Skip to main content

Life Cycle Assessment of Thermoplastic Hybrid Structures with Hollow Profiles

  • Conference paper
  • First Online:
Technologies for economic and functional lightweight design

Abstract

The combination of innovative materials, process chins and intelligent material-adapted design concepts enables an efficient part production for future mobility applications. Hybrid structures made of thermoplastic pre-impregnated composite (TPC) sheets and injection moulding bulk material have already crossed the threshold to series production. Thanks to a newly developed production technology, hollow profiles with continuous fibres can now also be integrated into thermoplastic composite hybrid structures in the sense of a modular design system. However, the resource consumption of such hybrid structures has not yet been investigated.

This contribution describes the set-up and life cycle analysis (LCA) of a highly automated manufacturing process for the production of complex crash-loaded vehicle structures in thermoplastic composite design. The concept bases on the production of a hollow profile made of hybrid yarn, which is subsequently overmoulded and combined with a TPC sheet in an injection moulding process. For the hollow profile manufacturing, a novel automated preforming technology is used. The textile preform is then consolidated in a variothermal consolidation station, consisting of a temperature control system and an additively manufactured consolidation tool. For the subsequent overmoulding of the hollow profile, methods for stabilising the hollow profile were studied and implemented in an injection moulding complex. A plasma system for activating the surface of the hollow profile was used to create a permanent joint between the hollow profile and TPC sheet. At the example of a backrest with an integrated seat belt, the technology and its potential application in crash-relevant structures was proven.

In addition to the process set-up, manufacturing studies were carried out with the aim of evaluating the ecological potential of the process chain. For this purpose, a cradle-to-gate approach was chosen, in which the process-related energy consumption as well as the material consumption were measured and used for LCA. Thus, the most relevant process steps can be identified and possibilities for increasing efficiency can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaufmann, R., Bider, T., Bürkle, E.: Lightweight parts with a thermoplastic matrix. Kunstst. Int. 03, 65–68 (2011)

    Google Scholar 

  2. Kopp, J.W.: BMW I – automotive CFRP-production and potentials for thermoplastic FRP. In: Borgmann, F. (ed.) 2nd International Conference and Exhibition on Thermoplastic Composites ITHEC 2014, p. 11. Messe Bremen, Bremen (2014)

    Google Scholar 

  3. Götze, C.: From a Niche product to standard series production – highly resilient lightweight components produced from Organo sheet. Kunstst. Int. 03, 35–38 (2016)

    Google Scholar 

  4. Bernet, M., Bourban, M.: An impregnation model for the consolidation of thermoplastic composite made from commingled yarns. J. Compos. Mater. 08, 751–772 (1999)

    Article  Google Scholar 

  5. Hufenbach, W., Adam, F., Krahl, M., Geller, S.: Ganzheitliche Lösungsstrategien bei der Entwicklung von Faserverbundkomponenten für automobile Leichtbauanwendungen. In: Kawalla, R. (ed.) 2nd International Conference on Advanced Metal Forming Processes in Automotive Industry AutoMetForm 2010, pp. 58–69. Institut für Metallformung, Freiberg (2010)

    Google Scholar 

  6. Küppers, S., Milwich, M., Gresser, G.T.: Energyefficient pultrusion process for producing fiber composite components with termoplastic matrix in series applications – Tpult. In: Hillmer, J. (ed.) 9th Aachen-Dresden International Textile Conference, p. 17. DWI – Leibniz-Institut für Interaktive Materialien e. V., Aachen (2015)

    Google Scholar 

  7. Gude, M., Lenz, F., Gruhl, A., Witschel, B., Ulbricht, A., Hufenbach, W.: Design and automated manufacturing of profiled composite driveshafts. Sci. Eng. Compos. Mater. 02, 187–197 (2015)

