Skip to main content

Selforganization of Nucleic Acids and the Evolution of the Genetic Apparatus

  • Chapter
Synergetics

Abstract

It is unclear how biological systems could evolve during a time of 109 years given by earth history [1–7]. Even the simplest systems that can be imagined to evolve to more complicated ones must have the property of self-reproduction, and this is only possible for systems which already have an appreciable complexity. They must have a device similar to the genetic apparatus of the known organisms, a machinery of highest skill and ingenuity. How was it possible, that such systems evolved? Can this evolution be explained on the basis of physical chemistry, and in this case is it a common process under appropriate environment conditions of a process of extremely low a priori probability?

The legends of the figures are at the end of this article on page 174.

Copyright: Verlag Chemie, Weinheim. Reprint from: Angewandte Chemie 84 (1972), with kind permission of the publisher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calvin, M.: Chemical Evolution. Oxford 1969.

    Google Scholar 

  2. Rutten, M. G.: The Origin of Life. Amsterdam — London — New York 1971.

    Google Scholar 

  3. Ponnamperuma, C.: Exobiology. Amsterdam — London 1972.

    Google Scholar 

  4. Buvet, R. and Ponnamperuma, C.: Molecular Evolution 1, Chemical Evolution and the Origin of Life. Amsterdam — London 1971.

    Google Scholar 

  5. Crick, F. H. C.: J. Mol. Biol. 38, 367 (1968).

    Article  Google Scholar 

  6. Orgel, L.: J. Mol. Biol. 38, 381 (1968).

    Article  Google Scholar 

  7. Monod, J.: Le hasard et la nécessité. Paris 1970; German transl.: Zufall und Notwendigkeit. München 1971.

    Google Scholar 

  8. v. Neumann, J.: Theory of self-reproducing automata. Urbana, Ill. 1966.

    Google Scholar 

  9. Turing, A. M.: Mind 59, 433 (1950).

    Article  MathSciNet  Google Scholar 

  10. Eigen, M.: Die Naturwissenschaften 58, 465 (1971).

    Article  Google Scholar 

  11. Watson, J. D.: Molecular Biology of the Gene, second edition, New York 1970;

    Google Scholar 

  12. Harbers, E.: Nucleinsäuren. Stuttgart 1969;

    Google Scholar 

  13. Schreiber, G.: Angew. Chem. 83, 645 (1971).

    Article  Google Scholar 

  14. Naylor, R.; Gilham, P. H.: Biochemistry 8, 2722 (1966).

    Article  Google Scholar 

  15. Baldwin, R. L.: Accounts of Chemical Research 4, 265 (1971);

    Article  Google Scholar 

  16. Scheffler, I. E.; Elson, E. L.; Baldwin, R. L.: J. Mol. Biol. 36, 291 (1968).

    Article  Google Scholar 

  17. Uhlenbeck O. C.; Baller, J.; Doty, P.: Nature 225, 508 (1970).

    Article  Google Scholar 

  18. Lewis, J. B.; Doty, P.: Nature 225, 510 (1970).

    Article  Google Scholar 

  19. Calvin, M.: Proc. Roy. Soc. (London) Ser. A 288, 441 (1965);

    Article  Google Scholar 

  20. Schneider-Bernlohr, H.; Lohrmann R.; Sulston, J.; Orgel, L. E.; Miles, H. T.: J. Mol. Biol. 37, 151 (1968).

    Article  Google Scholar 

  21. Cramer, F.: Progress in Nucleic acid research 11, 391 (1971).

    Article  Google Scholar 

  22. This selection process can easily be simulated in a computer program using chance numbers, see: Försterling, H. D.; Kuhn, H.: Physikalische Chemie in Experimenten. Weinheim 1971; Försterling, H. D.; Kuhn, H.; Tews, K. H.: Angew. Chem. (in print).

    Google Scholar 

  23. The selfassembly of organized aggregates as postulated in this paper is well-known. Viruses and the ribesome have been obtained by mixing the component molecules in solution (see: Butler, P. J. G.; Klug, A.: Nature New Biol. 229, 47 (1971);

    Article  Google Scholar 

  24. Nomura, M.: Scientific American, December 1969, and in: The Neurosciences. 2nd Study Program, (ed. F. O. Schmitt), New York 1970, pg. 913;

    Google Scholar 

  25. Garret, R. A.; Wittmann, H. G.; in: Aspects of Protein Biosynthesis (ed. T. B. Anfinsen), New York 1971.

    Google Scholar 

  26. Paecht-Horowitz, M.; Berger, J.; Katchalsky, A.: Nature 228, 636 (1970); Paecht-Horowitz, M.: Citat 6, p. 245.

    Article  Google Scholar 

  27. Fox, S. W.: Science 132, 200 (1960);

    Article  Google Scholar 

  28. Fox, S. W.: Naturwissenschaften 56, 1 (1969).

    Article  Google Scholar 

  29. Laird, C. D.: Chromosoma (Berl.) 32, 378 (1971).

    Article  Google Scholar 

  30. Ohta, T., Kimura, M.: Nature 233, 118 (1971);

    Article  Google Scholar 

  31. King, J. L.; Jukes, T. H.: Science 164, 788 (1969).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Kuhn, H. (1973). Selforganization of Nucleic Acids and the Evolution of the Genetic Apparatus. In: Haken, H. (eds) Synergetics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-01511-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-01511-6_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-03011-9

  • Online ISBN: 978-3-663-01511-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics