoit, S., Keles, S.: Asymptotic optimality of likelihood-based cross-validation. Stat. Appl. Genet. Mol. 3, Article 4 (2004)

    Google Scholar 

  186. van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner. Stat. Appl. Genet. Mol. Biol. 6, 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  187. Wagenmakers, E.-J., Farrell, S., Ratcliff, R.: Letter to the editors. Biometrics 60, 281–283 (2004)

    Article  MathSciNet  Google Scholar 

  188. Wager, S., Hastie, T., Efron, B.: Confidence intervals for random forests: the jackknife and the infinitesimal jackknife. J. Mach. Learn. Res. 15, 1625–1651 (2014)

    MathSciNet  MATH  Google Scholar 

  189. Wallis, K.F.: Combining density and interval forecasts: a modest proposal. Oxford B. Econ. Stat. 67, 983–994 (2005)

    Article  Google Scholar 

  190. Wan, A.T.K., Zhang, X., Zou, G.: Least squares model averaging by Mallows criterion. J. Econ. 156, 277–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  191. Wan, A.T.K., Zhang, X., Wang, S.: Frequentist model averaging for multinomial and ordered logit models. In. J. Forecast. 30, 118–128 (2014)

    Article  Google Scholar 

  192. Wang, H., Zou, G., Wan, A.T.K.: Model averaging for varying-coefficient partially linear measurement error models. Electron. J. Stat. 6, 1017–1039 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  193. Wang, H., Zhou, S.Z.F.: Interval estimation by frequentist model averaging. Commun. Stat. Theory 42, 4342–4356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  194. Wang, H.Y., Chen, X., Flournoy, N.: The focused information criterion for varying-coefficient partially linear measurement error models. Stat. Pap. 1–15. Springer, Heidelberg (2014)

    Google Scholar 

  195. Wang, H., Li, Y., Sun, J.: Focused and model average estimation for regression analysis of panel count data. Scand. J. Stat. 42, 732–745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  196. Wedderburn, R.W.M.: Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439–447 (1974)

    MathSciNet  MATH  Google Scholar 

  197. White, H.: Maximum likelihood estimation of misspecified models. Econometica 50, 1–25 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  198. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  199. Wood, S.N.: Core Statistics. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  200. Xie, T.: Prediction model averaging estimator. Econ. Lett. 131, 5–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  201. Xu, R., Gamst, A., Donohue, M., Vaida, F., Harrington, D.P.: Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models. Harvard University Biostatistics Working Paper Series, Paper 43 (2006). http://biostats.bepress.com/harvardbiostat/paper43/

  202. Xu, G., Wang, S., Huang, J.Z.: Focused information criterion and model averaging based on weighted composite quantile regression. Scand. J. Stat. 41, 365–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  203. Xu, R., Mehrotra, D.V., Shaw, P.A.: Incorporating baseline measurements into the analysis of crossover trials with timetoevent endpoints. Stat. Med. (2018). https://doi.org/10.1002/sim.7834

    Article  MathSciNet  Google Scholar 

  204. Yang, Y.: Adaptive regression by mixing. J. Am. Stat. Assoc. 96, 574–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  205. Yang, Y.: Regression with multiple candidate models: selecting or mixing? Stat. Sin. 13, 783–809 (2003)

    MathSciNet  MATH  Google Scholar 

  206. Yang, Y.: Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 92, 937–950 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  207. Ye, J.: On measuring and correcting the effects of data mining and model selection. J. Am. Stat. Assoc. 93, 120–131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  208. Yu, D., Yau, K.K.W.: Conditional Akaike information criterion for generalized linear mixed models. Comput. Stat. Data. Anal. 56, 629–644 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  209. Yu, Y., Thurston, S.W., Hauser, R., Liang, H.: Model averaging procedure for partially linear single-index models. J. Stat. Plan. Infer. 143, 2160–2170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  210. Yu, W., Xu, W., Zhu, L.: Transformation-based model averaged tail area inference. Comput. Stat. 29, 1713–1726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  211. Yu, D., Zhang, X., Yau, K.K.W.: Asymptotic properties and information criteria for misspecified generalized linear mixed models. J. R. Stat. Soc. Ser. B (Methodol.) (2018). https://doi.org/10.1111/rssb.12270

    Article  MathSciNet  MATH  Google Scholar 

  212. Yuan, Z., Yang, Y.: Combining linear regression models. J. Am. Stat. Assoc. 100, 1202–1214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  213. Yuan, Z., Ghosh, D.: Combining multiple biomarker models in logistic regression. Biometrics 64, 431–439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  214. Zeng, J.: Model-Averaged Confidence Intervals. (Thesis, Doctor of Philosophy). University of Otago (2013)

    Google Scholar 

  215. Zeng, J., Cheng, W., Hu, G., Ronga, Y.: Model averaging procedure for varying-coefficient partially linear models with missing responses. J. Korean Stat. Soc. 47, 379–394 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  216. Zhang, X., Liang, H.: Focused information criterion and model averaging for generalized additive partial linear models. Ann. Stat. 39, 174–200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  217. Zhang, C., Ma, Y.: (eds.) Ensemble Machine Learning: Methods and Applications. Springer, New York (2012)

    MATH  Google Scholar 

  218. Zhang, X., Wan, A.T.K., Zhou, S.Z.: Focused information criteria, model selection, and model averaging in a Tobit model with a nonzero threshold. J. Bus. Econ. Stat. 30, 132–142 (2012)

    Article  MathSciNet  Google Scholar 

  219. Zhang, X., Wan, A.T.K., Zou, G.: Model averaging by jackknife criterion in models with dependent data. J. Econ. 174, 82–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  220. Zhang, X., Zou, G., Carroll, R.J.: Model averaging based on Kullback-Leibler distance. Stat. Sin. 25, 1583–1598 (2015)

    MathSciNet  MATH  Google Scholar 

  221. Zhang, X.: Consistency of model averaging estimators. Econ. Lett. 130, 120–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  222. Zhang, Y., Yang, Y.: Cross-validation for selecting a model selection procedure. J. Econ. 187, 95–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  223. Zhang, X., Yu, D., Zou, G., Liang, H.: Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models. J. Am. Stat. Assoc. 111, 1775–1790 (2016)

    Article  MathSciNet  Google Scholar 

  224. Zhang, Q., Duan, X., Ma, S.: Focused information criterion and model averaging with generalized rank regression. Stat. Probabil. Lett. 122, 11–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  225. Zhao, N., Zhao, Z., Liao, S.: Probabilistic model combination for support vector machine using positive-definite kernel-based regularization path. In: Wang, Y., Li, T. (eds.) Foundations of Intelligent Systems. Advances in Intelligent and Soft Computing, vol. 122, pp. 201–206. Springer, Heidelberg (2011)

    Google Scholar 

  226. Zhao, S., Zhang, X., Gao, Y.: Model averaging with averaging covariance matrix. Econ. Lett. 145, 214–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  227. Zhao, S., Ullah, A., Zhang, X.: A class of model averaging estimators. Econ. Lett. 162, 101–106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  228. Zou, G., Wan, A.T.K., Wu, X., Chen, T.: Estimation of regression coefficients of interest when other regression coefficients are of no interest: the case of non-normal errors. Stat. Probabil. Lett. 77, 803–810 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fletcher .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fletcher, D. (2018). Frequentist Model Averaging. In: Model Averaging. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58541-2_3

Download citation

Publish with us

Policies and ethics