Skip to main content

Autoconfiguration of a Vibration-Based Anomaly Detection System with Sparse a-priori Knowledge Using Autoencoder Networks

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

Abstract

This paper presents a method for machine component supervision with little to none prior knowledge of the machine, operating conditions and wear behavior. A hybrid approach based on unsupervised learning methods, consisting of an autoencoder network and clustering, to identify machine states and possible failure preceding anomalies is proposed. In order to cope with information sparsity, the model parameters of the unsupervised methods are derived automatically based on data distribution and a physical motivation. The approach was validated on a dataset of artificially introduced bearing faults. The gained clustering results show a general usability of the approach for condition monitoring with vibration data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celebi, M.E., Aydin, K.: Unsupervised Learning Algorithms. Springer, Cham (2016)

    Book  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning Information Science and Statistics. Springer, New York (2009)

    Google Scholar 

  3. Seif, G.: An easy introduction to unsupervised learning with 4 basic techniques. https://towardsdatascience.com/an-easy-introduction-to-unsupervised-learning-with-4-basic-techniques-da7fbf0c3adf (2019). Accessed 15 May 2020

  4. Ballard, D.H.: Modular learning in neural networks. In: AAAI (ed.) Sixth National Conference on Artificial Intelligence, vol. 1, pp. 279–284. Los Altos, California (1987)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  6. Mathworks Train Autoencoders: https://de.mathworks.com/help/deeplearning/ref/trainautoencoder.html. Accessed 18 Apr 2020

  7. Ng, A., Ngiam, J., Foo, C.Y., et al. UFLDL Tutorial – Autoencoders: https://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/. Accessed 18 Apr 2020

  8. Roy, M., Bose, S.K., Kar, B., et al.: A stacked autoencoder neural network based automated feature extraction method for anomaly detection in on-line condition moni-toring. In: IEEE (ed.) Symposium Series on Computational Intelligence (SSCI), pp. 1501–1507 (2018)

    Google Scholar 

  9. Marchi, E., Vesperini, F., Eyben, F., et al.: A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks. In: IEEE (ed.) International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1996–2000 (2015)

    Google Scholar 

  10. Madiraju, N.S., Sadat, S.M., Fisher, D., et al.: Deep temporal clustering: fully unsu-pervised learning of time-domain features. https://arxiv.org/abs/1802.01059 (2018)

  11. Michau, G., Fink, O., Hu, Y., et al.: Feature learning for fault detection in high dimen-sional condition monitoring signals. J. Risk Reliab. 234(1), 104–115 (2019). 10.1177/1748006X19868335

    Article  Google Scholar 

  12. Zhang, S., Ye, F., Wang, B., et al.: Semi-supervised learning of bearing anomaly detection via deep variational autoencoders. https://arxiv.org/pdf/1912.01096.pdf (2019)

  13. Meng, Z., Zhan, X., Li, J., et al.: An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 130, 448–454 (2018). 10.1016/j.measurement.2018.08.010

    Article  Google Scholar 

  14. Ren, L., Sun, Y., Cui, J., et al.: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J. Manuf. Syst. 48, 71–77 (2018). 10.1016/j.jmsy.2018.04.008

    Article  Google Scholar 

  15. Sohaib, M., Kim, J.M.: Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural network. Shock Vib. 2018, 1–11 (2018). 10.1155/2018/2919637

    Article  Google Scholar 

  16. Borghesi, A., Bartolini, A., Lombardi, M., et al.: Anomaly detection using autoencod-ers in high performance computing systems. In: AAAI Conference on Innovative Applications (2019)

    Google Scholar 

  17. Wen, Q., Sun, L., Song, X., et al.: Time series data augmentation for deep learning: a survey. https://arxiv.org/pdf/2002.12478v1(2020)

  18. Ester, M., Kriegel, H-P, Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise (1996)

    Google Scholar 

  19. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory 21(1), 32–40 (1975). 10.1109/TIT.1975.1055330

    Article  MathSciNet  MATH  Google Scholar 

  20. Ankerst, M., Breunig, M.M., Kriegel, H.P., et al.: OPTICS: Ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49–60 (1999). 10.1145/304181.304187

    Article  Google Scholar 

  21. Mathworks: Estimate neighborhood threshold: DBSCAN. Phased array system toolbox. https://de.mathworks.com/help/phased/ref/clusterdbscan.clusterdbscan.estimateepsilon.html. (2020). Accessed 25 Apr 2020

  22. Case Western Reserve University Bearing Data Center: https://csegroups.case.edu/bearingdatacenter/home. Accessed 20 Apr 2020

Download references

Acknowledgement

This research work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project 388141462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hillenbrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hillenbrand, J., Fleischer, J. (2021). Autoconfiguration of a Vibration-Based Anomaly Detection System with Sparse a-priori Knowledge Using Autoencoder Networks. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics