Skip to main content

Concept for Predicting Vibrations in Machine Tools Using Machine Learning

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

Abstract

Vibrations have a significant influence on quality and costs in metal cutting processes. Existing methods for predicting vibrations in machine tools enable an informed choice of process settings, however they rely on costly equipment and specialised staff. Therefore, this contribution proposes to reduce the modelling effort required by using machine learning based on data gathered during production. The approach relies on two sub-models, representing the machine structure and machining process respectively. A method is proposed for initialising and updating the models in production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., Lazoglu, I.: Virtual process systems for part machining operations. CIRP Ann. (2014). https://doi.org/10.1016/j.cirp.2014.05.007

    Article  Google Scholar 

  2. Brecher, C., Esser, M., Witt, S.: Interaction of manufacturing process and machine tool. CIRP Ann. (2009). https://doi.org/10.1016/j.cirp.2009.09.005

    Article  Google Scholar 

  3. Schwarz, S.: Prognosefähigkeit dynamischer Simulationen von Werkzeugmaschinenstrukturen. Dissertation. Forschungsberichte IWB, vol. 313 (2015)

    Google Scholar 

  4. Bonin, T.: Moderne Ordnungsreduktionsverfahren für die Simulation des dynamischen Verhaltens von Werkzeugmaschinen. Dissertation. Forschungsberichte IWB, Band 306 (2015)

    Google Scholar 

  5. Pfrommer, J., Zimmerling, C., Liu, J., Kärger, L., Henning, F., Beyerer, J.: Optimisation of manufacturing process parameters using deep neural networks as surrogate models. Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2018.03.046

    Article  Google Scholar 

  6. Reuß, M., Dadalau, A., Verl, A.: Friction variances of linear machine tool axes. Procedia CIRP (2012). https://doi.org/10.1016/j.procir.2012.10.021

    Article  Google Scholar 

  7. Brecher, C., Weck, M.: Werkzeugmaschinen, Fertigungssysteme 2. Konstruktion, Berechnung und messtechnische Beurteilung, 9th edn. VDI-Buch. Springer Vieweg, Berlin (2017)

    Google Scholar 

  8. Berthold, J., Kolouch, M., Wittstock, V., Putz, M.: Broadband excitation of machine tools by cutting forces for performing operation modal analysis. MM SJ (2016). https://doi.org/10.17973/MMSJ.2016_11_2016164

  9. Putz, M., Wittstock, V., Kolouch, M., Berthold, J.: Investigation of the time-invariance and causality of a machine tool for performing operational modal analysis. Procedia CIRP (2016). https://doi.org/10.1016/j.procir.2016.04.052

    Article  Google Scholar 

  10. Li, B., Cai, H., Mao, X., Huang, J., Luo, B.: Estimation of CNC machine–tool dynamic parameters based on random cutting excitation through operational modal analysis. Int. J. Mach. Tools Manuf. (2013). https://doi.org/10.1016/j.ijmachtools.2013.04.001

    Article  Google Scholar 

  11. Karkalos, N.E., Galanis, N.I., Markopoulos, A.P.: Surface roughness prediction for the milling of Ti–6Al–4V ELI alloy with the use of statistical and soft computing techniques. Measurement (2016). https://doi.org/10.1016/j.measurement.2016.04.039

    Article  Google Scholar 

  12. Cherukuri, H., Perez-Bernabeu, E., Selles, M.A., Schmitz, T.L.: A neural network approach for chatter prediction in turning. Procedia Manuf. (2019). https://doi.org/10.1016/j.promfg.2019.06.159

    Article  Google Scholar 

  13. Friedrich, J., Torzewski, J., Verl, A.: Online learning of stability lobe diagrams in milling. Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2017.12.213

    Article  Google Scholar 

  14. Denkena, B., Bergmann, B., Reimer, S.: Analysis of different machine learning algorithms to learn stability lobe diagrams. Procedia CIRP (2020). https://doi.org/10.1016/j.procir.2020.05.049

    Article  Google Scholar 

  15. Postel, M., Bugdayci, B., Wegener, K.: Ensemble transfer learning for refining stability predictions in milling using experimental stability states. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05322-w

  16. Denkena, B., Dittrich, M.-A., Stamm, S.C., Prasanthan, V.: Knowledge-based process planning for economical re-scheduling in production control. Procedia CIRP (2019). https://doi.org/10.1016/j.procir.2019.03.238

    Article  Google Scholar 

  17. Wiederkehr, P., Siebrecht, T.: Virtual machining: capabilities and challenges of process simulations in the aerospace industry. Procedia Manuf. (2016). https://doi.org/10.1016/j.promfg.2016.11.011

    Article  Google Scholar 

  18. Saadallah, A., Finkeldey, F., Morik, K., Wiederkehr, P.: Stability prediction in milling processes using a simulation-based machine learning approach. Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2018.03.062

    Article  Google Scholar 

  19. Finkeldey, F., Hess, S., Wiederkehr, P.: Tool wear-dependent process analysis by means of a statistical online monitoring system. Prod. Eng. Res. Dev. (2017). https://doi.org/10.1007/s11740-017-0773-0

  20. Quintana, G., Ciurana, J.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. (2011). https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  21. Denkena, B., Hollmann, F. (eds.): Process Machine Interactions. Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures. Lecture Notes in Production Engineering. Springer, Berlin (2013)

    Google Scholar 

  22. Guo, M., Ye, Y., Jiang, X., Wu, C.: Comprehensive effect of multi-parameters on vibration in high-speed precision milling. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05441-4

  23. Park, S.S., Altintas, Y., Movahhedy, M.: Receptance coupling for end mills. Int. J. Mach. Tools Manuf. (2003). https://doi.org/10.1016/S0890-6955(03)00088-9

    Article  Google Scholar 

  24. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, pp. 96–103 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barton, D., Fleischer, J. (2021). Concept for Predicting Vibrations in Machine Tools Using Machine Learning. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics