Skip to main content

Functional Neuronavigation and Intraoperative MRI

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 29))

Abstract

Our concept of computer assisted surgery is based on the combination of intraoperative magnetic resonance (MR) imaging with microscope-based neuronavigation, providing anatomical and functional guidance simultaneously. Intraoperative imaging evaluates the extent of a resection, while the additional use of functional neuronavigation, which displays the position of eloquent brain areas in the operative field, prevents increasing neurological deficits, which would otherwise result from extended resections.

Up to mid 2001 we performed intraoperative MR imaging using a low-field 0.2 Tesla scanner in 330 patients. The main indications were the evaluation of the extent of resection in gliomas, pituitary tumours, and in epilepsy surgery. Intraoperative MR imaging proved to serve as intraoperative quality control with the possibility of an immediate modification of the surgical strategy, i.e. extension of the resection. Integrated use of functional neuronavigation prevented increased neurological deficits. Compared to routine pre-or postoperative imaging being performed with high-Tesla machines, intraoperative image quality and sequence spectrum could not compete. This led to the development of the concept to adapt a high-field MR scanner to the operating environment, preserving the benefits of using standard microsurgical equipment and microscope-based neuro-navigational guidance with integrated functional data, which was successfully implemented by April 2002. Up to the end of 2002, 95 patients were investigated with the new setup. Improved image quality, intraoperative workflow, as well as enhanced sophisticated intraoperative imaging possibilities are the major benefits of the high-field setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammirati M, Galicich JH, Arbit E, Liao Y (1987) Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 21: 607–614

    PubMed  CAS  Google Scholar 

  2. Atlas SW, Howard RS, Maldjian J, Alsop D, Detre JA, Listerud J, DʼEsposito M, Judy KD, Zager E, Stecker M (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38: 329–338

    PubMed  CAS  Google Scholar 

  3. Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10: 682–694

    PubMed  CAS  Google Scholar 

  4. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30: 161–173

    PubMed  CAS  Google Scholar 

  5. Baumann SB, Noll DC, Kondziolka OS, Schneider W, Nichols TE, Mintun MA, Lewine JD, Yonas H, Orrison WW Jr, Sclabassi RJ (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1: 191–197

    PubMed  CAS  Google Scholar 

  6. Beisteiner R, Erdler M, Teichtmeister C, Diemling M, Moser E, Edward V, Deecke L (1997) Magnetoencephalography may help to improve functional MRI brain mapping. Eur J Neurosci 9: 1072–1077

    PubMed  CAS  Google Scholar 

  7. Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7: 1121–1124

    PubMed  CAS  Google Scholar 

  8. Black PM (1999) Surgery for cerebral gliomas: past, present and future. In: Howard III MA, Elliott JP, Haglund MM, McKhann II GM (Eds) Clinical neurosurgery. Lippincott Williams & Wilkins, Boston, pp 21-45

    Google Scholar 

  9. Black PM, Alexander III E, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intra-operative magnetic resonance imaging unit. Neurosurgery 45: 423–433

    PubMed  CAS  Google Scholar 

  10. Black PM, Moriarty T, Alexander III E, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41: 831–845

    PubMed  CAS  Google Scholar 

  11. Bohinski RJ, Kokkino AK, Warnick RE, Gaskill-Shipley MF, Kormos DW, Lukin RR, Tew JM Jr (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48: 731–744

    PubMed  CAS  Google Scholar 

  12. Bradley WG (2002) Achieving gross total resection of brain tumors: intraoperative MR imaging can make a big difference. AJNR Am J Neuroradiol 23: 348–349

    PubMed  Google Scholar 

  13. Buchfelder M, Fahlbusch R, Ganslandt O, Stefan H, Nimsky C (2002) Use of intraoperative magnetic resonance imaging in tailored temporal lobe surgeries for epilepsy. Epilepsia 43: 864–873

    PubMed  Google Scholar 

  14. Buchfelder M, Ganslandt O, Fahlbusch R, Nimsky C (2000) Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging 12: 547–555

    PubMed  CAS  Google Scholar 

  15. Butler WE, Piaggio CM, Constantinou C, Niklason L, Gonzalez RG, Cosgrove GR, Zervas NT (1998) A mobile computed tomographic scanner with intraoperative and intensive care unit applications. Neurosurgery 42: 1304–1311

    PubMed  CAS  Google Scholar 

  16. Cabantog AM, Bernstein M (1994) Complications of first craniotomy for intra-axial brain tumour. Can J Neurol Sci 21: 213–218

    PubMed  CAS  Google Scholar 

  17. Ciric I, Ammirati M, Vick N, Mikhael M (1987) Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery 21: 21–26

    PubMed  CAS  Google Scholar 

  18. Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MH, Thron A, Gilsbach JM (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49: 86–93

    PubMed  CAS  Google Scholar 

  19. Connelly A, Jackson GD, Frackowiak RS, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188: 125–130

    PubMed  CAS  Google Scholar 

  20. Cosgrove GR, Buchbinder BR, Jiang H (1996) Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am 7: 313–322

    PubMed  CAS  Google Scholar 

  21. Cox RW, Hyde JS (1997) Software tools for analysis and visualization of fMRI data. NMR Biomed 10: 171–178

    PubMed  CAS  Google Scholar 

  22. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22: 604–612

    PubMed  CAS  Google Scholar 

  23. Fadul C, Wood J, Thaler H, Galicich J, Patterson RH Jr, Posner JB (1988) Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology 38: 1374–1379

    PubMed  CAS  Google Scholar 

  24. Fahlbusch R, Ganslandt O, Buchfelder M, Schott W, Nimsky C (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95: 381–390

    PubMed  CAS  Google Scholar 

  25. Ferrant M, Warfield SK, Nabavi A, Jolesz F, Kikinis R (2000) Registration of 3D intraoperative MR images of the brain using a finite element bio-mechanical model. In: Delp SL, DiGioia AM, Jaramaz B (Eds) Medical image computing and computer-assisted intervention – MICCAI 2000. Springer, Berlin Heidelberg New York Tokyo, pp 19–28

    Google Scholar 

  26. Fried I, Nenov VI, Ojemann SG, Woods RP (1995) Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg 83: 854–861

    PubMed  CAS  Google Scholar 

  27. Gallen CC, Schwartz BJ, Bucholz RD, Malik G, Barkley GL, Smith J, Tung H, Copeland B, Bruno L, Assam S et al (1995) Presurgical localization of functional cortex using magnetic source imaging. J Neurosurg 82: 988–994

    PubMed  CAS  Google Scholar 

  28. Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstock J, Vieth J (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91: 73–79

    PubMed  CAS  Google Scholar 

  29. Ganslandt O, Steinmeier R, Kober H, Vieth J, Kassubek J, Romstock J, Strauss C, Fahlbusch R (1997) Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery 41: 621–628

    PubMed  CAS  Google Scholar 

  30. Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3: 166–173

    PubMed  CAS  Google Scholar 

  31. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48: 799–809

    PubMed  CAS  Google Scholar 

  32. Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir (Wien) [Suppl] 85: 137–142

    CAS  Google Scholar 

  33. Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46: 632–642

    PubMed  CAS  Google Scholar 

  34. Hall WA, Martin A, Liu H, Truwit CL (2001) Improving diagnostic yield in brain biopsy: coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging 13: 12–15

    PubMed  CAS  Google Scholar 

  35. Hall WA, Martin AJ, Liu H, Nussbaum ES, Maxwell RE, Truwit CL (1999) Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery 44: 807–814

    PubMed  CAS  Google Scholar 

  36. Hammoud MA, Ligon BL, elSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84: 737–741

    PubMed  CAS  Google Scholar 

  37. Hastreiter P, Engel K, Soza G, Bauer M, Wolf M, Ganslandt O, Fahlbusch R, Greiner G, Ertl T, Nimsky C (2001) Remote Analysis for Brain Shift Compensation. In: Niessen W, Viergever M (Eds) Medical image computing and computer assisted intervention 4th international conference. Springer, Berlin Heidelberg New York Tokyo, pp 1248–1249

    Google Scholar 

  38. Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41: 608–614

    PubMed  CAS  Google Scholar 

  39. Hum B, Feigenbaum F, Cleary K, Henderson F (2000) Intraoperative computed tomography for complex craniocervical operations and spinal tumor resections. Neurosurgery 47: 374–381

    PubMed  CAS  Google Scholar 

  40. Hund M, Rezai AR, Kronberg E, Cappell J, Zonenshayn M, Ribary U, Kelly PJ, Llinas R (1997) Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 40: 936–943

    PubMed  CAS  Google Scholar 

  41. Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10: 738–748

    PubMed  CAS  Google Scholar 

  42. Jack CR Jr, Thompson RM, Butts RK, Sharbrough FW, Kelly PJ, Hanson DP, Riederer SJ, Ehman RL, Hangiandreou NJ, Cascino GD (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190: 85–92

    PubMed  Google Scholar 

  43. Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker DK (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invas Neurosurg 41: 13–19

    Google Scholar 

  44. Kabuto M, Kubota T, Kdobayashi H, Handa Y, Sato K, Ishii H, Takeuchi H, Uno H, Arishima H, Ido K, Ueda Y, Adachi M, Ishida M, Hasegawa Y, Yanagimoto M, Goto Y (1998) Intraoperative CT imaging system using a mobile CT scanner gantry mounted on floor-embedded rails for neurosurgery. No To Shinkei 50: 1003–1008

    PubMed  CAS  Google Scholar 

  45. Kahn T, Schwabe B, Bettag M, Harth T, Ulrich F, Rassek M, Schwarzmaier HJ, Modder U (1996) Mapping of the cortical motor hand area with functional MR imaging and MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. Work in progress. Radiology 200: 149–157

    PubMed  CAS  Google Scholar 

  46. Kaibara T, Myles ST, Lee MA, Sutherland GR (2002) Optimizing epilepsy surgery with intraoperative MR imaging. Epilepsia 43: 425–429

    PubMed  Google Scholar 

  47. Kaibara T, Saunders JK, Sutherland GR (2000) Advances in mobile intraoperative magnetic resonance imaging. Neurosurgery 47: 131–138

    PubMed  CAS  Google Scholar 

  48. Kamada K, Takeuchi F, Kuriki S, Oshiro O, Houkin K, Abe H (1993) Functional neurosurgical simulation with brain surface magnetic resonance images and magnetoencephalography. Neurosurgery 33: 269–273

    PubMed  CAS  Google Scholar 

  49. Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemisphericgliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95: 735–745

    PubMed  CAS  Google Scholar 

  50. Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 20: 1547–1553

    PubMed  CAS  Google Scholar 

  51. Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20: 1642–1646

    PubMed  CAS  Google Scholar 

  52. Kober H, Grummich P, Vieth J (1995) Fit of the digitized head surface with the surface reconstructed from MRI tomography. In: Baumgartner C (Ed) Biomagnetism: fundamental research and clinical applications. Elsevier Science, IOS Press, Amsterdam, pp 309–312

    Google Scholar 

  53. Kober H, Möller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14: 236–250

    PubMed  CAS  Google Scholar 

  54. Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14: 1214–1228

    PubMed  CAS  Google Scholar 

  55. Kowalczuk A, Macdonald RL, Amidei C, Dohrmann III G, Erickson RK, Hekmatpanah J, Krauss S, Krishnasamy S, Masters G, Mullan SF, mundt AJ, Sweeney P, Vokes EE, Weir BKA, Wollmann RL (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41: 1028–1038

    PubMed  CAS  Google Scholar 

  56. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679

    PubMed  CAS  Google Scholar 

  57. Latchaw RE, Hu X, Ugurbil K, Hall WA, Madison MT, Heros RC (1995) Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 37: 619–625

    PubMed  CAS  Google Scholar 

  58. Leahy RM, Mosher JC, ME S, MX H, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroenceph Clin Neurophysiol 107: 159–173

    PubMed  CAS  Google Scholar 

  59. LeRoux PD, Winter TC, Berger MS, Mack LA, Wang K, Elliott lP (1994) A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins. J Clin Ultrasound 22: 29–36

    PubMed  CAS  Google Scholar 

  60. Lewin JS (1999) Interventional MR imaging: concepts, systems, and applications in neuroradiology. AJNR Am J Neuroradiol 20: 735–748

    PubMed  CAS  Google Scholar 

  61. Lunsford LD, Parrish R, Albright L (1984) Intraoperative imaging with a therapeutic computed tomographic scanner. Neurosurgery 15: 559–561

    PubMed  CAS  Google Scholar 

  62. Lunsford LD, Rosenbaum AE, Perry J (1982) Stereotactic surgery using the “therapeutic” CT scanner. Surg Neurol 18: 116–122

    PubMed  CAS  Google Scholar 

  63. Maldjian J, Atlas SW, Howard RS, Greenstein E, Alsop D, Detre JA, Listerud J, DʼEsposito M, Flamm ES (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84: 477–483

    PubMed  CAS  Google Scholar 

  64. Maldjian JA, Schulder M, Liu WC, Mun IK, Hirschorn D, Murthy R, Carmel P, Kalnin A (1997) Intraoperative functional MRI using a real-time neurosurgical navigation system. J Comput Assist Tomogr 21: 910–912

    PubMed  CAS  Google Scholar 

  65. Martin CH, Schwartz R, Jolesz F, Black PM (1999) Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary 2: 155–162

    PubMed  CAS  Google Scholar 

  66. Matula C, Rossler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3: 174–182

    PubMed  CAS  Google Scholar 

  67. Miga MI, Paulsen KD, Hoopes PJ, Kennedy FE, Hartov A, Roberts OW (2000) In vivo modeling of interstitial pressure in the brain under surgical load using finite element s. J Biomech Eng 122: 354–363

    PubMed  CAS  Google Scholar 

  68. Möller M, Kober H, Ganslandt O, Nimsky C, Vieth J, Fahlbusch R (1999) Functional mapping of speech evoked brain activity by magnetoencephalography and its clinical application. Biomed Tech (Berl) 44: 159–161

    Google Scholar 

  69. Morioka T, Yamamoto T, Katsuta T, Fujii K, Fukui M (1994) Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with a peri-Rolandic lesion: technical note. Neurosurgery 34: 930–934

    PubMed  CAS  Google Scholar 

  70. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39: 515–520

    PubMed  CAS  Google Scholar 

  71. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48: 787–798

    PubMed  CAS  Google Scholar 

  72. Nicolato A, Gerosa MA, Fina P, Iuzzolino P, Giorgiutti F, Bricolo A (1995) Prognostic factors in low-grade supratentorial astrocytomas: a uni-multivariate statistical analysis in 76 surgically treated adult patients. Surg Neurol 44: 208–223

    PubMed  CAS  Google Scholar 

  73. Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R (2002) Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir (Wien) [Suppl] 85: 55–63

    Google Scholar 

  74. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47: 1070–1080

    PubMed  CAS  Google Scholar 

  75. Nimsky C, Ganslandt O, Fahlbusch R (2002) From intraoperative patient transport to surgery in the fringe field -intraoperative application of magnetic resonance imaging using a 0.2-Tesla scanner: the Erlangen experience. Tech Neurosurg 7: 265–273

    Google Scholar 

  76. Nimsky C, Ganslandt O, Fahlbusch R (2002) How to implement high-field intraoperative magnetic resonance imaging. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (Eds) CARS2002. Springer, Berlin Heidelberg New York Tokyo, pp 139–143

    Google Scholar 

  77. Nimsky C, Ganslandt O, Fischer H, Oppelt A, Vetter T, Distler P, Kuth R (2000) Kombination aus Kopffixation und Kopfspule für neurochirurgische Operationen. Siemens Technik Report 3: 64–65

    Google Scholar 

  78. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56: 357–364

    PubMed  CAS  Google Scholar 

  79. Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48: 1082–1091

    PubMed  CAS  Google Scholar 

  80. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44: 1249–1256

    PubMed  Google Scholar 

  81. Nimsky C, Ganslandt O, Tomandl B, Buchfelder M, Fahlbusch R (2002) Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur Radiol 12: 2690–2703

    PubMed  Google Scholar 

  82. Ogawa S, Lee CC, Kay AR, Tank OW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    PubMed  CAS  Google Scholar 

  83. Okudera H, Kyoshima K, Kobayashi S, Sugita K (1994) Intraoperative CT scan findings during resection of glial tumours. Neurol Res 16: 265–267

    PubMed  CAS  Google Scholar 

  84. Okudera H, Takemae T, Kobayashi S (1993) Intraoperative computed tomographic scanning during transsphenoidal surgery: technical note. Neurosurgery 32: 1041–1043

    PubMed  CAS  Google Scholar 

  85. Olivier A, Alonso-Vanegas M, Comeau R, Peters TM (1996) Image-guided surgery of epilepsy. Neurosurg Clin N Am 7: 229–243

    PubMed  CAS  Google Scholar 

  86. Olivier A, Germano IM, Cukiert A, Peters T (1994) Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note. J Neurosurg 81: 629–633

    PubMed  CAS  Google Scholar 

  87. Orrison WW Jr, Rose DF, Hart BL, Maclin EL, Sanders JA, Willis BK, Marchand EP, Wood CC, Davis LE (1992) Noninvasive preoperative cortical localization by magnetic source imaging. AJNR Am J Neuroradiol 13: 1124–1128

    PubMed  Google Scholar 

  88. Pergolizzi RS Jr, Nabavi A, Schwartz RB, Hsu L, Wong TZ, Martin C, Black PM, Jolesz FA (2001) Intra-operative MR guidance during transsphenoidal pituitary resection: preliminary results. J Magn Reson Imaging 13: 136–141

    PubMed  Google Scholar 

  89. Poline JB, Vandenberghe R, Holmes AP, Friston KJ, Frackowiak RS (1996) Reproducibility of PET activation studies: lessons from a multi-center European experiment. EU concerted action on functional imaging 4: 34–54

    CAS  Google Scholar 

  90. Pujol J, Conesa G, Deus J, Vendrell P, Isamat F, Zannoli G, Marti VJ, Capdevila A (1996) Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84: 7–13

    PubMed  CAS  Google Scholar 

  91. Rezai AR, Hund M, Kronberg E, Zonenshayn M, Cappell J, Ribary U, Kall B, Llinas R, Kelly PJ (1996) The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 39: 92–102

    PubMed  CAS  Google Scholar 

  92. Righini A, de DO, Prinster A, Spagnoli D, Appollonio I, Bello L, Scifo P, Tomei G, Villani R, Fazio F, Leonardi M (1996) Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist Tomogr 20: 702–708

    PubMed  CAS  Google Scholar 

  93. Roberts OW, Jobst BC, Siegel AM, Lewis PJ, Darcey TM, Thadani VM, Williamson PD (2001) Investigation of extra-temporal epilepsy. Stereotact Funct Neurosurg 77: 216–218

    PubMed  CAS  Google Scholar 

  94. Roberts TP, Zusman E, McDermott M, Barbaro N, RowleyHA (1995) Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg 1: 339–347

    PubMed  CAS  Google Scholar 

  95. Roberts TPL, Rowley HA (1997) Mapping of the sensorimotor cortex: functional MR and magnetic source imaging. AJNR Am J Neuroradiol 18: 871–880

    PubMed  CAS  Google Scholar 

  96. Romstöck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 72: 221–229

    PubMed  Google Scholar 

  97. Rubin JM, Quint DJ (2000) Intraoperative US versus intraoperative MR imaging for guidance during intracranial neurosurgery. Radiology 215: 917–918 (letter)

    Google Scholar 

  98. Rubino GJ, Farahani K, McGill D, Van De Wiele B, Villablanca JP, Wang-Mathieson A (2000) Magnetic resonance imaging-guided neurosurgery in the magnetic fringe fields: the next step in neuronavigation. Neurosurgery 46: 643–654

    PubMed  CAS  Google Scholar 

  99. Schneider JP, Schulz T, Schmidt F, Dietrich J, Lieberenz S, Trantakis C, Seifert V, Kellermann S, Schober R, Schaffranietz L, Laufer M, Kahn T (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22: 89–98

    PubMed  CAS  Google Scholar 

  100. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94: 936–945

    PubMed  CAS  Google Scholar 

  101. Schulder M, Maldjian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, Carmel PW (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89: 412–418

    PubMed  CAS  Google Scholar 

  102. Schwartz RB, Hsu L, Wong TZ, Kacher DF, Zamani AA, Black PM, Alexander III E, Stieg PE, Moriarty TM, Martin CA, Kikinis R, lolesz FA (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211: 477–488

    PubMed  CAS  Google Scholar 

  103. Schwartz TH, Marks D, Pak J, Hill J, Mandelbaum DE, Holodny AI, Schulder M (2002) Standardization of amygdalohippocampectomy with intraoperative magnetic resonance imaging: preliminary experience. Epilepsia 43: 430–436

    PubMed  Google Scholar 

  104. Schwartz TH, Resor SRJ, De La Paz R, Goodman RR (1998) Functional magnetic resonance imaging localization of ictal onset to a dysplastic cleft with simulatneous sensorimotor mapping: intraoperative electrophysiological confirmation and postoperative follow-up: technical note. Neurosurgery 43: 639–645

    PubMed  CAS  Google Scholar 

  105. Segebarth C, Belle V, Delon C, Massarelli R, Decety J, Le Bas JF, Decorps M, Benabid AL (1994) Functional MRI of the human brain: predominance of signals from extracerebral veins Neuroreport 5: 813–816

    CAS  Google Scholar 

  106. Seifert V, Zimmermann M, Trantakis C, Vitzthum HE, Kuhnel K, Raabe A, Bootz F, Schneider JP, Schmidt F, Dietrich J (1999) Open MRI-guided neurosurgery. Acta Neurochir (Wien) 141: 455–464

    CAS  Google Scholar 

  107. Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254: 43–50

    PubMed  CAS  Google Scholar 

  108. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures. A preliminary report. Neurosurgery 43: 739–748

    PubMed  CAS  Google Scholar 

  109. Stippich C, Freitag P, Kassubek J, Sörös P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radii E-W, Vieth J (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. Neuroreport 9: 1953–1957

    PubMed  CAS  Google Scholar 

  110. Sumanaweera TS, Adler JR, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 35: 696–704

    PubMed  CAS  Google Scholar 

  111. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91: 804–813

    PubMed  CAS  Google Scholar 

  112. Sutherland GR, Kaibara T, Wallace C, Tomanek B, Richter M (2002) Intraoperative assessment of aneurysm clipping using magnetic resonance angiography and diffusion-weighted imaging: technical case report. Neurosurgery 50: 893–898

    PubMed  Google Scholar 

  113. Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, K unze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40: 891–902

    PubMed  CAS  Google Scholar 

  114. Tzika AA, Cheng LL, Goumnerova L, Madsen JR, Zurakowski D, Astrakas LG, Zarifi MK, Scott RM, Anthony DC, Gonzalez RG, Black PM (2002) Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg 96: 1023–1031

    PubMed  CAS  Google Scholar 

  115. Tzika AA, Zarifi MK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM (2002) Neuro-imaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. AJNR Am J Neuroradiol 23: 322–333

    PubMed  Google Scholar 

  116. Wirtz CR, Bonsanto MM, Knauth M, Tronnier VM, Albert FK, Staubert A, Kunze S (1997) Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 2: 172–179

    PubMed  CAS  Google Scholar 

  117. Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46: 1112–1122

    PubMed  CAS  Google Scholar 

  118. Wolf M, Vogel T, Weierich P, Niemann H, Nimsky C (2001) Automatic transfer of preoperative fMRI markers into intraoperative MR-images for updating functional neuronavigation. IEICE T Inf Syst E84-D: 1698–1704

    Google Scholar 

  119. Woydt M, Krone A, Becker G, Schmidt K, Roggendorf W, Roosen K (1996) Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir 138: 1391–1398

    PubMed  CAS  Google Scholar 

  120. Xiong J, Gao J, Lancaster J, Fox P (1996) Assessment and optimization of functional MRI analyses. Human Brain Mapping 4: 153–167

    PubMed  CAS  Google Scholar 

  121. Yousry TA, Schmid VD, Jassoy AG, Schmidt D, Eisner WE, Reulen HJ, Reiser MF, Lissner J (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195: 23–29

    PubMed  CAS  Google Scholar 

  122. Zimmermann M, Seifert V, Trantakis C, Kuhnel K, Raabe A, Schneider JP, Dietrich J, Schmidt F (2000) Open MRI-guided microsurgery of intracranial tumours. Preliminary experience using a vertical open MRI-scanner. Acta Neurochir (Wien) 142: 177–186

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Nimsky, C., Ganslandt, O., Fahlbusch, R. (2004). Functional Neuronavigation and Intraoperative MRI. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0558-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0558-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7192-9

  • Online ISBN: 978-3-7091-0558-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics