Skip to main content

Automated Identification of Parameters in Control Systems of Machine Tools

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

Abstract

Especially in the context of Artificial Intelligence (AI) applications and increasing Overall Equipment Effectiveness (OEE) requirements, the use of data in production is gaining in importance. Applications in the field of process or condition monitoring use, for example, machine component parameters such as motor currents, travel speeds and position information. However, as the data is usually only accessible in the machine control systems in non-standard structures and semantics, while having a large number of potential variables, the identification and use of these parameters and data sources represents a significant challenge. This paper therefore presents an approach to automatically identify and assign machine parameters on the basis of time series data. For the identification, feature- and deep learning-based classification approaches are used and compared. Classification results show a general usability of the approaches for the identification of machine parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Netzer, M., Gönnheimer, P., Michelberger, J., Fleischer, J.: Skalierbarkeit von KI-Anwendungen in der Produktion. In: Fabriksoftware, pp. 51–54, Berlin (2020)

    Google Scholar 

  2. VDW Homepage. https://vdw.de/technik-und-normung/umati/. Accessed 2 Apr 2020

  3. Gönnheimer, P., Hillenbrand, J., Betz-Mors, T., Bischof, P., Mohr, L., Fleischer, J.: Auto-configuration of a digital twin for machine tools by intelligent crawling. In: Production at the leading edge of technology, pp. 534–552. Springer, Berlin (2019)

    Google Scholar 

  4. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Info. Syst. 7(3), 358–386 (2004). https://doi.org/10.1007/s10115-004-0154-9

    Article  Google Scholar 

  5. Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)

    Article  Google Scholar 

  6. Wang, Z., Yan, W. Oates, T.: Time series classification from scratch with deep neural networks: A strong baseline. In: International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1578–1585 (2017)

    Google Scholar 

  7. Wani, M.A., Bhat, F.A., Afzal, S., Khan, A.I.: Advances in Deep Learning. Springer, Singapore (2020)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  9. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010).

    Google Scholar 

  10. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv:1312.4400(2013)

  11. Mathworks Homepage. https://de.mathworks.com/help/stats/zscore.html. Accessed 22 June 2020

  12. Breiman, L.: Random forests. Mach Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  13. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), pp. 917–963 (2019)

    Google Scholar 

  14. Gini, C.: Variabilita e mutabilita. Memorie di metodologia statistica, vamu (1912)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980, 434 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gönnheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gönnheimer, P., Puchta, A., Fleischer, J. (2021). Automated Identification of Parameters in Control Systems of Machine Tools. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics