Skip to main content

Fundamentals of Electron Beam Exposure and Development

  • Chapter
  • First Online:
Nanofabrication

Abstract

Electron Beam Lithography (EBL) is a fundamental technique of nanofabrication, allowing not only the direct writing of structures down to sub-10 nm dimensions, but also enabling high volume nanoscale patterning technologies such as (DUV and EUV) optical lithography and nanoimprint lithography through the formation of masks and templates. This chapter summarizes the key principles of EBL and explores some of the complex interactions between relevant parameters and their effects on the quality of the resulting lithographic structures. The use of low energy exposure and cold development is discussed, along with their impacts on processing windows. Applications of EBL are explored for the fabrication of very small isolated bridge structures and for high density master masks for nanoimprint lithography. Strategies for using both positive and negative tone resists are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCord MA, Rooks M. Electron beam lithography. In: Rai-Choudury P, editor. Handbook of microlithography, micromachining and microfabrication, vol. 1. Bellingham: SPIE; 1997. ISBN 978-081-942-378-8.

    Google Scholar 

  2. Nabity J, Compbell LA, Zhu M, Zhou W. E-beam nanolithography integrated with scanning electron microscope. In: Zhou W, Wang ZhL, editors. Scanning microscopy for nanotechnology: techniques and applications. 1st ed. New York: Springer; 2006. ISBN 978-144-192-209-0.

    Google Scholar 

  3. Wu CS, Makiuchi Y, Chen CD, In: Wang M, editors. Lithography. High-energy electron beam lithography for nanoscale fabrication. Croatia: InTech; 2010, ISBN 978-953-307-064-3.

    Google Scholar 

  4. Liddle JA, Berger SD. Proc SPIE. 2014;2014:66–76.

    Article  Google Scholar 

  5. Pfeiffer HC, Stickel W. Future Fab Intl. 2002;12:187.

    Google Scholar 

  6. Mapper Lithography, Delft, www.mapperlithography.com

  7. Raith GmbH, Dortmund, www.raith.com

  8. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR. Scanning electron microscopy and X-ray microanalysis. 3rd ed. New York: Springer; 2003. ISBN 978-030-647-292-3.

    Book  Google Scholar 

  9. Jeol electron beam lithography, Tokyo, www.jeol.com/PRODUCTS/SemiconductorEquipment/ElectronBeamLithography/tabid/99/Default.aspx

  10. Vistec electron beam GmbH, Jena, www.vistec-semi.com

  11. Lee YH, Browing R, Maluf N, Owen G, Pease RFW. J Vac Sci Technol B. 1992;10:3094–8.

    Article  CAS  Google Scholar 

  12. Yang H, Fan L, Jin A, Luo Q, Gu C, Cui Z. In: Proc. 1st IEEE Intl. Conf. Nano/Micro Engg. & Molec. Sys. Jan 2006, Zhuhai, p. 391–4.

    Google Scholar 

  13. Kyser DF, Viswanathan NS. J Vac Sci Technol. 1975;12:1305–8.

    Article  Google Scholar 

  14. Brewer G, editor. Electron-Beam Technology in Microelectronic Fabrication. New York: Academic; 1980. 978-012-133-550-2.

    Google Scholar 

  15. Kamp M, Emmerling M, Kuhn S, Forchel A. J Vac Sci Technol B. 1999;17:86–9.

    Article  CAS  Google Scholar 

  16. Chang THP. J Vac Sci Technol. 1975;12:1271–5.

    Article  Google Scholar 

  17. Lo CW, Rooks MJ, Lo WK, Isaacson M, Craighead HG. J Vac Sci Technol B. 1995;13:812–20.

    Article  CAS  Google Scholar 

  18. Mun LK, Drouin D, Lavallée E, Beauvais J. Microsc Microanal. 2004;10:804–9.

    Article  CAS  Google Scholar 

  19. Wu B, Neureuther AR. J Vac Sci Technol B. 2001;19:2508–11.

    Article  CAS  Google Scholar 

  20. Showa Denko ESPACER, www.showadenko.us

  21. Hatzakis M. J Electrochem Soc. 1969;116:1033–7.

    Article  CAS  Google Scholar 

  22. ZEONREX electronic chemicals, Japan http://www.zeon.co.jp/index_e.html

  23. Nishida T, Notomi M, Iga R, Tamamura T. Jpn J Appl Phys. 1992;31:4508–14.

    Article  CAS  Google Scholar 

  24. Olynick DL, Cord B, Schipotinin A, Ogletree DF, Schuck PJ. J Vac Sci Technol B. 2010;28:581–7.

    Article  CAS  Google Scholar 

  25. Bilenberg B, Schøler M, Shi P, Schmidt MS, Bøggild P, Fink M, Schuster C, Reuther F, Gruetzner C, Kristensen A. J Vac Sci Technol B. 2006;24:1776–9.

    Article  CAS  Google Scholar 

  26. Aktary M, Stepanova M, Dew SK. J Vac Sci Technol B. 2006;24:768–79.

    Article  CAS  Google Scholar 

  27. Masaro L, Zhu XX. Prog Polym Sci. 1999;24:731–75.

    Article  CAS  Google Scholar 

  28. Miller-Chou BA, Koenig JL. Prog Polym Sci. 2003;28:1223–70.

    Article  CAS  Google Scholar 

  29. Mohammad MA, Fito T, Chen J, Aktary M, Stepanova M, Dew SK. J Vac Sci Technol B. 2010;28:L1–4.

    Article  CAS  Google Scholar 

  30. Tanaka T, Morigami M, Atoda N. Jpn J Appl Phys. 1993;32:6059–64.

    Article  CAS  Google Scholar 

  31. Mohammad MA, Fito T, Chen J, Buswell S, Aktary M, Stepanova M, Dew SK. Micr Eng. 2010;87:1104–7.

    Article  CAS  Google Scholar 

  32. Lee K, Bucchignano J, Gelorme J, Viswanathan R. J Vac Sci Technol B. 1997;15:2621–6.

    Article  CAS  Google Scholar 

  33. Yasin S, Hasko D, Ahmed H. J Vac Sci Technol B. 1999;17:3390–3.

    Article  CAS  Google Scholar 

  34. Kupper D, Kupper D, Wahlbrink T, Bolten J, Lemme M, Georgiev Y, Kurz H. J Vac Sci Technol B. 2006;24:1827–32.

    Article  CAS  Google Scholar 

  35. Namatsu H, Yamazaki K, Kurihara K. J Vac Sci Technol B. 2000;18:780–4.

    Article  CAS  Google Scholar 

  36. Goldfarb D, de Pablo J, Nealey P, Simons J, Moreau W, Angelpoulos M. J Vac Sci Technol B. 2000;18:3313–7.

    Article  CAS  Google Scholar 

  37. Wahlbrink T, Kupper D, Georgiev Y, Bolten J, Moller M, Kupper D, Lemme M, Kurz H. Microelectron Eng. 2006;83:1124–7.

    Article  CAS  Google Scholar 

  38. Mohammad MA, Fito T, Chen J, Buswell S, Aktary M, Dew SK, Stepanova M. In Wang M editors, Lithography. The interdependence of exposure and development conditions when optimizing low-energy EBL for nano-scale resolution. Croatia: InTech; 2010, ISBN 978-953-307-064-3.

    Google Scholar 

  39. Ocola LE, Stein A. J Vac Sci Technol B. 2006;24:3061–5.

    Article  CAS  Google Scholar 

  40. Häffner M, Heeren A, Fleischer M, Kern DP, Schmidt G, Molenkamp LW. Microelectron Eng. 2007;84:937–9.

    Article  Google Scholar 

  41. Cord B, Lutkenhaus J, Berggren KK. J Vac Sci Technol B. 2007;25:2013–6.

    Article  CAS  Google Scholar 

  42. Yan M, Choi S, Subramanian KRV, Adesida I. J Vac Sci Technol B. 2008;26:2306–10.

    Article  CAS  Google Scholar 

  43. Mohammad MA, Dew SK, Westra K, Li P, Aktary M, Lauw Y, Kovalenko A, Stepanova M. J Vac Sci Technol B. 2007;25:745–53.

    Article  CAS  Google Scholar 

  44. Cord B, Yang J, Duan H, Joy DC, Klingfus J, Berggren KK. J Vac Sci Technol B. 2009;27:2616–21.

    Article  CAS  Google Scholar 

  45. Hasko DG, Yasin S, Mumatz A. J Vac Sci Technol B. 2000;18:3441–4.

    Article  CAS  Google Scholar 

  46. Yasin S, Hasko DG, Khalid MN, Weaver DJ, Ahmed H. J Vac Sci Technol B. 2004;22:574–8.

    Article  CAS  Google Scholar 

  47. Stepanova M, Fito T, Szabó Zs, Alti K, Adeyenuwo AP, Koshelev K, Aktary M, Dew SK. J Vac Sci Technol B. 2010;28:C6C48–57.

    Article  CAS  Google Scholar 

  48. Schock K-D, Prins FE, Strähle FES, Kern DP. J Vac Sci Technol B. 1997;15:2323–6.

    Article  CAS  Google Scholar 

  49. Brünger W, Kley EB, Schnabel B, Stolberg I, Zierbock M, Plontke M. Microelectron Eng. 1995;27:135–8.

    Article  Google Scholar 

  50. An L, Zheng Y, Li K, Luo P, Wu Y. J Vac Sci Technol B. 2005;23:1603–6.

    Article  CAS  Google Scholar 

  51. Cord B, Dames C, Berggren KK, Aumentado J. J Vac Sci Technol B. 2006;24:3139–43.

    Article  CAS  Google Scholar 

  52. Yang H, Jin A, Luo Q, Li J, Gu C, Cui Z. Microelectron Eng. 2008;85:814–7.

    Article  CAS  Google Scholar 

  53. Mohammad MA, Guthy C, Evoy S, Dew SK, Stepanova M. J Vac Sci Technol B. 2010;28:C6P36–41.

    Article  CAS  Google Scholar 

  54. Anbumony K, Lee S. J Vac Sci Technol B. 2006;24:3115–20.

    Article  CAS  Google Scholar 

  55. Leunissen L, Jonckheere R, Hofmann U, Unal N, Kalus C. J Vac Sci Technol B. 2004;22:2943–7.

    Article  CAS  Google Scholar 

  56. Ogino K, Hoshino H, Machida Y, Osawa M, Arimoto H, Maruyama T, Kawamura E. Jpn J Appl Phys. 2004;43:3762–6.

    Article  CAS  Google Scholar 

  57. Fischer LM, Wilding LMN, Gel M, Evoy S. J Vac Sci Technol B. 2007;25:33–7.

    Article  CAS  Google Scholar 

  58. Fischer LM, Wright VA, Guthy Cz, Yang N, McDermott MT, Buriak JM, Evoy S. Sens Actuators B. 2008;134:613–7.

    Article  Google Scholar 

  59. Grigorescu AE, Hagen CW. Nanotechnology. 2009;20:292001.

    Article  CAS  Google Scholar 

  60. Fruleux-Cornu F, Penaud J, Dubois E, Francois M, Muller M. Mater Sci Eng C. 2005;26:893–7.

    Article  Google Scholar 

  61. Chen Y, Yang H, Cui Z. Microelectron Eng. 2006;83:1119–23.

    Article  CAS  Google Scholar 

  62. Yang H, Jin A, Luo O, Gu C, Cui Z. Microelectron Eng. 2007;84:1109–12.

    Article  CAS  Google Scholar 

  63. Haffner M, Haug A, Heeren A, Fleischer M, Peisert H, Chasse T, Kern DP. J Vac Sci Technol B. 2007;25:2045–8.

    Article  CAS  Google Scholar 

  64. Choi S, Jin N, Kumar V, Adesida I, Shannon M. J Vac Sci Technol B. 2007;25:2085–8.

    Article  CAS  Google Scholar 

  65. Ocola LE, Tirumala VR. J Vac Sci Technol B. 2008;26:2632–5.

    Article  CAS  Google Scholar 

  66. Kim J, Chao W, Griedel B, Liang X, Lewis M, Hilken D, Olynick D. J Vac Sci Technol B. 2009;27:2628–34.

    Article  CAS  Google Scholar 

  67. Yan M, Lee J, Ofuonye B, Choi S, Jang JH, Adesida I. J Vac Sci Technol B. 2020;28:C6S23–7.

    Article  Google Scholar 

  68. Lauvernier D, Vilcot J-P, Francois M, Decoster D. Microelectron Eng. 2004;75:177–82.

    Article  CAS  Google Scholar 

  69. Yang JKW, Berggren KK. J Vac Sci Technol B. 2007;25:2025–9.

    Article  CAS  Google Scholar 

  70. Lee H-S, Wi J-S, Nam S-W, Kim H-M, Kim K-B. Vac Sci Technol B. 2009;25:188–92.

    Article  Google Scholar 

  71. Mohammad MA, Dew SK, Evoy S, Stepanova M. Microelectron Eng. 2011;88:2338–41.

    Google Scholar 

  72. Tiron R, Mollard L, Louveau O, Lajoinie E. J Vac Sci Technol B. 2007;25:1147–51.

    Article  CAS  Google Scholar 

  73. Schift H. J Vac Sci Technol B. 2008;26:458–80.

    Article  CAS  Google Scholar 

  74. Liu W, Ingino J, Pease RF. J Vac Sci Technol B. 1995;13:1979–83.

    Article  CAS  Google Scholar 

  75. Satyalakshmi KM, Olkhovets A, Metzler MG, Harnett CK, Tanenbaum DM, Craighead HG. J Vac Sci Technol B. 2000;18:3122–5.

    Article  CAS  Google Scholar 

  76. Joo J, Jun K, Jacobson JM. J Vac Sci Technol B. 2007;5:2407–11.

    Article  Google Scholar 

  77. Samantaray CB, Hastings JT. J Vac Sci Technol B. 2008;26:2300–5.

    Article  CAS  Google Scholar 

  78. Muhammad M, Buswell SC, Dew SK, Stepanova M. J Vac Sci Technol B. 2011;29:06F304.

    Google Scholar 

  79. Bhuiyan A, Dew SK, Stepanova M. Comput Commun Phys. 2011;9:49–67.

    Google Scholar 

  80. Dylevwicz R, Lis S, De La Rue RM, Rahman F. J Vac Sci Technol B. 2010;28:817–22.

    Article  Google Scholar 

  81. aquaSAVE Electronic Conductor, Mitsubishi Rayon America Inc., New York, http://www.mrany.com/data/HTML/20.htm

Download references

Acknowledgements

The authors are grateful for the support of the Natural Sciences and Engineering Research Council of Canada, the National Institute for Nanotechnology, the Alberta Ingenuity Fund, Raith GmbH, and the University of Alberta NanoFab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Mohammad, M.A., Muhammad, M., Dew, S.K., Stepanova, M. (2012). Fundamentals of Electron Beam Exposure and Development. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_2

Download citation

Publish with us

Policies and ethics