Skip to main content

Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Abstract

Lithium-ion battery cells will dominate the market in the next 10 years. However, the use of certain materials as cobalt is a critical issue today and is constantly being reduced. Sodium-ion batteries are an alternative, which has already been researched on a laboratory scale. Increasing of the individual production steps are serious bottlenecks for bringing basic cell concepts into application. Within this paper a systematic investigation of parameters influencing the producibility for sodium-ion battery cells will be taken into account. For this purpose, the characteristic process variables and challenges along the production chain are presented along the process chain of lithium-ion battery cells. The influence of various process-machine interactions on the properties of the electrode is illustrated using the anode of sodium-ion batteries as an example. First conclusions whether the production technology can be adapted to the cell chemistry of the future at an early stage will be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaalma, C. et al.: A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4) (2018). https://doi.org/10.1038/natrevmats.2018.13

  2. Elia, G.A., et al.: An overview and future perspectives of aluminum batteries. Adv. Mater. Weinh. 28(35), 7564–7579 (2016)

    Article  Google Scholar 

  3. Kulova, T.L., Skundin, A.M.: From lithium-ion to sodium-ion battery. Russ. Chem. Bull. 66(8), 1329–1335 (2017)

    Article  Google Scholar 

  4. Hwang, J.-Y., Myung, S.-T., Sun, Y.-K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017)

    Article  Google Scholar 

  5. Huheey, J., Keiter, E., Keiter, R.: Anorganische Chemie. DE GRUYTER, Berlin (2014)

    Book  Google Scholar 

  6. Adelhelm, P., et al.: From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015)

    Article  Google Scholar 

  7. Felixberger, J.K.: Chemie für Einsteiger. Springer, Heidelberg (2017)

    Book  Google Scholar 

  8. Pan, H., Hu, Y.-S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338 (2013)

    Article  Google Scholar 

  9. Palomares, V., et al.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884 (2012)

    Article  Google Scholar 

  10. Eftekhari, A., Kim, D.-W.: Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power Sources 395, 336–348 (2018)

    Article  Google Scholar 

  11. Nayak, P.K., et al.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. Engl. 57(1), 102–120 (2018)

    Article  Google Scholar 

  12. Zhang, W., et al.: Sodium-ion battery anodes: status and future trends. EnergyChem 1(2), 100012 (2019)

    Article  Google Scholar 

  13. El Kharbachi, A., et al.: Exploits, advances and challenges benefiting beyond Li-ion battery technologies. J. Alloy. Compd. 817, 153261 (2020)

    Article  Google Scholar 

  14. Kaiser, J., et al.: Prozess- und Produktentwicklung von Elektroden für Li-Ionen-Zellen. Chem. Ing. Tech. 86(5), 695–706 (2014)

    Article  Google Scholar 

  15. Bauer, W., et al.: Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J. Power Sources 288, 359–367 (2015)

    Article  Google Scholar 

  16. Bockholt, H., Haselrieder, W., Kwade, A.: Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technol. 297, 266–274 (2016)

    Article  Google Scholar 

  17. Lee, G.-W., et al.: Effect of slurry preparation process on electro-chemical performances of LiCoO2 composite electrode. J. Power Sources 195(18), 6049–6054 (2010)

    Article  Google Scholar 

  18. Bitsch, B., et al.: Einflüsse der mechanischen Verfahrenstechnik auf die Herstellung von Elektroden für Lithium-Ionen-Batterien. Chem. Ing. Tech. 87(4), 466–474 (2015)

    Article  Google Scholar 

  19. Su, F.-Y., et al.: Micro-structure evolution and control of lithium-ion battery electrode laminate. J. Energy Storage 14, 82–93 (2017)

    Article  Google Scholar 

  20. Bockholt, H., et al.: The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties. J. Power Sources 325, 140–151 (2016)

    Article  Google Scholar 

  21. Diehm, R., et al.: In-situ investigations of simultaneous two-layer slot die coating of component graded anodes for improved high energy li-ion batteries. Energy Technol. 8(5), (2020)

    Article  Google Scholar 

  22. Wenzel, V., Nirschl, H., Nötzel, D.: Challenges in lithium-ion-battery slurry preparation and potential of modifying electrode structures by different mixing processes. Energy Technol. 3(7), 692–698 (2015)

    Article  Google Scholar 

  23. Schmitt, M., et al.: Slot-die processing of lithium-ion battery electrodes—coating window characterization. Chem. Eng. Process. 68, 32–37 (2013)

    Article  Google Scholar 

  24. Ding, X., Liu, J., Harris, T.: A review of the operating limits in slot die coating processes. AIChE J. 62(7), 2508–2524 (2016)

    Article  Google Scholar 

  25. Jaiser, S., et al.: Development of a three-stage drying pro-file based on characteristic drying stages for lithium-ion battery anodes. Drying Technol. 35(10), 1266–1275 (2017)

    Article  Google Scholar 

  26. Jaiser, S., et al.: Investigation of film solidification and binder migration during drying of Li-Ion battery anodes. J. Power Sources 318, 210–219 (2016)

    Article  Google Scholar 

  27. Kumberg, J., et al.: Drying of lithium-ion battery anodes for use in high-energy cells: influence of electrode thickness on drying time, adhesion, and crack formation. Energy Technol. 7(11), 1900722 (2019)

    Article  Google Scholar 

  28. Müller, M., et al.: Investigation of binder distribution in graphite anodes for lithium-ion batteries. J. Power Sources 340, 1–5 (2017)

    Article  Google Scholar 

  29. Meyer, C., et al.: Characterization of the calendering process for compaction of electrodes for lithium-ion batteries. J. Mater. Process. Technol. 249, 172–178 (2017)

    Article  Google Scholar 

  30. Bold, B., Fleischer, J.: Kalandrieren von Elektroden für Li-Ionen-Batterien. ZWF 113(9), 571–575 (2018)

    Article  Google Scholar 

  31. Günther, T., et al.: Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production. Energy Technol. 8(2), 1900026 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofmann, J. et al. (2021). Investigation of Parameters Influencing the Producibility of Anodes for Sodium-Ion Battery Cells. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics