Skip to main content

Helium Ion Lithography

Principles and Performance

  • Chapter
  • First Online:
Nanofabrication

Abstract

Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From existing data, the fundamental factors underlying the sensitivity gain by 1–2 orders of magnitude and the prospects for high resolution at high pattern densities are analysed. State-of-the-art performance of the technique is illustrated with experimental achievements in HSQ and PMMA resists. Exploratory SHIBL work on aluminum oxide resist is presented as a novel approach to overcome potential shot noise effects in pattern definition and to improve masking capabilities in subsequent pattern transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More extensive results compared to [6, 14], submitted for publication.

  2. 2.

    Enhancement in previous work [6] was based on erroneous ion current measurement.

  3. 3.

    Submitted for publication.

References

  1. Morgan J, Notte J, Hill R, Ward B. Microscopy Today. 2006;14:24–31.

    CAS  Google Scholar 

  2. Hill R, Faridur Rahman FHM, Nucl Instr Meth A. 2010; in press. doi:10.1016/j.nima.2010.12.123.

  3. Scipioni L, Ferranti DC, Smentkowski VS, Potyrailo RA. J Vac Sci Technol B. 2010;28:C6P18–23.

    Article  CAS  Google Scholar 

  4. Sanford CA, Stern L, Barriss L, Farkas L, DiManna M, Mello R, Maas DJ, Alkemade PFA. J Vac Sci Technol B. 2009;27:2660–7.

    Article  CAS  Google Scholar 

  5. Winston D, Cord BM, Ming B, Bell DC, DiNatale WF, Stern LA, Vladar AE, Postek MT, Mondol MK, Yang JKW, Berggren KK. J Vac Sci Technol B. 2009;27:2702–6.

    Article  CAS  Google Scholar 

  6. Sidorkin V, van Veldhoven E, van der Drift E, Alkemade P, Salemink H, Maas D. J Vac Sci Technol B. 2009;27:L18–20.

    Article  CAS  Google Scholar 

  7. Wang JKW, Cord B, Duan HG, Berggren KK, Klingfus JK, Nam SW, Kim KB, Rooks MJ. J Vac Sci Technol B. 2009;2:2622–7.

    Google Scholar 

  8. Postek M, Vladár A, Archie C, Ming B. Meas Sci Technol. 2011;22:1–14.

    Google Scholar 

  9. Scipioni L, Sanford C, Notte J, Thompson B, McVey S. J Vac Sci Technol B. 2009;27:3250–5.

    Article  CAS  Google Scholar 

  10. Melngailis J. Nucl Instr Meth B. 1993;80:1271–80.

    Article  Google Scholar 

  11. Atkinson GM, Stratton FP, Kubena RL, Wolfe SC. J Vac Sci Technol B. 1992;10:3104–8.

    Article  CAS  Google Scholar 

  12. Cheung R, Zijlstra T, van der Drift E, Geerligs LJ, Verbruggen AH, Werner K, Radelaar S. J Vac Sci Technol B. 1993;11:2224–8.

    Article  CAS  Google Scholar 

  13. van Kan JA, Zhang F, Zhang C, Bettiol AA, Watt F. Nucl Instr Meth B. 2008;266:1676–9.

    Article  Google Scholar 

  14. Sidorkin VA, Ph.D. Thesis, Delft University of Technology, Delft, 2010.

    Google Scholar 

  15. Ward B, Notte J, Economou NP. J Vac Sci Technol B. 2006;24:2871–4.

    Article  CAS  Google Scholar 

  16. Hill R, Notte J, Ward B. Phys Proc. 2008;1:135–41.

    Article  CAS  Google Scholar 

  17. Bell DC. Microsc Microanal. 2009;15:147–53.

    Article  CAS  Google Scholar 

  18. Maas D, van Veldhoven E, Chen P, Sidorkin V, Salemink H, van der Drift E, Alkemade P. Proc SPIE. 2010;7638:14–23.

    Google Scholar 

  19. Sijbrandij S, Notte J, Sanford C, Hill R. J Vac Sci Technol B. 2010;28:C6F6–9.

    Article  CAS  Google Scholar 

  20. Ramachandra R, Griffin B, Joy D. Ultramicroscopy. 2009;109:748–57.

    Article  CAS  Google Scholar 

  21. Lin Y, Joy DC. Surf Interface Anal. 2005;27:895–900.

    Article  Google Scholar 

  22. Vyvenko O, Petrov YV. Workshop “helium ion microscopy and its application” Forschungszentrum Dresden Rossendorf, 09 Dec 2009.

    Google Scholar 

  23. Joy D, Prasad M, Meyer III H. J Microsc. 2004;215:77–85.

    Article  CAS  Google Scholar 

  24. Sayyah SM, Khaliel AB, Moustafa H. Int J Polym Mat. 2005;54:505–18.

    Article  CAS  Google Scholar 

  25. Goodman A, O’Neill Jr J. J Appl Phys. 1966;37:3580–3.

    Article  CAS  Google Scholar 

  26. van Dorp WF, Wnuk JD, Gorham JM, Fairbrother DH, Madey TE, Hagen CW. J Appl Phys. 2009;106:074903.

    Article  Google Scholar 

  27. Randolph SJ, Fowlkes JD, Rack PD. Crit Rev Solid State Mat Sci. 2006;31:55–89.

    Article  CAS  Google Scholar 

  28. Seah MP, Dench WA. Surf Interface Anal. 1979;1:2–11.

    Article  CAS  Google Scholar 

  29. Kieft E, Bosch E. J Phys D: Appl Phys. 2008;41:215310.

    Article  Google Scholar 

  30. Craciun R, Picone D, Long RT, Li S, Dixon DA, Peterson KA, Christe KO. Inorg Chem. 2010;49:1056–70.

    Article  CAS  Google Scholar 

  31. Livengood R, Tan S, Greenzweig Y, Notte J, McVey S. J Vac Sci Technol B. 2009;27:3244–9.

    Article  CAS  Google Scholar 

  32. Balk P. The Si–SiO2 system. Amsterdam: Elsevier; 1988.

    Google Scholar 

  33. Grigorescu AE, Hagen CW. Nanotechnology. 2009;20:292001.

    Article  CAS  Google Scholar 

  34. Duan H, Winston D, Yang JKW, Cord BM, Manfrinato VR, Berggren KK. J Vac Sci Technol B. 2010;28:C6C58–62.

    Article  CAS  Google Scholar 

  35. Muray A, Scheinfein M, Isaacson M, Adesida I. J Vac Sci Technol B. 1984;3:367–72.

    Article  Google Scholar 

  36. Hollenbeck JL, Buchanan RC. J Mat Res. 1990;5:1058–72.

    Article  CAS  Google Scholar 

  37. Saiffulah MSM, Kurihara K, Humphreys CJ. J Vac Sci Technol B. 2000;18:2737–44.

    Article  Google Scholar 

  38. Ohta T, Kanayama T, Tanoue H, Komuro M. J Vac Sci Technol B. 1989;7:89–92.

    Article  CAS  Google Scholar 

  39. MacCord MA, Rooks MJ. In: Rai-Choudhury P, editor. Microlithography, micromachining and microfabrication, vol. 1. USA: SPIE; 1997. p. 139–250.

    Google Scholar 

  40. Thompson LF, Bowden MJ. In: Thompson LF, Wilson CG, Bowden, editors. Introduction to microlithography. Am. Chem. Soc., ACS Symp. Ser. 1983; 219: 161–214.

    Google Scholar 

  41. Broers AN, Harper JME, Molzen WW. Appl Phys Lett. 1978;33:392–4.

    Article  CAS  Google Scholar 

  42. Behrish H, Eckstein W, editors. Topics in applied physics. Sputtering by particle bombardment. Heidelberg: Springer; 2007, vol 110.

    Google Scholar 

  43. Ryssel H, Haberger K, Kranz H. J Vac Sci Technol B. 1981;19:1358–62.

    Article  CAS  Google Scholar 

  44. Hirscher S, Kaesmaier R, Domke W-D, Wolter A, Löschner H, Cekan E, Horner C, Zeininger M, Ochsenhirt J. Microelectron Eng. 2001;57–58:517–24.

    Article  Google Scholar 

  45. Namatsu H, Takihashi Y, Yamazaki K, Nagase M, Kurihara K. J Vac Sci Technol B. 1998;16:69–76.

    Article  CAS  Google Scholar 

  46. Sidorkin V, van der Drift E, Salemink HWM. J Vac Sci Technol. 2008;26:2049–53.

    Article  CAS  Google Scholar 

  47. Tesmer JR, Nastasi M, editors. Handbook of modern ion beam materials analysis. Pittburgh: MRS; 1995.

    Google Scholar 

  48. Sidorkin V, Grigorescu A, Salemink H, van der Drift E. Microelectron Eng. 2009;86:749–51.

    Article  CAS  Google Scholar 

  49. Grigorescu AE, van der Krogt MC, Hagen CW. J Micro/Nanolith MEMS MOEMS. 2007;6:043006.

    Article  Google Scholar 

  50. Yang JKW, Berggren KK. J Vac Sci Technol B. 2007;25:2025–9.

    Article  CAS  Google Scholar 

  51. Jackel LD, Howard RE, Mankiewich PM, Craighead HG, Epworth RW. Appl Phys Lett. 1984;45:698–700.

    Article  CAS  Google Scholar 

  52. Rishton SA, Kern DP. J Vac Sci Technol B. 1987;5:135–41.

    Article  CAS  Google Scholar 

  53. Boere E, van der Drift E, Romijn J, Rousseeuw BAC. Microelectron Eng. 1990;11:351–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is part of NanoNed, a national research program on nanotechnology, funded by the Dutch Ministry of Economic Affairs of the Netherlands. Our colleagues Ing A.K. van Langen-Suurling, Dr. V. A. Sidorkin, Dr. P.F.A. Alkemade, Prof. H.W.M. Salemink from TU Delft and Dr. E. van Veldhoven from TNO are gratefully acknowledged for their experimental contributions and discussions. The authors acknowledge Prof. D. Joy, Dr. L. Scipioni, Dr. S. Sijbrandij, Dr. Postek, Dr. Livengood, Dr. Vyvenko and Dr. D. Winston for giving permission to use certain figures and data, as indicated in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile van der Drift .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

van der Drift, E., Maas, D.J. (2012). Helium Ion Lithography. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_4

Download citation

Publish with us

Policies and ethics