    Article  Google Scholar 

  8. Masselter, T., Haushahn, T., Schwager, H., Milwich, M., Nathanson, R., Gude, M., Cichy, F., Hufenbach, W., Neinhuis, C., Speck, T.: Biomimetic fibre-reinforced composites inspired by branched plant stems. Design Nat. V, 411–420 (2015)

    Google Scholar 

  9. Braley, M., Dingeldein, M.: Advancements in braided materials technology. In: 46th International SAMPE-Symposium, pp. 2445–2455 (2005)

    Google Scholar 

  10. Liebsch, A., Kupfer, R., Defranceski, A., Rösler, B., Janik, J., Gude, M.: Automated preforming of braided hoses made of thermoplast-glass fiber hybrid yarns. Procedia CIRP 66, 57–61 (2017)

    Article  Google Scholar 

  11. Schäfer, J., Gries, T.: Braiding pultrusion of thermoplastic composites. Advances in braiding technology – specialized techniques and applications. Woodhead Publishing Series in Textiles, pp. 405–428. (2016)

    Google Scholar 

  12. Engelmann, U., Layer, M., Albert, A., Reese, E., Landgrebe, D., Kroll, L., Nendel, W.: Towards the functionalized FRP tube – a merger of hydroforming and injection molding technologies is driving lightweight design. Kunstst. Int. 12, 11–14 (2017)

    Google Scholar 

  13. Landgrebe, D., Kräusel, V., Rautenstrauch, A., Awiszus, B., Boll, J., Markov, L.: Energy-efficiency and robustness in a hybrid process of hydroforming and polymer injection moulding. Proceedia Manufact. 08, 746–753 (2017)

    Article  Google Scholar 

  14. Jelínek, P., Adámkov, E.: Lost cores for high-pressure die casting. Arch. Foundry Eng. 02, 101–104 (2014)

    Article  Google Scholar 

  15. Jiang, W., Dong, J., Lou, L., Liu, M., Hu, Z.: Preparation and properties of a novel water soluble core material. J. Mater. Sci. Technol. 03, 270–275 (2010)

    Article  Google Scholar 

  16. Michels, H., Bünck, M., Bührig-Polaczek, A.: Suitability of lost cores in rheocasting process. Trans. Nonferrous Met. Soc. China (English Edition) 20, 948–953 (2010)

    Article  Google Scholar 

  17. Liebsch, A., Andricevic, N., Maass, J., Geuther, M., Adam, F., Hufenbach, W., Gude, M.: Battery mount in a hybrid design – a combination of fiber-reinforced thermoplastic and aluminum replaces a steel part. Kunstst. Int. 09, 46–49 (2015)

    Google Scholar 

  18. Pijpers, A.P., Meier, R.J.: Adhesion behaviour of polypropylenes after flame treatment determined by XPS(ESCA) spectral analysis. J. Electron Spectrosc. Relat. Phenom. 121, 299–313 (2001)

    Article  Google Scholar 

  19. Tusek, L., Nitschke, M., Werner, C., Stana-Kleinschek, K., Ribitsch, V.: Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids Surf. A 195, 81–95 (2001)

    Article  Google Scholar 

  20. Tahara, M., Cuong, N.K., Nakashima, Y.: Improvement in adhesion of polyethylene by glow-discharge plasma. Surf. Coat. Technol. 173–174, 826–830 (2003)

    Article  Google Scholar 

  21. Oosterom, R., Ahmed, T.J., Poulis, J.A., Bersee, H.E.N.: Adhesion performance of UHMWPE after different surface modification techniques. Med. Eng. Phys. 28, 323–330 (2006)

    Article  Google Scholar 

  22. Liebsch, A., Koshukow, W., Gebauer, J., Kupfer, R., Gude, M.: Overmoulding of consolidated fibre-reinforced thermoplastics – increasing the bonding strength by physical surface pre-treatments. Procedia CIRP 89, 209–214 (2019)

    Google Scholar 

  23. Hohmann, A., Albrecht, S., Lindner, J.P., Voringer, B., Wehner, D., Drechsler, K., Leistner, P.: Resource efficiency and environmental impact of fiber reinforced plastic processing technologies. Prod. Eng. Res. Devel. 12(3–4), 405–417 (2018)

    Article  Google Scholar 

  24. Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., Skerlos, S.: Life cycle engineering of lightweight structures. CIRP Ann. 67(2), 651–672 (2018)

    Article  Google Scholar 

  25. Großmann, K., Wiemer, H., Großmann, K.K.: Methods for modelling and analysing process chains for supporting the development of new technologies. Procedia Mater. Sci. 2, 34–42 (2013)

    Article  Google Scholar 

  26. Landgrebe, D., Kräusel, V., Rautenstrauch, A., Albert, A., Wertheim, R.: Energy-efficiency in a hybrid process of sheet metal forming and polymer injection moulding. Procedia CIRP 40, 109–114 (2016)

    Article  Google Scholar 

  27. Brecher, C., Schmitt, R., Lindner, F., Peters, T., Emonts, M., Böckmann, M.G.: Increasing cost and eco efficiency for selective tape placement and forming by adaptive process design. Procedia CIRP 57, 769–774 (2016)

    Article  Google Scholar 

  28. Beck, J., Kupfer, R., Hofmann, S., Liebsch, A., Gude, M.: Multi-Material-Design für die automobile Großserie - Faserverbund-Hohlprofile und Spritzgieß-Knotenstrukturen in einem Prozess. VDI-Bericht 2343: Plastics in Automotive Engineering PIAE EUROPE (2019)

    Google Scholar 

  29. Brandt, B., Kletzer, E., Pilz, H., Hadzhiyska, D., Seizov, P.: Silicon-chemistry carbon balance – an assessment of greenhouse gas emissions and reductions. CES – Silicones Eur. 05, (2012)

    Google Scholar 

  30. N.N. Environmental Product Declaration: Polyamide 6 (PA6). PlasticsEurope, Product Group Engineering Polymers 02, (2014)

    Google Scholar 

  31. Boustead, I.: Eco-profiles of the European plastics industry: glass filled polyamide 6. PlasticsEurope, product group engineering polymers 03, (2005)

    Google Scholar 

  32. N.N. Life cycle assessment of CFGF – Continuous Filament Glass Fibre Products. PwC – Sustainable Performance and Strategy, 10, (2016)

    Google Scholar 

  33. Stiller, H.: Material intensity of advanced composite materials – results of a study for the Verbundwerkstofflabor Bremen e. V. Wuppertal Papers Nr. 90 (1999)

    Google Scholar 

  34. Hohmann, A., Albrecht, S., Lindner, J.P., Wehner, D., Kugler, M., Prenzel, T., Pitschke, T., Seitz, M., Schüppel, D., Kreibe, T., von Reden, T.: Recommendations for resource efficient and environmentally responsible manufacturing of CFRP products. Carbon Composites e. V., Spitzencluster MAI Carbon (2017)

    Google Scholar 

  35. Müller, M., Liebsch, A., Kupfer, R., Stegelmann, M., Gude, M.: Process chain based data capture for a flexible and reliable life cycle inventory of a glass fiber-reinforced thermoplastic lightweight structure. Procedia CIRP 89, 32–36 (2019)

    Article  Google Scholar 

  36. Delogu, M., Zanchi, L., Dattilo, C.A., Pierini, M.: Innovative composites and hybrid materials for electric vehicles lightweight design in a sustainability perspective. Mater. Today Commun. 13, 192–209 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The research projects are funded by the Federal Ministry of Education and Research (funding ref.: 02P14Z000_02P14Z010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Liebsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebsch, A., Müller-Pabel, M., Kupfer, R., Gude, M. (2021). Life Cycle Assessment of Thermoplastic Hybrid Structures with Hollow Profiles. In: Dröder, K., Vietor, T. (eds) Technologies for economic and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62924-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62924-6_1

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62923-9

  • Online ISBN: 978-3-662-62924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics