Skip to main content

Siderophores of the Pseudomonadaceae sensu stricto(Fluorescent and Non-Fluorescent Pseudomonas spp.)

  • Chapter
Progress in the Chemistry of Organic Natural Products

Part of the book series: Progress in the Chemistry of Organic Natural Products ((FORTCHEMIE (closed),volume 87))

Abstract

No other bacterial genus has been brought into context with so many different aspects of public interest as that of Pseudomonas (439): Pseudomonas aeruginosa is the germ responsible for most hospital infections (40a) being increasingly resistant against all common antibiotics (180,394); a Pseudomonas sp. is blamed to be the true culprit for the production of tetrodotoxin, the deadly poison of the Japanese pufferfish (521); Pseudomonas (Ralstonia) solanacearum destroys crops and is so dangerous that a special periodical, the “Bacterial Wilt Newsletter”1 was founded in order to deal with this problem; other Pseudomonas spp. increase the harvest of important nutritional plants (366); Pseudomonas tolaasii makes cultivated mushrooms unmarketable (468); Pseudomonas syringae besides infecting many plants helps in the Alps to prolong the skiing season (298); Pseudomonas putida assists us by degrading our toxic waste (i.e. aromatic and chlorinated compounds) (16,83,306), Pseudomonas chlororaphis attacks plastics, especially polyurethanes, and that not only in waste dumps (207) but also as a warfare agent proposed to destroy the protective layers of aircraft against radar detection;2 and the enzyme systems of Pseudomonas putida are used for stereospecific organic syntheses(209).

… never to take anything for granted.

A.J. Cronin, The Citadel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah MA (1991) Pyoverdins and Pseudobactins. In: Winkelmann G (ed) Handbook of Microbial Iron Chelates. CRC Press, Boca Raton, p 139

    Google Scholar 

  2. Boukhalfa H, Crumbliss AL (2002) Chemical Aspects of Siderophore Mediated Iron Transport. BioMetals 15: 325

    Article  CAS  Google Scholar 

  3. Budzikiewicz H (1993) Secondary Metabolites from Fluorescent Pseudomonads. FEMS Microbiol Rev 104: 209

    Article  CAS  Google Scholar 

  4. Budzikiewicz H (1997) Siderophores of Fluorescent Pseudomonads. Z Naturforsch 52c: 713

    Google Scholar 

  5. Budzikiewicz H (1997) Siderophores from Fluorescent Pseudomonas. In: Atta-ur-Rahman (ed) Studies in Natural Products Chemistry, vol 19. Elsevier, Amsterdam, p 793

    Google Scholar 

  6. Cornelis P, Matthijs S (2002) Diversity of Siderophore-Mediated Iron Uptake Systems in Fluorescent Pseudomonads: not only Pyoverdines. Environ Microbiol 4: 787

    Google Scholar 

  7. Guerinot ML (1994) Microbial Iron Transport. Ann Rev Microbiol 48: 743

    Article  CAS  Google Scholar 

  8. Kapatral V, Zago A, Kamath S, Chugani S (2000)Pseudomonas.In: Lederberg J (ed) Encyclopedia of Microbiology, vol. 3. Academic Press, San Diego, p 876

    Google Scholar 

  9. Leisinger T, Margraff R (1979) Secondary Metabolites of the Fluorescent Pseudomonads. Microbiol Rev 43: 422

    CAS  Google Scholar 

  10. Meyer JM, Geoffroy V (2003) Environmental FluorescentPseudomonasand Pyoverdine Diversity: how Siderophores could help Microbiologists in Bacterial Identification and Taxonomy. In: Crosa JH, Payne SM (eds) Iron Transport in Bacteria: Molecular Genetics, Biochemistry, Microbial Pathogenesis and Ecology. American Society of Microbiology, Washington

    Google Scholar 

  11. Meyer JM, Stintzi A (1998) Iron Metabolism and Siderophores inPseudomonasand Related Species. In: Montie TC (ed)Pseudomonas.Plenum, New York

    Google Scholar 

  12. Pattus F, Abdallah MA (2000) Siderophores and Iron-Transport in Microorganisms. J Chinese Chem Soc 47: 1

    CAS  Google Scholar 

  13. Poole K, McKay GA (2003) Iron Acquisition and its Control inPseudomonas aeruginosa:Many Roads Lead to Rome. Fron Biosci 8: d661

    Article  Google Scholar 

  14. Sigel A, Sigel H (eds) (1998) Metal Ions in Biological Systems, vol. 35. Iron Transport and Storage in Microorganisms, Plants, and Animals. Marcel Dekker, New York

    Google Scholar 

  15. Swinburne TR (ed) (1986) Iron, Siderophores, and Plant Diseases. Plenum, New York

    Book  Google Scholar 

  16. Winkelmann G, Carrano CJ (eds) (1997) Transition Metals in Microbial Metabolism. Harwood, Amsterdam

    Google Scholar 

  17. Abdallah MA, Hennard C, Linget C, Ocaktan A (1991) Transport du fer et rôle des pyoverdines dans la virulence dePseudomonas aeruginosa.Incidences thérapeutiques. Path Biol 39: 600

    CAS  Google Scholar 

  18. Albesa I, Barberis LI, P¨¢jaro MC, Eraso Ai (1985) Pyoverdine Production byPseudomonas fluorescensin Synthetic Media with Various Sources of Nitrogen. J Gen Microbiol 131: 3251

    CAS  Google Scholar 

  19. Albrecht-Gary AM, Blanc S, Rochel N, Ocaktan AZ, Abdallah MA (1994) Bacterial Iron Transport: Coordination Properties of Pyoverdin PaA, a Peptidic Siderophore ofPseudomonas aeruginosa.Inorg Chem 33: 6391

    Article  CAS  Google Scholar 

  20. Al-Shibib A, Ebu-Talb A (1998) Antimicrobial Activity of Pyoverdin Pigment Produced byPseudomonas.Bull Pharm Sci Assiut Univ 21: 37

    CAS  Google Scholar 

  21. Amann C, Taraz K, Budzikiewicz H, Meyer JM (2000) The Siderophores ofPseudomonas fluorescens18.1 and the Importance of Cyclopeptidic Substructures for the Recognition at the Cell Surface. Z Naturforsch 55c: 671

    Google Scholar 

  22. Ambrosi C, Leoni L, Putignani L, Orsi N, Visca P (2000) Pseudobactin Biogenesis in the Plant Growth-Promoting RhizobacteriumPseudomonasStrain B10: Identification and Functional Analysis of the L-Ornithine N5-Oxygenase(psbA)Gene. J Bacteriol 182: 6233

    Article  CAS  Google Scholar 

  23. Ams DA, Maurice PA, Hersman LE, Forsythe JH (2002) Siderophore Production by an AerobicPseudomonas mendocinaBacterium in the Presence of Kaolinite. Chem Geol 188: 161

    Article  CAS  Google Scholar 

  24. Anderegg G, L’Eplattenier F, Schwarzenbach G (1963) Hydroxamatkomplexe III. Eisen(III)-Austausch zwischen Sideraminen und Komplexonen. Diskussion der Bildungskonstanten der Hydroxamatkomplexe. Hely Chim Acta 46: 1409

    Article  CAS  Google Scholar 

  25. Anderegg G, Räber M (1990) Metal Complex Formation of a New Siderophore Desferrithiocin and of Three Related Ligands. J Chem Soc Chem Commun 1194

    Google Scholar 

  26. Ankenbauer RG, Cox CD (1988) Isolation and Characterization ofPseudomonas aeruginosaMutants Requiring Salicylic Acid for Pyochelin Biosynthesis. J Bacteriol 170: 5364

    CAS  Google Scholar 

  27. Ankenbauer R, Sriyosachati S, Cox CD (1985) Effects of Siderophores on the Growth ofPseudomonas aeruginosain Human Serum and Transferrin. Infect Immun 49: 132

    CAS  Google Scholar 

  28. Ankenbauer RG, Staley AL, Rinehart KL, Cox CD (1991) Mutasynthesis of Siderophore Analogues byPseudomonas aeruginosa.Proc Natl Acad Sci USA 88: 1878

    Article  CAS  Google Scholar 

  29. Ankenbauer RG, Toyokuni T, Staley A, Rinehart jr KL, Cox CD (1988) Synthesis and Biological Activity of Pyochelin, a Siderophore ofPseudomonas aeruginosa.J Bacteriol 170: 5344

    CAS  Google Scholar 

  30. Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an Isoxazolidone with Siderophoric Activity fromPseudomonas fluorescensAH2 Isolated from Lake Victorian Nile Perch. J Nat Prod 58: 1786

    Article  CAS  Google Scholar 

  31. Aroulanda C, Merlet D, Courtieu J, Lesot P (2001) NMR Experimental Evidence of the Differentiation of Enantiotopic Directions in Csand C2„ Molecules Using Partially Oriented, Chiral Media. J Am Chem Soc 123: 12059

    Article  CAS  Google Scholar 

  32. Askeland RA, Morrison SM (1983) Cyanide Production byPseudomonas fluorescensandPseudomonas aeruginosa.Appl Environ Microbiol 45: 1802

    CAS  Google Scholar 

  33. Atkinson RA, Salah el Din ALM, Kieffer B, Lefèvre JF, Abdallah MA (1998) Bacterial Iron Transport:1H NMR Determination of the Three-Dimensional Structure of the Gallium Complex of Pyoverdin G4R, the Peptidic Siderophore ofPseudomonas putidaG4R. Biochemistry 37: 15965

    Article  CAS  Google Scholar 

  34. Azelvandre P (1993) Les deferriferrioxamines E et D2, sidérophores dePseudo-monas stutzeriThèse d’Université, Strasbourg (quoted in Ref.324)

    Google Scholar 

  35. Baker TR, Doucette GJ, Powell CL, Boyer GL, Plumley FG (2003) GTX4Imposters: Characterization of Fluorescent Compounds Synthesized byPseudo-monas stutzeriSF/PS andPseudomonas/AlteromonasPTB-1, Symbionts of Saxitoxin-ProducingAlexandriumspp. Toxicon 41: 339

    Article  CAS  Google Scholar 

  36. Balashova NV, Kosheleva IA, Filonov AE, Gayazov RR, Boronin AM (1997) Phenanthrene-and Naphthalene-Degrading Strains ofPseudomonas putida.Microbiology 66: 408 (Russian Original Mxxpoönonorxx 66: 488)

    Google Scholar 

  37. Barelmann I (1998) Über die Primär-und Sekundärstrukturen der Pyoverdine ausPseudomonas fluorescensPL7 undPseudomonas fluorescensPL8. Dissertation Universität zu Köln

    Google Scholar 

  38. Barelmann I, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2002) The Structures of the Pyoverdins from TwoPseudomonas fluorescensStrains Accepted Mutually by Their Respective Producers. Z Naturforsch 57c: 9

    Google Scholar 

  39. Barelmann I, Urfa Fern¨¢ndez D, Budzikiewicz H, Meyer JM (2003) The Pyoverdine fromPseudomonas chlororaphisD-TR133 Showing Mutual Acceptance with the Pyoverdine fromPseudomonas fluorescensCHAO. BioMetals 16: 263

    Article  CAS  Google Scholar 

  40. Barker WR, Callaghan C, Hill L, Noble D, Acred P, Harper PB, Sowa MA, Fletton RA (1979) G1549, a New Cyclic Hydroxamic Acid Antibiotic, Isolated from Culture Broth ofPseudomonas alcaligenes.J Antibiot 32: 1096

    Article  CAS  Google Scholar 

  41. Baysse C, Budzikiewicz H, Urfa Fern¨¢ndez D, Cornelis P (2002) Impaired Maturation of the Siderophore Pyoverdine Chromophore inPseudomonas fluorescensATCC 17400 Deficient for the CytochromecBiogenesis Protein CcmC. FEBS Letters 523: 23

    Article  CAS  Google Scholar 

  42. Baysse C, de Vos D, Naudet Y, Vandermonde A, Ochsner U, Meyer JM, Budzikiewicz H, Schäfer M, Fuchs R, Cornelis P (2000) Vanadium Interferes with Siderophore-Mediated Iron Uptake inPseudomonas aeruginosa.Microbiology 146: 2425

    CAS  Google Scholar 

  43. Beare PA, For RJ, Martin LW, Lamont IL (2003) Siderophore-Mediated Cell Signalling inPseudomonas aeruginosa:Divergent Pathways Regulate Virulence Factor Production and Siderophore Receptor Synthesis. Mol Microbiol 47: 195

    Article  CAS  Google Scholar 

  44. Beiderbeck H (1997) Untersuchung der Pyoverdine ausPseudomonas aeruginosaATCC 15152Pseudomonas fluorescensCFBP 2392 undPseudomonas putida2461. Diplomarbeit, Universität zu Köln, and unpublished results

    Google Scholar 

  45. Beiderbeck H, Risse D, Budzikiewicz H, Taraz K (1999) A New Pyoverdin fromPseudomonas aureofaciens.Z Naturforsch 54c: 1

    CAS  Google Scholar 

  46. Beiderbeck H, Taraz K, Meyer JM (1999) Revised Structures of the Pyoverdins fromPseudomonas putidaCFBP 2461 and fromPseudomonas fluorescensCFBP 2392. BioMetals 12: 331

    Article  CAS  Google Scholar 

  47. Beier RC, Stipanovic RD (1989) Fast Atom Bombardment of Metal-Pyochelin Complexes: Metastable Analysis at ConstantB/Eof Zinc-Pyochelin. Biomed Environ Mass Spectrom 18: 185

    Article  CAS  Google Scholar 

  48. Beijerinck MW (1901) Ueber oligonitrophile Mikroben. Centralbl Bakteriol Parasitenk Infektionskr II 7: 561

    Google Scholar 

  49. Bender CL, Alarcón-Chaidez F, Gross DC (1999)Pseudomonas syringaePhytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiol Mol Biol Rev 63: 266

    CAS  Google Scholar 

  50. Bernardini JJ, Linget-Morice C, Hoh F, Collinson SK, Kyslik P, Page WJ, Dell A, Abdallah MA (1996) Bacterial Siderophores: Structure Elucidation, and1H13C and15N Two-Dimensional NMR Assignments of Azoverdin and Related Siderophores Synthesized byAzomonas macrocytogenesATCC 12334. BioMetals 9: 107

    Article  CAS  Google Scholar 

  51. Birkofer L, Birkofer A (1948) Lactoflavin, eine Komponente des “BakterienFluoresceins”. Z Naturforsch 3b: 136

    CAS  Google Scholar 

  52. Bitter W, Marugg JD, de Weger LA, Tommassen J, Weisbeek Pi (1991) The FerricPseudobactin Receptor PupA ofPseudomonas putidaWCS358: Homology to TonB-DependentEscherichia coliReceptors and Specificity of the Protein. Mol Microbiol 5: 647

    Article  CAS  Google Scholar 

  53. Blazhevich OV, Maksimova NP (1994) Biosynthesis of the Fluorescent Pigment Pyoverdine Pmfrom the Rhizosphere ofPseudomonas putidaM. H3B Axart Hayx CCCP Cep Blum 205

    Google Scholar 

  54. Blondeaux A, Hamel JF, Widehem P, Cochet N (1999) Influence of Water Activity on the Ice-Nucleating Activity ofPseudomonas syringae.J Indust Microbiol Biotechnol 23: 514

    Article  CAS  Google Scholar 

  55. Böckmann M, Taraz K, Budzikiewicz H (1997) Biogenesis of the Pyoverdin Chromophore. Z Naturforsch 52c: 319

    Google Scholar 

  56. Böhnke R, Matzanke BF (1995) The Mobile Ferrous Iron Pool inEscherichia coliis Bound to a Phosphorylated Sugar Derivative. BioMetals 8: 223

    Article  Google Scholar 

  57. Bonde GJ, Jensen CE, Thamsen J (1957) Studies on the Water Soluble Fluoresceing Bacterial Pigment which Depolymerizes Hyaluronic Acid. Acta Pharmacol Toxicol 13: 184

    CAS  Google Scholar 

  58. Boopathi E, Rao KS (1999) A Siderophore fromPseudomonas putidaType Al: Structural and Biological Characterization. Biochim Biophys Acta 1435: 30

    Article  CAS  Google Scholar 

  59. Boruah HPD, Kumar BSD (2002) Plant Disease Suppression and Growth Promotion by a FluorescentPseudomonasStrain. Folia Microbiol 47: 137

    Article  CAS  Google Scholar 

  60. Boruah HPD, Kumar BSD (2002) Biological Activity of Secondary Metabolites Produced by a Strain ofPseudomonas fluorescens.Folia Microbiol 47: 359

    Article  CAS  Google Scholar 

  61. Bossis E, Lemanceau P, Latour X, Gardan L (2000) The Taxonomy ofPseudomonas fluorescensandPseudomonas putida:Current Status and Need for Revision. Agronomie 20: 51

    Article  Google Scholar 

  62. Botzenhart K, Rüden H (1987) Hospital Infections Caused byPseudomonas aeruginosa.Antibiot Chemother 39: 1

    CAS  Google Scholar 

  63. Bouby M, Billard I, Maccordick HI (1999) Selective Behavior of the Siderophore Pyoverdine A towards UO2 2+ Th4+U4+and other Cations. Czechoslovak J Phys 49 Suppl 51: 147

    Article  Google Scholar 

  64. Bouchard C (1889) L’influence qu’ exerce sur la maladie charbonneuse l’inoculation du bacille pyocyanique. Compt rend Acad Sci 108: 713

    Google Scholar 

  65. Brandon MS, Paszczynski A, Korus R, Crawford RL (2003) The Determination of the Stability Constant for the Iron(II) Complex of the Biochelator Pyridine-2,6-bis (monothiocarboxylic acid). Biodegrad 14: 73

    Article  CAS  Google Scholar 

  66. Braun V (2001) Iron Uptake Mechanisms and Their Regulation in Pathogenic Bacteria. Int J Med Microbiol 291: 67

    Article  CAS  Google Scholar 

  67. Braun V, Braun M (2002) Active Transport of Iron and Siderophore Antibiotics. Curr Opin Microbiol 5: 194

    Article  CAS  Google Scholar 

  68. Briskot G (1988) Über die Pyoverdine vonPseudomonas aeruginosa.Dissertation Univ. zu Köln

    Google Scholar 

  69. Briskot G, Taraz K, Budzikiewicz H (1986) Siderophore vom Pyoverdin-Typ ausPseudomonas aeruginosa.Z Naturforsch 41c: 497

    Google Scholar 

  70. Briskot G, Taraz K, Budzikiewicz H (1989) Pyoverdin-Type Siderophores fromPseudomonas aeruginosa.Liebigs Ann Chem 375

    Google Scholar 

  71. Britigan BE, Rasmussen GT, Cox CD (1994)PseudomonasSiderophore Pyochelin Enhances Neutrophil-Mediated Endothelial Cell Injury. Am J Pysiol 10: L192

    Google Scholar 

  72. Britigan BE, Roeder TL, Rasmussen GT, Shasby DM, McCormick ML, Cox CD (1992) Interaction of thePseudomonas aeruginosaSecretory Products Pyocyanin and Pyochelin Generates Hydroxyl Radical and Causes Synergistic Damage to Endotherial Cells. J Clin Invest 90: 2187

    Article  CAS  Google Scholar 

  73. Buchanan RE, Holt JG, Lessel jr EF (eds) (1966) Index Bergeyana, Williams & Wilkins, Baltimore; Gibbons NE, Pattee KB, Holt JG (eds) (1981) Supplement to Index Bergeyana, Williams & Wilkins, Baltimore

    Google Scholar 

  74. Buchanan SK (1999) 0-Barrel Proteins from Bacterial Outer Membranes: Structure, Function and Refolding. Curr Opin Struct Biol 9: 455

    Article  CAS  Google Scholar 

  75. Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, Deisenhofer J (1999) Crystal Structure of the Outer Membrane Active Transporter FepA fromEscherichia coli.Nature Struct Biol 6: 56

    Article  CAS  Google Scholar 

  76. Buchwald HD, Durham L, Fischer HG, Harada R, Mosher HS, Kao CV, Fuhrman FA (1964) Identity of Tarichatoxin and Tetrodotoxin. Science 143: 474

    Article  CAS  Google Scholar 

  77. Budzikiewicz H (1993) Secondary Metabolites from Fluorescent Pseudomonads. FEMS Microbiol Rev 104: 209

    Article  CAS  Google Scholar 

  78. Budzikiewicz H, Siderophores from FluorescentPseudomonas.In: Atta-ur-Rahman (ed) Studies in Natural Products Chemistry, vol 19. Elsevier, Amsterdam, p 793

    Google Scholar 

  79. Budzikiewicz H (1998) Massenspektrometrie. Eine Einführung, 4thedn. WileyVCH, Weinheim

    Google Scholar 

  80. Budzikiewicz H (1998) Peptide Siderophores from the Bacterial GenusPseudo-monas.In: Pandey A (ed) Advances in Biotechnology, Educational Publishers and Distributors, New Delhi, p 157

    Google Scholar 

  81. Budzikiewicz H (2001) Siderophores of the Human Pathogenic Fluorescent Pseudomonads. Curr Top Med Chem 1: 1

    Article  CAS  Google Scholar 

  82. Budzikiewicz H (2001) Siderophore-Antibiotic Conjugates Used as Trojan Horses againstPseudomonas aeruginosa.Curr Top Med Chem 1: 73

    Article  CAS  Google Scholar 

  83. Budzikiewicz H (2003) Heteroaromatic Monothiocarboxylic Acids fromPseudo-monassp. Biodegrad 14: 65

    Article  CAS  Google Scholar 

  84. Budzikiewicz H (2004) Bacterial Catecholate Siderophores. Mini-Rev Org Chem, submitted

    Google Scholar 

  85. Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozaczuk M, Skorupska A (1998) Dihydropyoverdin-7-sulfonic Acids — Unusual Bacterial Metabolites. Nat Prod Letters 12: 125

    Article  Google Scholar 

  86. Budzikiewicz H, Georgias H, Taraz K (2002) Diastereomeric PyoverdinChromium(III) Complexes. Z Naturforsch 57c: 954

    Google Scholar 

  87. Budzikiewicz H, Hildebrand U, Ockels W, Reiche M, Taraz K (1983) Weitere aus dem Kulturmedium vonPseudomonas putidaisolierte Pyridinderivate — Genuine Metaboliten oder Artefacte? Z Naturforsch 38b: 516

    CAS  Google Scholar 

  88. Budzikiewicz H, Kilz S, Taraz K, Meyer JM (1997) Identical Pyoverdines fromPseudomonas fluorescens9AW and fromPseudomonas putida9BW. Z Natur-forsch 52c: 721

    Google Scholar 

  89. Budzikiewicz H, Schaffner EM, Taraz K (1992) A Novel Azotobactin fromAzotobacter vinelandü.Nat Prod Lett 1: 9

    Article  CAS  Google Scholar 

  90. Budzikiewicz H, Schaller U, Korth H, Pulverer G (1979) Alkylchinoline und deren N-Oxide ausPseudomonas aeruginosa.Monatsh Chem 110: 947

    Article  CAS  Google Scholar 

  91. Budzikiewicz H, Schröder H, Taraz K (1992) Zur Biogenese derPseudomonasSiderophore: Der Nachweis analoger Strukturen eines Pyoverdin-Desferriferribactin-Paares. Z Naturforsch 47c: 26

    Google Scholar 

  92. Budzikiewicz H, Urfa Fern¨¢ndez D, Fuchs R, Michalke R, Taraz K, Ruangviriyachai C (1999) Pyoverdins with a Lys e-Amino Link in the Peptide Chain? Z Naturforsch 54c: 1021–1026

    Google Scholar 

  93. Bukovits GJ, Mohr N, Budzikiewicz H, Korth H, Pulverer G (1982) 2-Phenylthiazol-Derivate ausPseudomonas cepacia.Z Naturforsch 37b: 877

    CAS  Google Scholar 

  94. Bulen WA, LeComte JR (1962) Isolation and Properties of a Yellow-Green Fluorescent Peptide fromAzotobacterMedium. Biochem Biophys Res Comm 9: 523

    Article  CAS  Google Scholar 

  95. Bultel-Poncé V, Berge JP, Debitus C, Nicolas JL, Guyot M (1999) Metabolites from the Sponge-Associated BacteriumPseudomonasSpecies. Mar Biotechnol 1: 384

    Article  Google Scholar 

  96. Bultreys A, Gheysen I (2000) Production and Comparison of Peptide Siderophores from Strains of Distantly Related Pathovars ofPseudomonas syringaeandPseudomonas viridiflavaLMG 2352. Appl Environ Microbiol 66: 325

    Article  CAS  Google Scholar 

  97. Bultreys A, Gheysen I, Maraite H, de Hoffman E (2001) Characterization of Fluorescent and Nonfluorescent Peptide Siderophores Produced byPseudomonas syringaeStrains and their Potential Use in Strain Identification. Appl Environ Microbiol 67: 1718

    Article  CAS  Google Scholar 

  98. Bultreys A, Gheysen I, Wathelet B, Maraite H, de Hoffman E (2003) High-Performance Liquid Chromatography Analyses of Pyoverdin Siderophores Differentiate among Phytopathogenic FluorescentPseudomonasspecies. Appl Environ Microbiol 69: 1143 and unpublished material from the Gembloux and Köln laboratories

    Article  CAS  Google Scholar 

  99. Burton MO, Campbell JJR, Eagles BA (1948) The Mineral Requirements for Pyocyanin Production. Can J Res 26c: 15

    Article  CAS  Google Scholar 

  100. Buyer JS, Leong J (1986) Iron Transport-Mediated Anatagonism between Plant Growth-Promoting and Plant-DeleteriousPseudomonasStrains. J Biol Chem 261: 791

    CAS  Google Scholar 

  101. Buyer JS, Wright JM, Leong J (1986) Structure of Pseudobactin A214, a Siderophore from a Bean-DeleteriousPseudomonas.Biochemistry 25: 5492

    Article  CAS  Google Scholar 

  102. Caignan GA, Deshmukh R, Wilks A, Zeng Y, Huang HW, Moënne-Loccoz P, Bunce RA, Eastman MA, Rivera M (2002) Oxidation of Heme to ß-andS-BiliverdinbyPseudomonas aeruginosaHeme Oxygenase as Consequence of an Unusual Seating of the Heme. J Am Chem Soc 124: 14879

    Article  CAS  Google Scholar 

  103. Calfee MW, Coleman JP, Pesci EC (2001) Interference withPseudomonasQuinolone Signal Synthesis Inhibits Virulence Factor Expression byPseudomonas aeruginosa.Microbiology 98: 11633

    CAS  Google Scholar 

  104. Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-Dihydroaeruginoic Acid, an Inhibitor ofSeptoria triticiand other Phytopathogenic Fungi and Bacteria, Produced byPseudomonas fluorescens.J Nat Prod 57: 1200

    Article  CAS  Google Scholar 

  105. Castignetti D (1997) Probing ofPseudomonas aeruginosa Pseudomonas aureofaciens Burkholderia (Pseudomonas) cepacia Pseudomonas fluorescensandPseudomonas putidawith the Ferripyochelin Receptor A Gene and the Synthesis of Pyochelin inPseudomonas aureofacines Pseudomonas fluorescensandPseudo-monas putida.Curr Microbiol 34: 250

    Article  CAS  Google Scholar 

  106. Chakrabarty AM, Roy SC (1964) Characterization of a Pigment from a Pseudo-monad. Biochem J 93: 144

    CAS  Google Scholar 

  107. Chakraborty RN, Patel HN, Desai SB (1990) Isolation and Partial Characterization of Catechol-Type Siderophore fromPseudomonas stutzeriRC7. Curr Microbiol 20: 283

    Article  CAS  Google Scholar 

  108. Champomier-Vergès MC, Stintzi A, Meyer JM (1996) Acquisition of Iron by the Non-Siderophore-ProducingPseudomonas fragi.Microbiology 142: 1191

    Article  Google Scholar 

  109. Chen JL, Kunz DA (1997) Cyanide Utilization inPseudomonas fluorescensNCIMB 11764 Involves a Putative Siderophore. FEMS Microbiol Lett 156: 61

    Article  CAS  Google Scholar 

  110. Chen Y, Jurkevitch E, Bar-Ness E, Hadar Y (1994) Stability Constants of Pseudobactin Complexes with Transition Metals. Soil Sci Soc Am J 58: 390

    Article  CAS  Google Scholar 

  111. Chipperfield JR, Ratledge C (2000) Salicylic Acid is not a Bacterial Siderophore: a Theoretical Study. BioMetals 13: 165

    Article  CAS  Google Scholar 

  112. Chodat F, Gouda S (1961) Contribution ¨¤ l’étude du pigment dePseudomonas fluorescensMig. Path Microbiol 24: 840

    CAS  Google Scholar 

  113. Chugani S, Daubaras D, Danganan C, Hubner A, McFall S, Hendrickson W, Chakrabarty A (1997) Molecular and Evolutionary Mechanisms in the Microbial Degradation of Synthetic Chlorinated Compounds. Chim Oggi 15: 17

    CAS  Google Scholar 

  114. Clarke TE, Tari LW, Vogel HJ (2001) Structural Biology of Bacterial Iron Uptake Sytems. Curr Top Med Chem 1:7

    Article  CAS  Google Scholar 

  115. Cody YS, Gross DC (1987) Characterization of PyoverdinpSSthe Fluorescent Siderophore Produced byPseudomonas syringaepv.syringae.Appl Environ Microbiol 53: 928

    CAS  Google Scholar 

  116. Coffman TJ, Cox CD, Edeker BL, Britigan BE (1990) Possible Role of Bacterial Siderophores in Inflammation. Iron Bound to thePseudomonasSiderophore Pyochelin can Function as a Hydroxyl Radical Catalyst. J Clin Invest 86: 1030

    Article  CAS  Google Scholar 

  117. Collinson SK, Abdallah MA, Page WJ (1990) Temperature-Sensitive Production of Azoverdin, the Pyoverdin-like Siderophore ofAzomonas macrocytogenesATCC 12334. J Gen Microbiol 136: 2297

    Article  CAS  Google Scholar 

  118. Collinson SK, Page WJ (1989) Production of Outer-Membrane Proteins and an Extracellular Fluorescent Compound by Iron-LimitedAzomonas macrocytogenes.J Gen Microbiol 135: 1229

    CAS  Google Scholar 

  119. Corbin JL, Bulen WA (1969) The Isolation and Identification of 2,3-Dihydroxybenzoic Acid and 2-N,6-N-Di(2,3-dihydroxybenzoyl)-L-lysine Formed by Iron-DeficientAzotobacter vinelandii.Biochemistry 8: 757

    Article  CAS  Google Scholar 

  120. Corbin JL, Karle IL, Karle J (1970) Crystal Structure of the Chromophore from the Fluorescent Peptide Produced by Iron-DeficientAzotobacter vinelandii.Chem Commun 186

    Google Scholar 

  121. Cornelis P, Hohnadel D, Meyer JM (1989) Evidence for Different PyoverdineMediated Iron Utake Systems amongPseudomonas aeruginosaStrains. Infect Immun 57: 3491

    CAS  Google Scholar 

  122. Comelis P, Moguilevsky N, Jacques JF, Masson PL (1987) Study of the Siderophores and Receptors in Different Clinical Isolates ofPseudomonas aeruginosa.Antibiot Chemother 39: 290

    Google Scholar 

  123. Cornforth JW, James AT (1956) Structure of a Naturally Occurring Antagonist of Dihydrostreptomycin. Biochem J 63: 124

    CAS  Google Scholar 

  124. Cornish AS, Page WJ (1995) Production of the Tricacetecholate(sic!)Siderophore Protochelin byAzotobacter vinelandii.BioMetals 8: 332

    Article  CAS  Google Scholar 

  125. Coroler L, Elomari M, Hoste B, Gillis M, Izard D, Leclerc H (1996)Pseudomonas rhodesiaesp. nov., a New Species Isolated from Natural Mineral Waters. System Appl Microbiol 19: 600

    Article  CAS  Google Scholar 

  126. Cortese MS, Caplan AB, Crawford RL (2002) Structural, Functional, and Evolutionary Analysis ofmoeZa Gene Encoding an Enzyme Required for the Synthesis of thePseudomonasMetabolite, Pyridine-2,6-bis(thiocarboxylic acid). BMC Evol Biol 2: 8

    Article  Google Scholar 

  127. Cortese MS, Paszczynski A, Lewis TA, Sebat JL, Borek V, Crawford RL (2002) Metal Chelating Properties of Pyridine-2,6-bis(thiocarboxylic acid) produced byPseudomonasspp. and the Biological Activities of the Formed Complexes. BioMetals 15: 103

    Article  CAS  Google Scholar 

  128. Cottrell JS (1994) Protein Identification by Peptide Mass Fingerprint. Peptide Res 7: 115

    CAS  Google Scholar 

  129. Cox CD (1980) Iron Uptake with Ferripyochelin and Ferric Citrate byPseudomonas aeruginosa.J Baceriol 142: 581

    CAS  Google Scholar 

  130. Cox CD (1980) Iron Reductases fromPseudomonas aeruginosa.J Bacteriol 141: 199

    CAS  Google Scholar 

  131. Cox CD (1980) Iron Uptake with Ferripyochelin and Ferric Citrate byPseudomonas aeruginosa.J Bacteriol 142: 581

    CAS  Google Scholar 

  132. Cox DC (1982) Effects of Pyochelin on the Virulence ofPseudomonas aeruginosa.Infect Immun 36: 17

    CAS  Google Scholar 

  133. Cox CD (1986) Role of Pyocyanin in the Acquisition of Iron from Transferrin. Infect Immun 52: 263

    CAS  Google Scholar 

  134. Cox CD (1986) Relationship between Oxygen and Siderophore Synthesis inPseudomonas aeruginosa.Cuff Microbiol 14: 19

    Article  CAS  Google Scholar 

  135. Cox CD, Adams P (1985) Siderophore Activity of Pyoverdin forPseudomonas aeruginosa.Infect Immun 48: 130

    CAS  Google Scholar 

  136. Cox CD, Graham R (1979) Isolation of an Iron-Binding Compound fromPseudo-monas aeruginosaJ Bacteriol 137: 357

    CAS  Google Scholar 

  137. Cox CD, Rinehart KL jr, Moore ML, Cook JC jr (1981) Pyochelin: Novel Structure of an Iron-Chelating Growth Promotor forPseudomonas aeruginosa.Proc Natl Acad Sci USA 78: 4256

    Article  CAS  Google Scholar 

  138. Cox KA, Gaskell SJ, Morris M, Whiting A (1996) Role of the Site of Protonation in the Low-Energy Decompositions of Gas-Phase Peptide Ions. J Am Soc Mass Spectrom 7: 522

    Article  CAS  Google Scholar 

  139. Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987) The Constitution and Properties of a Pyochelin-Zinc Complex. Can J Chem 65: 2126

    Article  CAS  Google Scholar 

  140. Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002)Pseudomonas mosselii sp. nov.a Novel Species Isolated from Clinical Specimens. Int J Syst Evol Microbiol 52: 363

    CAS  Google Scholar 

  141. Däbritz E, Virtanen AI (1964) S-Vinyl-cystein-S-oxyd, Vorstufe einer neuen tränentreibenden Substanz Vinylsulfensäure. Acta Chem Scand 18: 837

    Article  Google Scholar 

  142. Dallakian P, Budzikiewicz H (1997) Gas Chromatography — Chemical Ionization Mass Spectrometry in Amino Acid Analysis of Pyoverdins. J Chromatogr A 787: 195

    Article  CAS  Google Scholar 

  143. Dallakian P, Voss J, Budzikiewicz H (1999) Assignment of the Absolute Configuration of the Amino Acids of Pyoverdins by GC/MS. Chirality 11: 381

    Article  CAS  Google Scholar 

  144. Debitus C, Guella G, Mancini I, Waikedre J, Guemas JP, Nicolas JL, Pietra F (1998) Quinolones from a Bacterium and Tyrosine Metabolites from its Host SpongeSuberea crebafrom the Coral Sea. J Mar Biotechnol 6: 136

    CAS  Google Scholar 

  145. de Chial M, Ghysels B, Beatson SA, Geoffroy V, Meyer JM, Pattery T, Baysse C, Chablain P, Parsons YN, Winstanley C, Cordwell SJ, Cornelis P (2003) Identification of Type II and Type III Pyoverdine Receptors from Pseudomonas aeruginosa.Microbiol 149: 821

    Article  CAS  Google Scholar 

  146. Dekker KA, Inagaki T, Gootz TD, Huang LH, Kojima Y, Kohlbrenner WE, Matsunaga Y, McGuirk PR, Nomura E, Sakakibara T, Sakemi S, Suzuki Y, Yamauchi Y, Kojima N (1998) New Quinolone Compounds fromPseudonocardiasp. with Selective and PotentAnti-Helicobacter pyloriActivity: Taxonomy of Producing Strain, Fermentation, Isolation, Structural Elucidation and Biological Activities. J Antibiot 51: 145

    Article  CAS  Google Scholar 

  147. Demange P, Abdallah MA, Frank H (1988) Assignment of the Configurations of the Amino Acids in Peptidic Siderophores. J Chromatogr 438: 291

    Article  CAS  Google Scholar 

  148. Demange P, Bateman A, Dell A, Abdallah MA (1988) Structure of Azotobactin D, a Siderophore ofAzotobacter vinelandiiStrain D (CCM 289). Biochemistry 27: 2745

    Article  CAS  Google Scholar 

  149. Demange P, Bateman A, MacLeod JK, Dell A, Abdallah MA (1990) Bacterial Siderophores: Unusual 3,4,5,6-Tetrahydropyrimidine-Based Amino Acids in Pyoverdins fromPseudomonas fluorescens.Tetrahedron Lett 31: 7611

    Article  CAS  Google Scholar 

  150. Demange P, Bateman A, Mertz C, Dell A, Piémont Y, Abdallah MA (1990) Bacterial Siderophores: Structure of Pyoverdins Pt, Sideophores ofPseudomonas tolaasiiNCPPB 2192, and Pyoverdins Pf, Siderophores ofPseudomonas fluorescensCCM 2798. Identification of an Unusual Natural Amino Acid. Biochemistry 29: 11041

    Article  CAS  Google Scholar 

  151. Demange P, Wendenbaum S, Bateman A, Dell A, Abdallah MA (1987) Bacterial Siderophores: Structure and Physicochemical Properties of Pyoverdins and Related Compounds. In: Winkelmann G, v d Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals. VCH, Weinheim, p 167

    Google Scholar 

  152. Demange P, Wendenbaum S, Bateman A, Dell A, Meyer JM, Abdallah MA (1986) Bacterial Siderophores: Structure of Pyoverdins and Related Compounds. In: Swinburne TR (ed) Iron, Siderophores, and Plant Diseases. Plenum, New York, p 131

    Chapter  Google Scholar 

  153. Demange P, Wendenbaum S, Linget C, Bateman A, MacLeod J, Dell A, Albrecht AM, Abdallah MA (1989)PseudomonasSiderophores: Structure and Physicochemical Properties of Pyoverdins and Related Peptides. Second Forum on Peptides174: 95

    CAS  Google Scholar 

  154. Demange P, Wendenbaum S, Linget C, Mertz C, Cung MT, Dell A, Abdallah MA (1990) Bacterial Siderophores: Structure and NMR Assignment of Pyoverdins Pa, Siderophores ofPseudomonas aeruginosaATCC 15692. Biol Metals 3: 155

    Article  CAS  Google Scholar 

  155. Denton M, Wilcox MH (1997) Antimicrobial Treatment of Pulmonary Colonization and Infection byPseudomonas aeruginosain Cystic Fibrosis Patients. J Antimicrobial Chemotherapy 40: 468

    Article  CAS  Google Scholar 

  156. Derylo M, Skorupska A (1993) Enhancement of Symbiotic Nitrogen Fixation by Vitamin-Secreting FluorescentPseudomonas.Plant Soil 154: 211

    Article  CAS  Google Scholar 

  157. de Vos D, de Chial M, Cochez C, Jansen S, Tümmler B, Meyer JM, Cornelis P (2001) Study of Pyoverdine Type and Production byPseudomonas aeruginosaIsolated from Cystic Fibrosis Patients: Prevalence of Type II Pyoverdine Isolates and Accumulation of Pyoverdine-Negative Mutations. Arch Microbiol 175: 384

    Article  Google Scholar 

  158. de Vos P, Goor M, Gillis M, de Ley J (1985) Ribosomal Ribonucleic Acid Cistron Similarities of PhytopathogenicPseudomonasspecies. Int J Syst Bacteriol 35: 169

    Article  Google Scholar 

  159. DeWitte JJ, Cox CD, Rasmussen GT, Britigan BE (2001) Assessment of Structural Features of thePseudomonasSiderophore Pyochelin Required for its Ability to Promote Oxidant-Mediated Endothelial Cell Injury. Arch Biochem Biophys 393: 236

    Article  CAS  Google Scholar 

  160. Dongré AR, Jones JL, Somogyi Á, Wysocki VH (1996) Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J Am Chem Soc 118: 8365

    Article  Google Scholar 

  161. Dorrestein PC, Poole K, Begley TP (2003) Formation of the Chromophore of the Pyoverdine Siderophore by an Oxidative Cascade. Org Lett 5: 2215

    Article  CAS  Google Scholar 

  162. Drechsel H, Stephan H, Lotz R, Haag H, Zähner H, Hantke K, Jung G (1995) Structure Elucidation of Yersiniabactin, a Siderophore from Highly VirulentYersiniaStrains. Liebigs Ann Chem 1727

    Google Scholar 

  163. Drechsel H, Winkelmann G (1997) Iron Chelation and Siderophores. In: Winkelmann G, Carrano CJ (eds), Transition Metals in Microbial Metabolism, Harwood, Amsterdam, pp. 1

    Google Scholar 

  164. Egawa Y, Umino K, Awataguchi S, Kawano Y, Okuda T (1970) Antibiotic YC 73 ofPseudomonasOrigin. I. Production, Isolation and Properties. J Antibiot 23: 267

    Article  CAS  Google Scholar 

  165. Egawa Y, Umino K, Ito Y, Okuda T (1971) Antibiotic YC 73 ofPseudomonasOrigin. II. Structure and Synthesis of Thioformin and its Cupric Complex (YC 73). J Antibiot 24: 124

    Article  CAS  Google Scholar 

  166. Elliott RP (1958) Some Properties of Pyoverdine, the Water-Soluble Fluorescent Pigment of the Pseudomonads. Appl Microbiol 6: 241

    CAS  Google Scholar 

  167. Elomari M, Coroler L, Hoste B, Gillis M, Izard D, Lecelerc H (1996) DNA Relatedness amongPseudomonasStrains Isolated from Natural Mineral Waters and Proposal ofPseudomonas veroniisp. nov. Int J Syst Bacteriol 46: 1138

    Article  CAS  Google Scholar 

  168. Elomari M, Coroler L, Verhille S, Izard D, Leclerc H (1997)Pseudomonas monteiliisp. nov., Isolated from Clinical Specimens. Int J Syst Bacteriol 47: 846

    Article  CAS  Google Scholar 

  169. Eng-Wilmot DL, Kerley EL, Perryman DD, Brown C, Noah WH, McDyer D, Gore M, Mergo PJ, Cockburn BA (1990) Pyoverdin Type Siderophores from various Strains ofPseudomonas aeruginosa.Reported at the International Symposium on Iron Transport and Metabolism II, Austin TX, USA

    Google Scholar 

  170. Eraso AJ, Albesa I (1998) Elevation of Alanine Amino Transferase and Aspartate Amino Transferase Produced by Pyoverdin, a Photolabile Pigment ofPseudomonas fluorescens.Nat Toxins 6: 61

    Article  CAS  Google Scholar 

  171. Espinet P, Lorenzo C, Miguel JA (1994) Palladium Complexes with the Tridentate Dianionic Ligand Pyridine-2,6-bis(thiocarboxylate), pdtc. Crystal Structure of(n Bu 4 N)[Pd(pdtc)Br] .Inorg Chem 33: 2052

    Article  CAS  Google Scholar 

  172. .Fakhouri W, Walker F, Vogler B, Armbruster W, Buchenauer H (2001) Isolation and Identification of N-Mercapto-4-formylcarbostyril, an Antibiotic Produced byPseudomonas fluorescens.Phytochemistry 58: 1297

    Article  CAS  Google Scholar 

  173. Feistner G, Korth H, Ko H, Pulverer G, Budzikiewicz H (1983) Ferrorosamine A fromErwinia rhapontici.Curr Microbiol 8: 239

    Article  CAS  Google Scholar 

  174. Fekete FA, Spence JT, Emery T (1983) Siderophores Produced by Nitrogen-FixingAzotobacter vinelandiiOP in Iron-Limited Continuous Culture. Appl Environ Microbiol 46: 1297

    CAS  Google Scholar 

  175. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-Mediated Iron Transport: Crystal Structure of FhuA with Bound Lipopolysaccharide. Science 282: 2215

    Article  CAS  Google Scholar 

  176. Filsak G, Taraz K, Budzikiewicz H (1994) Untersuchungen zur Struktur and Derivatisierung von Kondensationsprodukten der 2,4-Diaminobuttersäure mit anderen Aminosäuren. Z Naturforsch 49c: 18, and literature quoted there

    Google Scholar 

  177. .Folschweiller N, Gallay J, Vincent M, Abdallah MA, Pattus F, Schalk IJ (2002) The Interaction between Pyoverdin and its Outer Membrane Receptor inPseudomonas aeruginosaLeads to Different Conformers: a Time-Resolved Fluorescence Study. Biochemistry 41: 14591

    Article  CAS  Google Scholar 

  178. Folschweiller N, Schalk IJ, Celia H, Kieffer B, Abdallah MA, Pattus F (2000) The Pyoverdin Receptor FpvA, a TonB-Dependent Receptor Involved in Iron Uptake byPseudomonas aeruginosa.Mol Membrane Biol 17: 123

    Article  CAS  Google Scholar 

  179. Fontecave M, Covès J, Pierre JL (1994) Ferric Reductases or Flavin Reductases? BioMetals 7: 3

    Article  CAS  Google Scholar 

  180. Fray RG (2002) Altering Plant-Microbe Interaction through Artificially Manipulating Bacterial Quorum Sensing. Ann Bot 89: 245

    Article  CAS  Google Scholar 

  181. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GSAB, Gierson D (1999) Plants Genetically Modified to Produce N-Acetylhomoserine Lactones Communicate with Bacteria. Nature Biotechnol 17: 1017

    Article  CAS  Google Scholar 

  182. Freeman LR, Angelini P, Silverman GJ, Merritt jr C (1975) Production of Hydrogen Cyanide byPseudomonas fluorescens.Appl Microbiol 29: 560

    CAS  Google Scholar 

  183. Fuchs R (2000) Massenspektrometrische Untersuchung cyclischer Pyoverdine: Strukturausfklärung and Siderotyping. Dissertation Universität zu Köln. Dr. Dirk Blunk Verlag, Berlin

    Google Scholar 

  184. Fuchs R, Budzikiewicz H (2001) Structural Studies of Pyoverdins by Mass Spectrometry. Cur Org Chem 5: 265

    Article  CAS  Google Scholar 

  185. Fuchs R, Budzikiewicz H (2000) Structural Studies of Pyoverdins with Cyclopeptidic Substructures by Electrospray Ionization and Collision Induced Fragmentation. Spectroscopy 14: 229

    Article  CAS  Google Scholar 

  186. Fuchs R, Budzikiewicz H (2001) Rearrangement Reactions in the Electro-spray Ionization Mass Spectra of Pyoverdins. Int J Mass Spectrom 210/211: 603

    Google Scholar 

  187. Fuchs R, Schäfer M, Geoffroy V, Meyer JM (2001) Siderotyping — a Powerful Tool for the Characterization of Pyoverdines. Cur Top Med Chem 1: 31

    Article  CAS  Google Scholar 

  188. Fukasawa K, Goto M (1973) Biosynthesis of a Hetrocycle Formed by Iron-DeficientAzotobacter vinelandiiStrain O. Biochim Biophys Acta 320: 545

    Article  CAS  Google Scholar 

  189. Fukasawa K, Goto M, Sasaki K, Hirata Y, Sato S (1972) Structure of the Yellow-Green Fluorescent Peptide Produced by Iron-DeficientAzotobacter vinelandiiStrain O. Tetrahedron 28: 5359

    Article  CAS  Google Scholar 

  190. Gaballa A, Baysse C, Koedam N, Muyldermans S, Cornelis P (1998) Different Residues in Periplasmatic Domains of the CcmC Inner Membrane Protein ofPseudomonas fluorescensATCC 17400 are Critical for CytochromecBiogenesis and Pyoverdine-Mediated Iron Uptake. Mol Microbiol 30: 547

    Article  CAS  Google Scholar 

  191. Gaballa A, Koedam N, Cornelis P (1996) A CytochromecBiogenesis Gene Involved in Pyoverdine Production inPseudomonas fluorescensATCC 17400. Mol Microbiol 21: 777

    Article  CAS  Google Scholar 

  192. Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the First and Rate-Limiting Enzyme in Salcylate Biosynthesis ofPseudomonas aeruginosa.J Biol Chem 278: 16893

    Article  CAS  Google Scholar 

  193. Gardan L, Bella P, Meyer JM, Christen R, Rott P, Achouak W, Samsom R (2002)Pseudomonas salomoniisp. nov., Pathogenic on Garlic, andPseudomonas palleronianasp. nov., Isolated from Rice. Int J Syst Evol Microbiol 52: 2065

    Google Scholar 

  194. Geisen K, Taraz K, Budzikiewicz H (1992) Neue Siderophore des Pyoverdin-Typs ausPseudomonas fluorescens.Monatsh Chem 123: 151

    Article  CAS  Google Scholar 

  195. Geisenberger O, Givskov M, Riedel K, Ht iby N, Tümmler B, Eberl L (2000) Production of N-Acyl-L-homoserine Lactones byP. aeruginosaIsolates from Chronic Lung Infections Associated with Cystic Fibrosis. FEMS Microbiol. Lett 184: 273

    CAS  Google Scholar 

  196. Gensberg K, Hughes K, Smith AW (1992) Siderophore-Specific Induction of Iron Uptake inPseudomonas aeruginosa.J Gen Microbiol 138: 2381

    Article  CAS  Google Scholar 

  197. Georges C, Meyer JM (1995) High-Molecular-Mass, Iron-Repressed Cytoplasmic Proteins in FluorescentPseudomonas:Potential Peptide-Synthetases for Pyoverdine Biosynthesis. FEMS Microbiol Lett 132: 9

    Article  CAS  Google Scholar 

  198. Georgia FR, Poe CF (1931) Study of Bacterial Fluorescence in Various Media I. Inorganic Substances Necessary for Bacterial Fluorescence. J Bacteriol 22: 349

    CAS  Google Scholar 

  199. Gerorgias H, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (1999) The Structure of the Pyoverdin fromPseudomonas fluorescens1.3. Structural and Biological Relationships of Pyoverdins from Different Strains. Z Naturforsch 54c: 301

    Google Scholar 

  200. Gessard MC (1892) Sur la fonction fluorescigène des microbes. Annales de l’ Institut Pasteur 6: 801

    Google Scholar 

  201. Gipp S (1987) Einfütterungsexperimente mit Siderophoren unterschiedlicher Pseudomonaden-Stämme Diplomarbeit, Universität zu Köln

    Google Scholar 

  202. Gipp S, Hahn J, Taraz K, Budzikiewicz H (1991) Zwei Pyoverdine ausPseudo-monas aeruginosaR. Z Naturforsch 46c: 534

    Google Scholar 

  203. Giral F (1936) Sobre los liocromos caracter¨ªsticos del grupo de bacterias fluorescentes. An Soc Españ Fis Qu¨ªm 34: 667

    CAS  Google Scholar 

  204. Glennon JD, Manley K, Ruangviriyachai C, O’Gara F, Budzikiewicz H (1994) Isolation and Analysis of the Iron-Free Siderophore, Pseudobactin by Semipreparative LC on a Polymeric Stationary Phase. Int J Bio-Chromatogr 1:57

    CAS  Google Scholar 

  205. Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF (1999) Inhibition ofVibrio anguillarumbyPseudomonas fluorescensAH2, a Possible Probiotic Treatment of Fish. Appl Environ Microbiol 65: 969

    CAS  Google Scholar 

  206. Greppin H, Gouda S (1965) Action de la lumière sur le pigment dePseudomonas fluorescensMig. Arch Sci 18: 721

    CAS  Google Scholar 

  207. Guina T, Wu M, Miller SI, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Ernst RK, Lee KA (2003) Proteomic Analysis ofPseudomonas aeruginosaGrown under Magnesium Limitation. J Am Soc Mass Spectrom 14: 742

    Article  CAS  Google Scholar 

  208. Gupta A, Meyer JM, Goel R (2002) Development of Heavy Metal-Resistant Mutants of Phosphate SolubilizingPseudomonassp. NBRI 4014 and their Characterization. Curr Microbiol 45: 323

    Article  CAS  Google Scholar 

  209. Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001) Effect of Metal Ions on Growth ofPseudomonas aeruginosaand Siderophore and Protein Production. Ind J Exp Biol 39: 1318

    CAS  Google Scholar 

  210. Gwose I, Taraz K (1992) Pyoverdine ausPseudomonas putida.Z Naturforsch 47c: 487

    Google Scholar 

  211. Hallé F, Meyer JM (1989) Ferripyoverdine-Reductase Activity inPseudomonas fluorescens.Biol Metals 2: 18

    Article  Google Scholar 

  212. Hallé F, Meyer JM (1992) Ferrisiderophore Reductases ofPseudomonas.Purification, Properties and Cellular Location of thePseudomonas aeruginosaFerripyoverdine Reductase. Eur J Biochem 209: 613

    Article  Google Scholar 

  213. Hallé F, Meyer JM (1992) Iron Release from Ferrisiderophores. A Multi-Step Mechanism Involving a NADH/FMN Oxidoreductase and a Chemical Reduction by FMNH2. Eur J Biochem 209: 621

    Article  Google Scholar 

  214. Halliwell B, Gutteridge JMC (1984) Oxygen Toxicity, Oxygen Radicals, Transition Metals and Disease. Biochem J 219: 1

    CAS  Google Scholar 

  215. Hancock REW (1998) Resistance Mechanism inPseudomonas aeruginosaand other Nonfermentative Gram-Negative Bacteria. Clin Infect Diseases 27 (Suppl. 1): S93

    Article  CAS  Google Scholar 

  216. Hancock REW, Brinkman FSL (2002) Function ofPseudomonasPorins in Uptake and Efflux. Annu Rev Microbiol 56: 17

    Article  CAS  Google Scholar 

  217. Hancock REW, Worobec EA (1998) Outer Membrane Proteins. In: Montie TC (ed)Pseudomonas.Plenum, New York, p 139

    Google Scholar 

  218. Hancock DK, Coxon B, Wang SY, White VE, Reeder DJ, Bellama JM (1993) Lthreo-ß-Hydroxyhistidine, an Unprecedented Iron (III) Ion-Binding Amino Acid in a Pyoverdine-Type Siderophore fromPseudomonas fluorescens244. J Chem Soc Chem Commun 468

    Google Scholar 

  219. Hancock DK, Reeder DJ (1993) Analysis and Configuration Assignment of the Amino Acids in a Pyoverdine-Type Siderophore by Reversed-Phase High-Performance Liquid Chromatography. J Chromatogr 646: 335

    Article  CAS  Google Scholar 

  220. Hancock REW (1998) Resistance Mechanisms inPseudomonas aeruginosaand other Nonfermentative Gram-Negative Bacteria. Clin Infect Diseases 27: S93

    Article  CAS  Google Scholar 

  221. Harding RA, Royt PW (1990) Acquisition of Iron from Citrate byPseudomonas aeruginosa.J Gen Microbiol 136: 1859

    Article  CAS  Google Scholar 

  222. Harrison AG, Yalcin T (1997) Proton Mobility in Protonated Amino Acids and Peptides. Int J Mass Spectrom Ion Proc 165/166: 339

    Article  Google Scholar 

  223. Hashimoto M, Hattori K (1967) 2-(2-Heptenyl)-3-methyl-4-quinolinol from aPseudomonas.Chem Pharm Bull 15: 718

    Article  CAS  Google Scholar 

  224. Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts C, Muir RD, Carroll CJ, Jones LR, Wade NJ (1945) Antibiotic Substances Produced byPseudomonas aeruginosa.J Biol Chem 159: 725

    CAS  Google Scholar 

  225. Heinisch L, Wittmann S, Stoiber T, Berg A, Ankel-Fuchs D, Möllmann U (2002) Highly Antibacterial Active Aminoacyl Penicillin Conjugates with Acetylated BisCatecholate Siderophores Based on Secondary Diamino Acids and Related Compounds. J Med Chem 45: 3032 and earlier literature cited there

    Article  CAS  Google Scholar 

  226. Heinrichs DE, Young L, Poole K (1991) Pyochelin-Mediated Iron Transport inPseudomonas aeruginosa:Involvement of a High-Molecular-Mass Outer Membrane Protein. Infect Immun 59: 3680

    CAS  Google Scholar 

  227. Hennard C, Machi B, Kyslik P, Abdallah MA (1997)PseudomonasSiderophores: A Mild and Selective Halogenation Procedure of the Chromophoric Moiety of Pyoverdins. Tetrahedron Lett 38: 97

    Article  CAS  Google Scholar 

  228. Hennard C, Truong QC, Desnottes JF, Paris JM, Moreau NJ, Abdallah MA (2001) Synthesis and Activities of Pyoverdin Quinolone Adducts: a Prospective Approach to a Specific Therapy againstPseudomonas aeruginosa.J Med Chem 44: 2139

    Article  CAS  Google Scholar 

  229. Hersman LE, Forsythe JH, Ticknor LO, Maurice PA (2001) Growth ofPseudo-monas mendocinaon Fe(III) (Hydr)Oxides. Appl Environ Microbiol 67: 4448

    Article  CAS  Google Scholar 

  230. Hersman LE, Huang A, Maurice PA, Forsythe JH (2000) Siderophore Production and Iron Reduction byPseudomonas mendocinain Response to Iron Deprivation. Geomicrobiology J17:261

    Article  CAS  Google Scholar 

  231. Hersman L, Lloyd T, Sposito G (1995) Siderophore-Promoted Dissolution of Hematite. Geochim Cosmochim Acta 59: 3327

    Article  CAS  Google Scholar 

  232. Hersman L, Maurice P, Sposito G (1996) Iron Acquisition from Hydrous Fe(III)Oxides by an AerobicPseudomonassp. Chem Geology 132: 25

    Article  CAS  Google Scholar 

  233. Hildebrand U, Hübner J, Budzikiewicz H (1986) Synthese von (Alkoxythio)carbonyl-Derivaten (Acylsulfensäureestern) des Pyridins. Tetrahedron 42: 5969

    Article  CAS  Google Scholar 

  234. Hildebrand UHW, Lex J (1989) Untersuchungen zur Struktur von Co(III)- and Ni(II)Komplexen der Pyridin-2,6-di(monothiocarbonsäure). Z Naturforsch 44b: 475

    Google Scholar 

  235. Hildebrand U, Lex J, Taraz K, Winkler S, Ockels W, Budzikiewicz H (1984) Untersuchungen zum Redox-System Bis(pyridin-2,6-dicarbothioato)-ferrat(II)/ferrat(III). Z Naturforsch 39b: 1607

    CAS  Google Scholar 

  236. Hildebrand U, Taraz K, Budzikiewicz H (1985) [(Methoxythio)carbonyllpyridine Derivatives — a New Class of Sulfur Compounds. Tetrahedron Lett 26: 4349

    Article  CAS  Google Scholar 

  237. Hildebrand U, Taraz K, Budzikiewicz H (1985) [(Methoxythio)carbonyl]pyridinDerivate, eine neue Verbindungsklasse ausPseudomonas putida.Z Naturforsch 40b: 1563

    CAS  Google Scholar 

  238. Hildebrand U, Taraz K, Budzikiewicz H (1986) 6-(Hydroxythio)carbonylpyridin-2-carbonsäure und Pyridin-2-carbonsäure-6-monothiocarbonsäure als biosynthetische Zwischenstufen bei der Bildung von Pyridin-2,6-di (monothiocarbonsäure) aus Pyridin-2,6-dicarbonsäure. Z Naturforsch 41c: 691

    Google Scholar 

  239. Hildebrand U, Taraz K, Budzikiewicz H, Korth H, Pulverer G (1985) Dicyanobis(pyridin-2,6-dicarbothioato)-ferrat (II)/ferrat (III), ein weiteres eisenhaltiges Redoxsystem aus der Kulturlösung einesPseudomonas-Stammes.Z Naturforsch 40c: 201

    CAS  Google Scholar 

  240. Hoffa A (1891) Weitere Beiträge zur Kenntnis der Fäulnissbacterien. Münchner medicin Wochenschr 38: 247

    Google Scholar 

  241. Höfte M, Buysens S, Koedam N, Cornelis P (1993) Zink Affects SiderophoreMediated High Affinity Iron Uptake Systems in the RhizospherePseudomonas aeruginosa7NSK2. BioMetals 6: 85

    Article  Google Scholar 

  242. Hohlneicher U, Hartmann R, Taraz K, Budzikiewicz H (1992) Struktur von Ferribactin ausPseudomonas fluorescensATCC 13525. Z Naturforsch 47b: 1633

    Google Scholar 

  243. Hohlneicher U, Hartmann R, Taraz K, Budzikiewicz H (1995) Pyoverdin, Ferribactin, Azotobactin — a New Triade of Siderophores fromPseudomonas chlororaphisATCC 9446 and its Relation toPseudomonas fluorescensATCC 13525. Z Naturforsch 50c: 337

    Google Scholar 

  244. Hohlneicher U, Schäfer M, Fuchs R, Budzikiewicz H (2001) Ferribactins as the Biosynthetic Precursors of thePseudomonasSiderophores Pyoverdins. Z Naturforsch 56c: 308

    Google Scholar 

  245. Hohnadel G, Meyer JM (1988) Specificity of Pyoverdine-Mediated Iron Uptake among FluorescentPseudomonasStrains. J Bacteriol 170: 4865

    CAS  Google Scholar 

  246. Holliman FG (1969) Pigments ofPseudomonasSpecies. Part I. Structure and Synthesis of Aeruginosin A. J Chem Soc C 2514

    Google Scholar 

  247. Holmstrom K, Gram L (2003) Elucidation of theVibrio anguillarumGenetic Response to the Potential Fish ProbiontPseudomonas fluorescensAH2, Using RNA-Arbitrarily Primed PCR. J Bacteriol 185: 831

    Article  CAS  Google Scholar 

  248. Howard GT (2002) Biodegradation of Polyurethane: a Review. Int Biodeterior Biodegrad 49: 245

    Article  CAS  Google Scholar 

  249. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of Acyl-Homoserine Lactone Quorum Signals for Growth by a Soil Pseudomonad andPseudomonas aeruginosaPAO1. Appl Environ Microbiol 69: 5941

    Article  CAS  Google Scholar 

  250. Hübner J, Taraz K, Budzikiewicz H (1990) Acylsulfenic Acids. Phosphorus, Sulfur, and Silicon 47: 367

    Article  Google Scholar 

  251. Hudlicky T, Gonzales D, Gibson DT (1999) Enzymatic Dihydroxylation of Aromatics in Enantioselective Synthesis: Expanding Asymmetric Methodology. Aldrichimica Acta 32: 35

    CAS  Google Scholar 

  252. Hulcher FH (1968) Activation of 6-Phosphogluconate Dehydrase by Pyoverdine. Biochem Biophys Res Comm 31: 247

    Article  CAS  Google Scholar 

  253. .Hulcher FH (1968) Structure of Pyoverdine and the Activation of 6-Phosphogluconate Dehydrase. Fed Proc, Fed Am Soc Exp Biol 27: 787

    Google Scholar 

  254. Hulcher FH (1982) Isolation and Characterization of a New Hydroxamic Acid fromPseudomonas mildenbergii.Biochemistry 21: 4491

    Article  CAS  Google Scholar 

  255. Huston WM, Jennings MP, McEwen AG (2002) The Multicopper Oxidase ofPseudomonas aeruginosais a Ferroxidase with a Central Role in Iron Acquisition. Mol Microbiol 45: 1741

    Article  CAS  Google Scholar 

  256. Huyer M, Page WJ (1988) Zn2+ Increases Siderophore Production inAzotobacter vinelandii.Appl Environ Microbiol 54: 2625

    CAS  Google Scholar 

  257. Hwang SY, Lee SH, Song JO, Kim YP, Kawahara K (1998) Purification and Characterization of Antistaphylococcal Substance fromPseudomonassp. KUH-001. J Microbiol Biotechnol 8: 111

    CAS  Google Scholar 

  258. Ino A, Hasegawa Y, Murabayashi A (1998) Total Synthesis of the Antimycoplasma Antibiotic Micacocidin. Tetrahedron Lett 39: 3509

    Article  CAS  Google Scholar 

  259. Ino A, Hasegawa Y, Murabayashi A (1999) Synthetic Studies of Thiazoline and Thiazolidine-Containing Natural Products — 2. Total Synthesis of the Antimycoplasma Antibiotic Micacocidin. Tetrahedron 55: 10283

    Article  CAS  Google Scholar 

  260. Ino A, Murabayashi A (1999) Synthetic Studies of Thiazoline and ThiazolidineContaining Natural Products — 1. Phosphorus Pentachloride-Mediated Thiazoline Construction Reaction. Tetrahedron 55: 10271

    Article  CAS  Google Scholar 

  261. .Inoue H, Takimura O, Kawaguchi K, Nitoda T, Fuse H, Murakami K, Yamaoka Y (2003) Tin-Carbon Cleavage of Organotin Compounds by Pyoverdine fromPseudomonas chlororaphis.Appl Environ Microbiol 69: 878

    Article  CAS  Google Scholar 

  262. Ito Y, Umino K, Sekiguchi T, Miyagishima T, Egawa Y (1971) Antibiotic YC 73 ofPseudomonasOrigin. III. Synthesis of Thioformin Analogues. J Antibiot 24: 131

    Article  CAS  Google Scholar 

  263. Itoh J, Amano S, Ogawa Y, Kodama Y, Ezaki N, Yamada Y (1980) Studies on Antibiotics BN-227 and BN-227-F, New Antibiotics II. Chemical Structure of Antibiotics BN-227 and BN-227-F. J Antibiot 33: 377

    Article  CAS  Google Scholar 

  264. Itoh J, Miyadoh S, Takahasi S, Amano S, Ezaki N, Yamada Y (1979) Studies on Antibiotics BN-227 and BN-227-F, New Antibiotics I. Taxonomy, Isolation and Characterization. J Antibiot 32: 1089

    Article  CAS  Google Scholar 

  265. Jacques P, Delfosse P, Ongena M, Lepoivre P, Cornélis P, Koedam N, Neirinckx L, Thonart P (1993) Les méchanismes biochimiques développés par lesPseudomonasfluorescents dans la lutte biologique contre les maladies des plantes transmises par le sol. Cahiers Agric 2: 301

    Google Scholar 

  266. Jacques P, Gwose I, Seinsche D, Taraz K, Budzikiewicz H, Schröder H, Ongena M, Thonart P (1993) Isopyoverdin Pp BTP 1, a Biogenetically Interesting Novel Siderophore fromPseudomonas putida.Nat Prod Lett 3: 213

    Article  CAS  Google Scholar 

  267. Jacques P, Ongena M, Bernard F, Fuchs R, Budzikiewicz H, Thonart P (2003) FluorescentPseudomonasMainly Produce the Dihydroform of Pyoverdine at Low Specific Growth Rate. Lett Appl Microbiol 36: 259

    Article  CAS  Google Scholar 

  268. Jacques P, Ongena M, Gwose I, Seinsche D, Schröder H, Delfosse P, Thonart P, Taraz K, Budzikiewicz H (1995) Structure and Characterization of Isopyoverdin fromPseudomonas putidaBTP1 and its Relation to the Biogenetic Pathway Leading to Pyoverdins. Z Naturforsch 50c: 622

    Google Scholar 

  269. Jalal MAF, Hossain MB, van der Helm D, Sanders-Loehr J, Actis LA, Crosa JH (1989) Structure of Anguibactin, a Unique Plasmid-Related Bacterial Siderophore from Fish PathogenVibrio anguillarum.J Am Chem Soc 111: 292

    Article  CAS  Google Scholar 

  270. Jones RCF, Crockett AK (1993) The Synthesis of Unusual Tetrahydropyrimidine Amino Acids. Tetrahedron Lett 34: 7459

    Article  CAS  Google Scholar 

  271. Johnova A, Dobisova M, Abdallah MA, Kyslik P (2003) Fur Mutants ofPseudo-monas aeruginosaPAO1: Phenotypic Characterization in Terms of Iron-dependent Pattern of Deregulation of Pyoverdin Synthesis. Biotechnol Lett 25: 235

    Article  CAS  Google Scholar 

  272. Johnstone DB (1955)AzotobacterFluorescence. J Bacteriol 69: 481

    Google Scholar 

  273. Johnstone DB (1957) The Use of a Fluorimeter in the Characterization of Fluorescing Substances Elaborated byAzotobacter.Appl Microbiol 5: 103

    CAS  Google Scholar 

  274. Johnstone DB, Fishbein JR (1956) Identification ofAzotobacterSpecies by Fluorescence and Cell Analysis. J Gen Microbiol 14: 330

    Article  CAS  Google Scholar 

  275. Johnstone DB, Pfeffer M, Blanchard GC (1959) Fluorescence of Azotobacter. I. A Comparison of the Fluorescent Pigments with Riboflavin. Can J Microbiol 5: 299

    Article  CAS  Google Scholar 

  276. John JK, Surange S, Nautiyal CS (1999) Occurence of Salt, pH, and Temperature-Tolerant, Phosphate-Solubilizing Bacteria in Alkaline Soils. Curr Microbiol 39: 89

    Article  Google Scholar 

  277. Jordan EO (1899)Bacillus pyocyaneusand its Pigments. J Exp Med 4: 627

    Article  CAS  Google Scholar 

  278. Jordan EO (1899) The Production of Fluorescent Pigment by Bacteria. Botanical Gazette 27: 19

    Article  Google Scholar 

  279. Jülich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The Structure of the Pyoverdin Isolated fromPseudomonas syringaePathovars. Z Naturforsch 56c: 687

    Google Scholar 

  280. Jurkevitch E, Hadar Y, Chen Y (1992) Differential Siderophore Utilization and Iron Uptake by Soil and Rhizosphere Bacteria. Appl Environ Microbiol 58: 119

    CAS  Google Scholar 

  281. Kallov¨¢ J, Bujd¨¢kov¨¢ H, Macickov¨¢ T, Hletkov¨¢ M, Milosovic P, Kettner M (1996) Susceptibility ofPseudomonas aeruginosaSerotype 001 Isolates to Aminoglycoside and beta-Lactam Antibiotics and Mechanism of Resistance. Biologia (Bratislava) 51: 237

    Google Scholar 

  282. Kamigiri K, Tokunaga T, Shibazaki M, Setiawan B, Rantiatmodjo RM, Morioka M, Suzuki K (1996) YM-30059, a Novel Quinolone Antibiotic Produced byArthrobactersp. J Antibiot 49: 823

    Article  CAS  Google Scholar 

  283. Karle IL, Karle J (1971) Structure of the Chromophore from the Fluorescent Peptide Produced by Iron-DeficientAzotobacter vinelandii.Acta Cryst B 27: 1891

    Article  CAS  Google Scholar 

  284. Katayama N, Nozaki Y, Okonogi K, Harada S, Ono H (1993) Ferrrocins, New Iron-Containing Peptide Antibiotics Produced by Bacteria. Taxonomy, Fermentation and Biological Activity. J Antibiot 46: 65

    Article  CAS  Google Scholar 

  285. Keller-Schierlein W, Mertens P, Prelog V, Walser A (1965) Stoffwechselprodukte von Mikroorganismen. Die Ferrioxamine A1A2 und D2. Helv Chim Acta 48: 710

    Article  CAS  Google Scholar 

  286. Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Actinomyceten. Über das Ferrioxamin E; ein Beitrag zur Konstitution des Norcardamins. Helv Chim Acta 44: 1981

    Article  CAS  Google Scholar 

  287. Kersters K, Ludwig W, Vancanneyt M, de Vos P, Gillis M, Schleifer KH (1996) Recent Changes in the Classification of the Pseudomonads: an Overview. System Appl Microbiol 19: 465

    Article  Google Scholar 

  288. Khalil-Rizvi S, Toth SI, van der Helm D, Vidaysky I, Gross ML (1997) Structures and Characteristics of Novel Siderophores from Plant-DeleteriousPseudomonas fluorescensA225 andPseudomonas putidaATCC 39167. Biochemistry 36: 4163

    Article  CAS  Google Scholar 

  289. Kilburn L, Poole K, Meyer JM, Neshat S (1998) Insertion Mutagenesis of the Ferric Pyoverdine Receptor FpvA ofPseudomonas aeruginosa:Identification of Permissive Sites and a Region Important of Ligand Binding. J Bacteriol 180: 6753

    CAS  Google Scholar 

  290. Kilz S, Lenz C, Fuchs R, Budzikiewicz H (1999) A Fast Screening Method for the Identification of Siderophores from FluorescentPseudomonasspp. by Liquid Chromatography/Electrospray Mass Spectrometry. J Mass Spectrom 34: 281

    Article  CAS  Google Scholar 

  291. King JV, Campbell JJR, Eagles BA (1948) The Mineral Requirements for Fluorescin Production. Can J Res 26c: 514

    Article  CAS  Google Scholar 

  292. Kingsbury CA, Cram DJ (1960) Mechanism of Elimination of Sulfoxides. J Am Chem Soc 82: 1810

    Article  CAS  Google Scholar 

  293. Kinzel O, Budzikiewicz H (1999) Synthesis and Biological Evaluation of a Pyoverdin-ß-Lactam Conjugate: a New Type of Arginine-Specific Cross-Linking in Aqueous Solution. J Peptide Res 53: 618

    Article  CAS  Google Scholar 

  294. Kinzel O, Tappe P, Gems I, Budzikiewicz H (1998) The Synthesis and Antibacterial Activity of two Pyoverdin-Ampicillin Conjugates, EnteringPseudomonas aeruginosa viathe Pyoverdin-Mediated Iron Uptake Pathway. J Antibiot 51: 499

    Article  CAS  Google Scholar 

  295. Kitamura S, Hashizume K, Iida T, Miyashita E, Shirahata K, Kase H (1986) Studies in Lipoxygenase Inhobitors II. KF8940 (2-n-Heptyl-4-hydroxyquinoline-N-oxide), a Potent and Selective Inhibitor of 5-Lipoxygenase, Produced byPseudomonas methanica.J Antibiot 39: 1160

    Article  CAS  Google Scholar 

  296. Kleinkauf H, von Döhren H (1987) Biosynthesis of Peptide Antibiotics. Ann Rev Microbiol 41: 259

    Article  CAS  Google Scholar 

  297. Kloepper JW, Leong J, Teintze M, Schroth MN (1980)PseudomonasSiderophores: A Mechanism Explaining Disease-Suppressive Soils. Curr Microbiol 4: 317

    Article  CAS  Google Scholar 

  298. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced Plant Growth by Siderophores Produced by Plant Growth-Promoting Rhizobacteria. Nature 286: 885

    Article  CAS  Google Scholar 

  299. Knosp O, von Tigerstrom M, Page WJ (1984) Siderophore-Mediated Uptake of Iron inAzotobacter vinelandii.J Bacteriol 159: 341

    CAS  Google Scholar 

  300. Knowles CJ (1976) Microorganisms and Cyanide. Bact Rev 40: 652

    CAS  Google Scholar 

  301. Kobayashi S, Hidaka S, Kawamura Y, Ozaki M, Hayase Y (1998) Micacocidin A, B and C, Novel Antimycoplasma Agents fromPseudomonassp. I. Taxonomy, Fermentation, Isolation, Physico-Chemical Properties and Biological Activities. J Antibiot 51: 323

    Article  CAS  Google Scholar 

  302. Kobayashi S, Nakai H, Ikenishi Y, Sun WY, Ozaki M, Hayase Y, Takeda R (1998) Micacocidin A, B and C, Novel Antimycoplasma Agents fromPseudomonassp. II. Structure Elucidation. J Antibiot 51: 328

    Article  CAS  Google Scholar 

  303. Koedam N, Wittouck E, Gaballa A, Gillis A, Höfte M, Cornelis P (1994) Detection and Differentiation of Microbial Siderophores by Isoelectric Focusing and Chrome Azurol S Overlay. BioMetals 7: 287

    Article  CAS  Google Scholar 

  304. Kolasa T, Miller MJ (1990) Synthesis of the Chromophore of Pseudobactin, a Fluorescent Siderophore fromPseudomonas.J Org Chem 55: 4246

    Article  CAS  Google Scholar 

  305. Koster M, Ovaa W, Bitter W, Weisbeek P (1995) Multiple Outer Membrane Receptors for Uptake of Ferric Pseudobactins inPseudomonas putidaWCS358. Mol Gen Genet 248: 735

    Article  CAS  Google Scholar 

  306. Koster M, van de Vossenberg J, Leong J, Weisbeek PJ (1993) Identification and Characterisation of thepupBGene Encoding an Inducible Ferric-Pseudobactin Receptor inPseudomonas putidaWC358. Mol Microbiol 8: 591

    Article  CAS  Google Scholar 

  307. Kozlovskii AG, Arinbasarov MU, Yakovlev GI, Zyakun AM, Adanin VM (1976) 2(1-Heptenyl)-4-quinolone as a New Metabolite ofPseudomonas aeruginosa. II3B AKazi Hay(CCCP, Cep XHM 1146

    Google Scholar 

  308. Krüger HJ, Holm RH (1990) Stabilization of Trivalent Nickel in Tetragonal NiS4N2and NiN6Environments: Synthesis, Structures, Redox Potentials, and Observations Related to [NiFel-Hydrogenases. J Am Chem Soc 112: 2955

    Article  Google Scholar 

  309. .Kumar D, Bezbaruah B (1997) Plant Growth Promotion and Fungal Pest Control through an Antibiotic and Siderophore Producing FluorescentPseudomonasStrain from Tea(Camellia sinensis(L) O Kuntze) Plantations. Indian J Exp Biol 35: 289

    Google Scholar 

  310. Kunz DA, Chen JL, Pan G (1998) Accumulation of a-Keto Acids as Essential Components in Cyanide Assimilation byPseudomonas fluorescensNCIMB 11764. Appl Environ Microbiol 64: 4452

    CAS  Google Scholar 

  311. Kunz DA, Fernandez RF, Parab P (2001) Evidence that Bacterial Cyanide Oxygenise is a Pterin-Dependent Hydroxylase. Biochem Biophys Res Commun 287: 514

    Article  CAS  Google Scholar 

  312. Kunz DA, Nagappan O, Silva-Avalos J, Delong GT (1992) Utilization of Cyanide as a Nitrogenous Substrate byPseudomonas fluorescensNCIMB 11764: Evidence for Multiple Pathways of Metabolic Conversion. Appl Environ Microbiol 58: 2022

    CAS  Google Scholar 

  313. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-Mediated Signaling Regulates Virulence Factor Production inPseudomonas aeruginosa.Proc Natl Acad Sci USA 99: 7072

    Article  CAS  Google Scholar 

  314. Lee CH, Lewis TA, Paszczynski A, Crawford RL (1999) Identification of an Extracellular Catalyst of Carbon Tetrachloride Dehalogenation fromPseudomonas stutzeriStrain KC as Pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261: 562

    Article  CAS  Google Scholar 

  315. Lee MI, Jeomg DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim DS (2000) ATetrodotoxin-ProducingVibrioStrain, LM-1, from the Puffer FishFugu vermicularis radiatus.Appl Environ Microbiol 66: 1698

    Article  CAS  Google Scholar 

  316. Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron Availability Affects Induction of Systemic Resistance of Fusarium Wilt of Radish byPseudomonas fluorescens.Phytopathol 86: 149

    Article  CAS  Google Scholar 

  317. Leimer KR, Rice RH, Gehrke CW (1977) Complete Mass Spectra of N-Trifluoroacetyl-n-butyl Esters of Amino Acids. J Chromatogr 141: 121

    Article  CAS  Google Scholar 

  318. Lenhoff H (1963) An Inverse Relationship of the Effects of Oxygen and Iron on the Production of Fluorescin and Cytochrome c byPseudomonas fluorescens.Nature 199: 601

    Article  CAS  Google Scholar 

  319. Lenz C, Amann C, Briskot G, Taraz K, Budzikiewicz H (2000) Succinopyoverdins — a New Variety of the Pyoverdin Chromophore. Z Naturforsch 55c: 146

    Google Scholar 

  320. Lenz C, Schäfer M, Budzikiewicz H (1998) Improved Ternary Matrices for the Analysis of Ferri-Pyoverdins by Fast Atom Bombardment Mass Spectrometry. J Mass Spectrom 33: 984

    Article  CAS  Google Scholar 

  321. Leong J, Bitter W, Koster M, Venturi V, Weisbeek Pl (1991) Molecular Analysis of Iron Transport in Plant Growth-PromotingPseudomonas putidaWCS 358. Biol Metals 4: 36

    Article  CAS  Google Scholar 

  322. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum Sensing inBurkholderia cepacia:Identification of the LuxRI Homologs CepRI. J Bacteriol 181: 748

    CAS  Google Scholar 

  323. Lewenza S, Visser MB, Sokol PA (2002) Interspecies Communication betweenBurkholderia cepaciaandPseudomonas aeruginosa.Can J Microbiol 48: 707 (Erratum 48: 855)

    Google Scholar 

  324. Lewis TA, Crawford RL (1993) Physiological Factors Affecting Carbon Tetrachloride Dehalogenation by the Denitrifying BacteriumPseudomonassp. Strain KC. Appl Environ Microbiol 59: 1635

    CAS  Google Scholar 

  325. Lewis TA, Crawford RL (1995) Transformation of Carbon Tetrachloride via Sulfur and Oxygen Substitution byPseudomonassp. Strain KC. J Bacteriol 177: 2204

    CAS  Google Scholar 

  326. Lewis TA, Paszczynski A, Gordon-Wylie SW, Jeedigunta S, Lee CH, Crawford RL (2001) Carbon Tetrachloride Dechlorination by the Bacterial Transition Metal Chelator Pyridine-2,6-bis(thiocarboxylic acid). Environ Sci Technol 35: 552

    Article  CAS  Google Scholar 

  327. Liao PC, Huang ZH, Allison J (1997) Charge Remote Fragmentation of Peptides Following Attachment of a Fixed Positive Charge: a Matrix-Assisted Laser Desorption/lonization Postsource Decay Study. J Am Soc Mass Spectrom 8: 501

    Article  CAS  Google Scholar 

  328. Lim HS, Kim YS, Kim SD (1991)Pseudomonas stutzeriYPL-1 Genetic Transformation and Antifungal Mechanism againstFusarium solanian Agent of Plant Root Rot. Appl Environ Microbiol 57: 510

    CAS  Google Scholar 

  329. Linget C, Azadi P, MacLeod JK, Dell A, Abdallah MA (1992) Bacterial Siderophores: the Structures of the Pyoverdins ofPseudomonas fluorescensATCC 13525. Tetrahedron Lett 33: 1737

    Article  CAS  Google Scholar 

  330. Linget C, Collinson SK, Azadi P, Dell A, Page WJ, Abdallah MA (1992) Structure of Azoverdin, a Pyoverdin-like Siderophore ofAzomonas macrocytogenesATCC 12334. Tetrahedron Lett 33: 1889

    Article  CAS  Google Scholar 

  331. Linget C, Stylianou DG, Dell A, Wolff RE, Piémont Y, Abdallah MA (1992) Bacterial Siderophores: the Structure of a Desferriferribactin Produced byPseudomonas fluorescensATCC 13525. Tetrahedron Lett 33: 3851

    Article  CAS  Google Scholar 

  332. Liu PV, Shokrani F (1978) Biological Activities of Pyochelins: Iron-Chelating Agents ofPseudomonas aeruginosa.Infect Immun 22: 878

    CAS  Google Scholar 

  333. Liu WC, Fisher SM, Wells jr JS, Ricca CS, Principe PA, Trejo WH, Bonner DP, Gougoutos JZ, Toeplitz BK, Sykes RB (1981) Siderochelin, a New Ferrous-Ion Chelating Agent Produced byNocardia.J Antibiot 34: 791

    Article  CAS  Google Scholar 

  334. Livermore DM (2001) OfPseudomonasPorins, Pumps and Carbapenems. J Antimicrob Chemother 47: 247

    Article  CAS  Google Scholar 

  335. Lluch MC, Callao V, Olivares J (1972) Contribución al estudio de la producción de fluorescina porPs. reptilivora.Cuad Cienc Biol 2: 15

    Google Scholar 

  336. Lluch C, Callao V, Olivares J (1973) Pigment Production byPseudomonas reptilivora.I. Effect of Iron Concentration in Culture Media. Arch Microbiol 93: 239

    CAS  Google Scholar 

  337. Longerich I, Taraz K, Budzikiewicz H, Tsai L, Meyer JM (1993) Pseudoverdin, a Compound Related to the Pyoverdin Chromophor from aPseudomonas aeruginosaStrain Incapable to Produce Pyoverdins. Z Naturforsch 48c: 425

    Google Scholar 

  338. Love SH, Hulcher FH (1964) Green Fluorescent Pigment Accumulated by a Mutant ofCellvibrio gilvus.J Bacteriol 87: 39

    CAS  Google Scholar 

  339. Luhowy R, Meneghini F (1979) The Mechanism of the Alkaline Hydrolysis of Thiazolidines. J Am Chem Soc 101: 420

    Article  CAS  Google Scholar 

  340. MacDonald JC, Bishop GG (1984) Spectral Properties of a Mixture of Fluorescent Pigments Produced byPseudomonas aeruginosa.Biochim Biophys Acta 800: 11

    Article  CAS  Google Scholar 

  341. MacCordick J, Homsperger JM, Wurtz B (1975) Action d’un complexe de béryllium sur la croissance dePseudomonas fluorescens(types R and S). I. Influence sur le temps de latence. Compt Rend Soc Biol Strasbourg 169: 417

    CAS  Google Scholar 

  342. Maksimova NP, Blazhevich OV, Fomichev YuK (1992) Role of Phenylalanine in the Biosynthesis of the Fluorescent Pigment ofPseudomonas putida.Microbiology 61: 567 (Russian original: Mmcpoóxonorxss 61: 818)

    Google Scholar 

  343. Maksimova NP, Blazhevich OV, Formichev YuK (1993) The Role of Pyrimidines in the Biosynthesis of the Fluorescent Pigment Pyoverdin PminPseudomonas putidaM Bacteria. Molekularnaya Genetika, Mikrobiologiya i Virusologiya 5: 17 (Russian original: Monexynstpxast Fexermca Mxxpo6xonormt x Bxpyconormr 5: 22

    Google Scholar 

  344. Maksimova NP, Blazhevich OV, Lysak VV, Fomichev YuK (1994) Characteristics of fluorescent pigment pyoverdin Pmproduced byPseudomonas putidabacteria.Microbiology63: 587 (Russian original: MHKpoóxonorxst 63: 1038)

    Google Scholar 

  345. Marchai JG (1937) Sur une nouvelle bactérie chromogène des eaux.Bacillus roseus fluorescensn. sp. JG. Marchai 1037. Tray Lab Microbiol Fac Pharm Nancy 10: 90

    Google Scholar 

  346. Marek-Kozaczuk M, Skorupska A (1997) Physiological Parameters Influencing the Production of Siderophore by PGPRPseudomonassp. Strain 267. Acta Microbiol Polon 46: 157

    CAS  Google Scholar 

  347. Margaritis A, Bassi AS (1991) Principles and Biotechnological Applications of Bacterial Ice Nucleation. Crit Rev Biotechnol 11: 277

    Article  CAS  Google Scholar 

  348. Marugg JD, de Weger LA, Nielander HB, Oorthuizen M, Recourt K, Lugtenberg B, van der Hofstad GAJM, Weisbeek PJ (1989) Cloning and Characterization of a Gene Encoding an Outer Membrane Protein Required for Siderophore-Mediated Uptake of Fe3+inPseudomonas putidaWCS358. J Bacteriol 171: 2819

    CAS  Google Scholar 

  349. Matagne A, Dubus A, Gelleni M, Früre JM (1999) The ß-Lactamase Cycle: a Tale of Selective Pressure and Bacterial Ingenuity. Nat Prod Rep 16: 1

    Article  CAS  Google Scholar 

  350. Matzanke BF (1997) Iron Storage in Microorganisms. In: Winkelmann G, Carrano CJ (eds) Transition Metals in Microbial Metabolism. Harwood, Amsterdam, p 117

    Google Scholar 

  351. Maurer B, Müller A, Keller-Schierlein W, Zähner H (1968) Stoffwechselprodukte von Mikroorganismen. Ferribactin, ein Siderochrom ausPseudomonas fluorescensMigula. Arch Microbiol 60: 326

    CAS  Google Scholar 

  352. Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of Systemic Resistance of Tobacco to Tobacco Necrosis Virus by the Root-ColonizingPseudomonas fluorescensStrain CHAO: Influence of thegacAGene and of Pyoverdine Production. Phytopathol 84: 139

    Article  CAS  Google Scholar 

  353. McCaldin DJ (1960) The Chemistry of Ninhydrin. Chem Rev 60: 39

    Article  CAS  Google Scholar 

  354. McCracken AR, Swinburne TR (1979) Siderophores Produced by Saprophytic Bacteria as Stimulants of Germination of Conidia ofColletotrichum musae.Physiol Plant Pathol 15: 331

    Article  Google Scholar 

  355. McFall SM, Chugani SA, Chakrabarty AM (1998) Transcriptional Activation of the Catechol and Chlorocatechol Operons: Variations on a Theme. Gene 223: 257

    Article  CAS  Google Scholar 

  356. Meader PD, Robinson GH, Leonard V (1925) Pyorubrin, a Red Water-Soluble Pigment Characteristic ofB. pyocyaneus.Am J Hygiene 5: 682

    CAS  Google Scholar 

  357. Menhart N, Thariath A, Viswanatha T (1991) Characterization of the Pyoverdines ofAzotobacter vinelandiiATCC 12837 with Regard to Heterogeneity. Biol Metals 4: 223

    Article  CAS  Google Scholar 

  358. Menhart N, Viswanatha T (1990) Precursor Activation in a Pyoverdine Biosynthesis. Biochem Biophys Acta 1038: 47

    Article  CAS  Google Scholar 

  359. Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of thepmsCEABGene Cluster Involved in Biosynthesis of Salicyclic Acid and the Siderophore Pseudomonine in the Biocontrol StrainPseudomonas fluorescensWCS374. J Bacteriol 183: 1909

    Article  CAS  Google Scholar 

  360. Mertz C, Demange P, Cung MT, Dell A, Linget C, Abdallah MA (1991) Bacterial Siderophores: the Conformation of Diamagnetic Complexes ofPseudomonas aeruginosaPyoverdin. J Inorg Biochem 43: 142

    Article  Google Scholar 

  361. Meyer JM (1992) Exogenous Siderophore-Mediated Iron Uptakein Pseudomonas aeruginosa:Possible Involvement of Porin OprF in Iron Translocation. J Gen Microbiol 138: 951

    CAS  Google Scholar 

  362. Meyer JM (2000) Pyoverdines: Pigments, Siderophores and Potential Taxonomic Markers of FluorescentPseudomonasSpecies. Arch Microbiol 174: 135

    Article  CAS  Google Scholar 

  363. Meyer JM, Abdallah MA (1978) The Fluorescent Pigment ofPseudomonas fluorescens:Biosynthesis, Purification and Physicochemical Properties. J Gen Microbiol 107: 319

    Article  CAS  Google Scholar 

  364. Meyer JM, Abdallah MA (1980) The Siderochromes of Non-fluorescent Pseudomonads: Production of Norcardamine byPseudomonas stutzeri.J Gen Microbiol 118: 125

    CAS  Google Scholar 

  365. Meyer JM, Azelvandre P, Georges C (1992) Iron Metabolism inPseudomonas:Salicyclic Acid, a Siderophore ofPseudomonas fluorescensCHAO. BioFactors 4: 23

    CAS  Google Scholar 

  366. Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore Typing, a Powerful Tool for the Identification of Fluorescent and Nonfluorescent Pseudomonads. Appl Environ Microbiol 68: 2745

    Article  CAS  Google Scholar 

  367. Meyer JM, Geoffroy VA, Baysse C, Cornelis P, Barelmann I, Taraz K, Budzikiewicz H (2002) Siderophore-Mediated Iron Uptake in FluorescentPseudomonas:Characterization of the Pyoverdine-Receptor Binding Site of Three Cross-Reacting Pyoverdines. Arch Biochem Biophys 397: 179

    Article  CAS  Google Scholar 

  368. Meyer JM, Hallù F, Hohnadel D, Lemanceau P, Ratefiarivelo H (1987) In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals VCH, Weinheim, p 18

    Google Scholar 

  369. Meyer JM, Hohnadel D (1992) Use of Nitrilotriacetic Acid (NTA) byPseudomonasSpecies through Iron Metabolism. Appl Microbiol Biotechnol 37: 114

    CAS  Google Scholar 

  370. Meyer JF, Hohnadel D, Hallé F (1989) Cepabactin fromPseudomonas cepaciaa New Type of Siderophore. J Gen Microbiol 135: 1479

    CAS  Google Scholar 

  371. Meyer JM, Hornsperger JM (1978) Role of Pyoverdinefthe Iron-Binding Fluorescent Pigment ofPseudomonas fluorescensin Iron Transport. J Gen Microbiol 107: 329

    Article  CAS  Google Scholar 

  372. .Meyer JM, Mock M, Abdallah MA (1979) Effect of Iron on the Protein Composition of the Outer Membrane of Fluorescent Pseudomonads (1979) FEMS Microbiol Lett 5: 395

    Article  CAS  Google Scholar 

  373. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is Essential for Virulence ofPseudomonas aeruginosa.Infect Immun 64: 518

    CAS  Google Scholar 

  374. Meyer JM, Stintzi A (1998) Iron Metabolism and Siderophores inPseudomonasand Related Species. In: Montie TC (ed)Pseudomonas.Plenum, New York

    Google Scholar 

  375. Meyer JM, Stintzi A, Coulanges V, Shivaji S, Voss JA, Taraz K, Budzikiewicz H (1998) Siderotyping of Fluorescent Pseudomonads: Characterization of Pyoverdines ofPseudomonas fluorescensandPseudomonas putidastrains from Antarctica. Microbiol 144: 3119

    Article  CAS  Google Scholar 

  376. Meyer JM, Stintzi A, de Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of Siderophores to Type Pseudomonads: the ThreePseudomonas aeruginosaPyoverdine Systems. Microbiology 143: 35

    Article  CAS  Google Scholar 

  377. Meyer JM, Stintzi A, Poole K (1999) The Ferripyoverdine Receptor FpvA ofPseudomonas aeruginosaPAO1 Recognizes the Ferripyoverdines ofP. aeruginosaPAOI andP. fluorescensATCC 13525. FEMS Microbiol Lett 170: 145

    Article  CAS  Google Scholar 

  378. Michalke R, Taraz K, Budzikiewicz H (1996) Azoverdin — an Isopyoverdin. Z Naturforsch 51c: 772

    Google Scholar 

  379. Michalke R, Taraz K, Budzikiewicz H, Thonart P, Jacques P (1997) A 5,6-Dihydroisopyoverdin fromAzomonas macrocytogenes.Z Naturforsch 52c: 855

    Google Scholar 

  380. Michalke R, Taraz K, Budzikiewicz H, Thonart P, Jacques P (1997) Absolute Configuration of the Isopyoverdin Chromophore. Z Naturforsch 52c: 549 226 H. Budzikiewicz

    Google Scholar 

  381. Michéa M, Greppin H (1974) Séparation et évolution du complexe pigmentaire dePseudomonas fluorescensMig. C R Séances Soc Phys Hist Nat Genüve 8: 19

    Google Scholar 

  382. Michels J, Benoni H, Briskot G, Lex J, Schmickler H, Taraz K, Budzikiewicz H, Korth H, Pulverer G (1991) Isolierung und spektroskopische Charakterisierung des Pyoverdin-Chromophors sowie seines 5-Hydroxy-Analogen. Z Naturforsch 46c: 993

    Google Scholar 

  383. Michels J, Taraz K (1991) Characterization of Pyoverdins and their Hydrolytic Degradation Products by Fast Atom Bombardment and Tandem Mass Spectrometry. Org Mass Spectrom 26: 899

    Article  CAS  Google Scholar 

  384. Mielczarek EV, Andrews SC, Bauminger R (1992) Mössbauer Spectroscopy and Electron Paramagnetic Resonance Studies of Iron Metabolites inPseudomonas aeruginosa:Fe2+ and Fe3+ Ferritin in57Ferripyoverdine Incubated Cells and57Ferric Citrate Fed Cells. BioMetals 5: 87

    Article  CAS  Google Scholar 

  385. Mielczarek EV, Royt PW, Toth-Allen J (1990) A Mössbauer Spectroscopy Study of Cellular Acquisition of Iron from Pyoverdine byPseudomonas aeruginosa.Biol Metals 3: 34

    CAS  Google Scholar 

  386. Mohn G, Koehl P, Budzikiewicz H, Lefüvre JF (1994) Solution Structure of Pyoverdin GM-II. Biochemistry 33: 2843

    Article  CAS  Google Scholar 

  387. Mohn G, Taraz K, Budzikiewicz H (1990) New Pyoverdin-Type Siderophores fromPseudomonas fluorescens.Z Naturforsch 45b: 1437

    Google Scholar 

  388. Moon SS, Kang PM, Park KS, Kim CH (1996) Plant Growth Promoting and Fungicidal 4-Quinolones fromPseudomonas cepaciaPhytochem 42: 365

    Article  CAS  Google Scholar 

  389. Mortishire-Smith RI, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Determination of the Structure of an Extracellular Peptide Produced by the Mushrooms SaprotrophPseudomonas reactans.Tetrahedron 47: 3645

    Article  CAS  Google Scholar 

  390. Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a New Siderophore ofPseudomonas fluorescensATCC 17400, the Production of which is Repressed by the Cognate Pyoverdine. Appl Environ Microbiol 66: 487

    Article  CAS  Google Scholar 

  391. Mossialos D, Ochsner U, Baysse C, Chablain C, Pirnay JP, Koedam N, Budzikiewicz H, Urfa Ferníndez D, Schäfer M, Ravel J, Cornelis P (2002) Identification of New, Conserved, Non-ribosomal Peptide Synthetases from Fluorescent Pseudomonads Involved in the Biosynthesis of the Siderophore Pyoverdine. Mol Microbiol 45: 1673

    Article  CAS  Google Scholar 

  392. Müller A, Zähner H (1968) Stoffwechselprodukte von Mikroorganismen. Ferrioxamine aus Eubacteriales. Arch Microbiol 62: 257

    Google Scholar 

  393. Muñoz-Bellido JL, García-Rodríguez JA (1996) New Trends in Cephalosporin Developments: Catechol and Isoxazolidin Cephalosporins. Infect Diseases Clin Pract 5: 232

    Article  Google Scholar 

  394. Munsch P, Alatossava T, Marttinen N, Meyer JM, Christen R, Gardan L (2002)Pseudomonas costantiniisp. nov., another Causal Agent of Brown Bloch Disease, Isolated from Cultivated Mushroom Sporophores in Finland. Int J Syst Evol Microbiol 52: 1973

    Article  CAS  Google Scholar 

  395. Munsch P, Geoffroy VA, Alatossava T, Meyer JM (2000) Application of Siderotyping for Characterization ofPseudomonas tolaasiiand“Pseudomonas reactans”Isolates Associated with Brown Blotch Disease of Cultivated Mushrooms. Applied Environ Microbiol 66: 4834

    Article  CAS  Google Scholar 

  396. Naegeli HU, Zähner H (1980) Stoffwechselprodukte von Mikroorganismen. Ferrithiocin. Helv Chim Acta 63: 1400

    Article  CAS  Google Scholar 

  397. Nagasawa HT, Goon DJW, Shirota FN (1981) Epimerization at C-2 of 2-Substituted Thiazolidine-4-carboxylic Acids. J Heterocyclic Chem 18: 1047

    Article  CAS  Google Scholar 

  398. Namiranian S, Richardson DJ, Russel DA, Sodeau JR (1997) Exited State Properties of the Siderophore Pyochelin and its Complex with Zinc Ions. Photochem Photobiol 65: 777

    Article  CAS  Google Scholar 

  399. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Ütterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöf A, Tümmler B, Fraser CM (2002) Complete Genome Sequence and Comparative Analysis of the Metabolically VersatilePseudomonas putidaKT2440. Environ Microbiol 4: 799

    Article  CAS  Google Scholar 

  400. Neu HC (1992) The Crisis in Antibiotic Resistance. Science 257: 1064

    Article  CAS  Google Scholar 

  401. Neuenhaus W, Budzikiewicz H, Korth H, Pulverer G (1979) 3-Alkyl-tetrahydrochinolinderivate ausPseudomonas.Z Naturforsch 34b: 313

    CAS  Google Scholar 

  402. Neuenhaus W, Budzikiewicz H, Korth H, Pulverer G (1980) 8-Hydroxy-4methoxy-monothiochinaldinsäure — eine weitere Thiosäure ausPseudomonas.Z Naturforsch 35b: 1569

    CAS  Google Scholar 

  403. Newkirk JD, Hulcher FH (1969) Isolation and Properties of a Fluorescent Pigment fromPseudomonas mildenbergii.Arch Biochem Biophys 134: 395

    Article  CAS  Google Scholar 

  404. Niccolai D, Tarsi L, Thomas RJ (1997) The Renewed Challenge of Antibacterial Chemotherapy. Chem Commun 2333

    Google Scholar 

  405. Novak-Thompson B, Gould SJ (1994) Biosynthesis of the Pseudobactin Chromophore from Tyrosine. Tetrahedron 50: 9865

    Article  Google Scholar 

  406. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Structure Determination of Tolaasin, an Extracellular Lipodepsipeptide Produced by the Mushroom PathogenPseudomonas tolaasiiPaine. J Am Chem Soc 113: 2621

    Article  CAS  Google Scholar 

  407. Ocaktan A, Schalk I, Hennard C, Linget-Morice C, Kyslik P, Smith AW, Lambert PA, Abdallah MA (1996) Specific Photoaffinity Labelling of a Ferripyoverdin Outer Membrane Receptor ofPseudomonas aeruginosa.FEBS Lett 396: 243

    Article  CAS  Google Scholar 

  408. Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip®Expression Analysis of the Iron Starvation Response inPseudomonas aeruginosa:Identification of Novel Pyoverdine Biosynthesis Genes. Mol Microbiol 45: 1277

    Article  CAS  Google Scholar 

  409. Ockels W, Römer A, Budzikiewicz H, Korth H, Pulverer G (1978) An Fe(II) Complex of Pyridine-2,6-di-(monothiocarboxylic acid) — a Novel Bacterial Metabolic Product. Tetrahedron Lett 3341

    Google Scholar 

  410. Offord RE (1966) Electrophoretic Mobilities of Peptides on Paper and their Use in the Determination of Amide Groups. Nature 211: 591

    Article  CAS  Google Scholar 

  411. Okonya JF, Kolasa T, Miller MJ (1995) Synthesis of the Peptide Fragment of Pseudobactin. J Org Chem 60: 1932

    Article  CAS  Google Scholar 

  412. Okonya JF, Kolasa T, Miller MJ (1996) Synthesis of Fragments of the Peptide Component of Pseudobactin. J Pept Sci 2: 157

    CAS  Google Scholar 

  413. Ongena M, Jacques P, Delfosse P, Thonart P (2002) Unusual Traits of the PyoverdinMediated Iron Acquisition Sytem inPseudomonas putidaStrain BTP1. BioMetals 15: 1

    Article  CAS  Google Scholar 

  414. Ongena M, Jacques P, de Pauw E, Thonat P (2002) Synthesis of Peptide-Modified Pyoverdins by a FluorescentPseudomonasStrain Grown in Isoleucine-Supplemented Medium. Lett Peptide Sci 8: 21

    Google Scholar 

  415. Ongena M, Jacques P, Thonart P, Gwose I, Urfa Ferníndez D, Schäfer M, Budzikiewicz H (2001) The Pyoverdin ofPseudomonas fluorescensBTP2, a Novel Structural Type. Tetrahedron Lett 42: 5849

    Article  CAS  Google Scholar 

  416. Ongena M, Jacques P, van Vyncht G, Charlier P, de Pauw E, Thonart P, Budzikiewicz H (1998) Structural Analysis of Two Pyoverdins by Electrospray and FAB Mass Spectrometry. J Mass Spectrom Soc Jpn 46: 53

    Article  CAS  Google Scholar 

  417. Osawa S, Yabuuchi E, Narano Y, Nakata M, Kosono Y, Takashina K, Tanabe T (1963) Pigment Production byPseudomonas aeruginosaon Glutamic Acid Medium and Gel Filtration of the Culture Fluid Filtrate. Japan J Microbiol 7: 87

    CAS  Google Scholar 

  418. Osawa S, Yabuuchi E, Narano Y, Nakata M, Yukawa Y, Takashina K, Tanabe T, Tomono H (1964) Pigment Production byPseudomonas aeruginosaon Glutamic Acid Medium II. Studies of Fluorescence I. Japan J Microbiol 8: 115

    Google Scholar 

  419. O’Sullivan DJ, O’Gara F (1992) Traits of FluorescentPseudomonasspp. Involved in Suppression of Plant Root Pathogens. Microbiol Rev 56: 662

    Google Scholar 

  420. Page WJ, Collinson SK (1987) Characterization ofAzomonas macrocytogenesStrains Isolated from Alberta Soils. Can J Microbiol 33: 830

    Article  Google Scholar 

  421. Page WJ, Collinson SK, Demange P, Dell A, Abdallah MA (1991)Azotobacter vinelandiiStrains of Disparate Origin Produce Azotobactin Siderophores with Identical Structures. Biol Metals 4: 217

    Article  CAS  Google Scholar 

  422. Page WJ, Huyer M (1984) Derepression of theAzotobacter vinelandiiSiderophore System, Using Iron-Containing Minerals to Limit Iron Repletion. J Bacteriol 158: 496

    CAS  Google Scholar 

  423. Page WJ, von Tigerstrom M (1988) Aminochelin, a Catecholamine Siderophore Produced byAzotobacter vinelandii.J Gen Microbiol 134: 453

    CAS  Google Scholar 

  424. Paine SG (1918) Studies in Bacteriosis II. A Brown Blotch Disease of Cultivated Mushrooms. Ann Appl Biol 5: 206

    Article  Google Scholar 

  425. Palleroni NJ (1981) Introduction to the Family Pseudomonadaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Prokariotes, vol 1, section H, chapter 58. Springer, Berlin Heidelberg New York, p 655

    Google Scholar 

  426. Palleroni NJ (1984) Genus I.PseudomonasMigula 1894. In: Krieg NR, Holt JG (eds) Bergey’s Manual of Systematik Bacteriology, vol 1. Williams & Wilkins, Baltimore London, p 141

    Google Scholar 

  427. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic Acid Homologies in the GenusPseudomonas.Int J Syst Bacteriol 23: 333

    Article  CAS  Google Scholar 

  428. Passador L, Tucker KD, Guertin KR, Joume MP, Kende AS, Iglewski BH (1996) Functional Analysis of thePseudomonas aeruginosaAutoinducer PAI. J Bacteriol 178: 5995

    CAS  Google Scholar 

  429. Pasteur L, Joubert J (1877) Charbon et septicémie. Compt rend Acad Sci 85: 101

    Google Scholar 

  430. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the Autoinducer Required for Expression ofPseudomonas aeruginosaVirulence Genes. Proc Natl Acad Sci USA 91: 197

    Article  CAS  Google Scholar 

  431. Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-Cysteinyl to a D-Cyteinyl Residue during Thiazoline Ring Formation in Siderophore Chain Elongation by Pyochelin Synthetase fromPseudomonas aeruginosa.Biochem 42: 10514

    Article  CAS  Google Scholar 

  432. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A Second N-Acylhomoserine Lactone Signal Produced by ofPseudomonas aeruginosa.Proc Natl Acad Sci USA 92: 1490

    Article  CAS  Google Scholar 

  433. Persmark M, Frejd T, Mattiasson B (1990) Purification, Characterization, and Structure of Pseudobactin 589A, a Siderophore from a Plant Growth PromotingPseudomonas.Biochemistry 29: 7348

    Article  CAS  Google Scholar 

  434. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone Signaling in the Cell-to-Cell Communication System ofPseudomonas aeruginosa.Proc Natl Acad Sci USA 96: 11229

    Article  CAS  Google Scholar 

  435. Philson SB, Llinís M (1982) Siderochromes fromPseudomonas fluorescens.I. Isolation and Characterization. J Biol Chem 257: 8081

    CAS  Google Scholar 

  436. Philson SB, Llinís M (1982) Siderochromes fromPseudomonas fluorescens.II. Structural Homology as Revealed by NMR Spectroscopy. J Biol Chem 257: 8086

    CAS  Google Scholar 

  437. Piper TS (1961) Partial Chromatographic Resolution, Rotatory Dispersion, and Absolute Configuration of Octahedral Complexes Containing Three Identical Bidentate Ligands. J Am Chem Soc 83: 3908

    Article  CAS  Google Scholar 

  438. Ponticelli F, Marinello E, Missale MC (1982)cis-transIsomerization of 2-(4Pyridyl)-Substituted Thiazolidine-4-carboxylic acids: pH Dependence by1H and 13C NMR. Org Magnetic Res 20: 138

    Article  CAS  Google Scholar 

  439. Poole K, Neshat S, Krebes K, Heinrichs DE (1993) Cloning and Nucleotide Sequence Analysis of the Ferripyoverdine Receptor GenefpvAofPseudomonas aeruginosa.J Bacteriol 175: 4597

    CAS  Google Scholar 

  440. Poole K, Srikamur R (2001) Multidrug Efflux inPseudomonas aeruginosa:Components, Mechanisms and Clinical Significance. Curr Top Med Chem 2: 59

    Article  Google Scholar 

  441. Poole K, Young L, Neshat S (1990) Enterobactin-Mediated Iron Transport inPseudomonas aeruginosa.J Bacteriol 172: 6991

    CAS  Google Scholar 

  442. Poppe K, Taraz K, Budzikiewicz H (1987) Pyoverdine Type Siderophores fromPseudomonas fluorescens.Tetrahedron 43: 2261

    Article  CAS  Google Scholar 

  443. Pouteau-Thouvenot M, Choussy M, Barbier M, Viscontini M (1969) Sur le rôle métabolique de la proferrorosamine A produite parPseudomonas roseusfluorescensJ. C. Marchal 1937. Helv Chim Acta 52: 2392

    Article  CAS  Google Scholar 

  444. Pouteau-Thouvenot M, Gaudemer A, Barbier M (1968) Structure chimique de la pro-ferrorosamine B. Bull Soc Chim Biol 50: 222

    CAS  Google Scholar 

  445. Pouteau-Thouvenot M, Padikkala J, Barbier M, Viscontini M (1973) Biosynthüse de la proferrorosamine A ¨¤ partir de la L-lysine. Helv Chim Acta 56: 1067

    Article  CAS  Google Scholar 

  446. Preece TF, Wong WC (1982) Quantitative and Scanning Electron Microscope Observations on the Attachment ofPseudomonas tolaasiiand other Bacteria to the Surface ofAgaricus bisporus.Physiol Plant Pathol 21: 251

    Article  Google Scholar 

  447. Propst C, Lubin L (1979) Light-Mediated Changes in Pigmentation ofPseudomonas aeruginosaCultures. J Gen Microbiol 113: 261

    Article  CAS  Google Scholar 

  448. Pulverer G (1972) Erregerspektrum und Antibiotikaresistenz. Rhein Arztebl 118

    Google Scholar 

  449. Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of thePseudo-monas aeruginosaNonribosomal Peptide Siderophore Pyochelin: In Vitro Reconstitution of Ary1–4,2-bisthiazoline Synthetase Activity from PchD, PchE, and PchF. Biochemistry 38: 14941

    Article  CAS  Google Scholar 

  450. Ravel J, Cornelis P (2003) Genomics of Pyoverdine-Mediated Iron Uptake in Pseudomonads. Trends Microbiol 11: 195

    Article  CAS  Google Scholar 

  451. Regenhardt D, Heuer H, Heim S, Fernandez DU, Strömpl C, Moore ERB, Timmis KN (2002) Pedigree and Taxonomic Credentials ofPseudomonas putidaStrain KT2440. Environ Microbiol 4: 912

    Article  CAS  Google Scholar 

  452. Rehm BHA, Winkler UK (1996) Alginatbiosynthese beiPseudomonas aeruginosaundAzotobacter vinelandii:Molekularbiologie und Bedeutung. Biospektrum 2: 31

    CAS  Google Scholar 

  453. Reimmann C, Serino L, Beyeler M, Haas D (1988) Dihydroaeruginoic Acid Synthetase and Pyochelin Synthetase, Products of thepchEFGenes, are Induced by Extracellular Pyochelin inPseudomonas aeruginosa.Microbiology 144: 3135

    Article  Google Scholar 

  454. Rinehart KL, Staley AL, Wilson SR, Ankenbauer RG, Cox CD (1995) Stereo-chemical Assignment of the Pyochelins. J Org Chem 60: 2786

    Article  CAS  Google Scholar 

  455. Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D (1998) Corrrugatin, a Lipopeptide Siderophore fromPseudomonas corrugata.Z Naturforsch 53c: 295

    Google Scholar 

  456. Ritter C, Luckner M (1971) Zur Biosynthese der 2-n-Alkyl-4-hydroxychinolinderivate (Pseudane) beiPseudomonas aeruginosa.Eur J Biochem 18: 391

    Article  CAS  Google Scholar 

  457. Roepstorff P, Fohlman J (1984) Proposal of a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed Mass Spectrom 11: 601

    Article  CAS  Google Scholar 

  458. Rosenberg II JM, Lin YM, Lu Y, Miller MJ (2000) Studies and Syntheses of Siderophores, Microbial Iron Chelators, and Analogs as Potential Drug Delivery Agents. Curr Med Chem 7: 159

    Article  Google Scholar 

  459. Roth KDW, Huang ZH, Sadagopan N, Watson JT (1998) Charge Derivatization of Peptides for Analysis by Mass Spectrometry. Mass Spectrom Rev 17: 255

    Article  CAS  Google Scholar 

  460. Royt PW (1990) Pyoverdine-Mediated Iron Transport. Fate of Iron and Ligand inPseudomonas aeruginosa.Biol Metals 3: 28

    Article  CAS  Google Scholar 

  461. Royt PW (1988) Isolation of a Membrane Associated Iron Chelator fromPseudo-monas aeruginosa.Biochem Biophys Acta 939: 493

    Article  CAS  Google Scholar 

  462. Royt PW, Honeychuck RV, Ravich V, Ponnaluri P, Pannell LK, Buyer JS, Chandhoke V, Stalick WM, DeSesso LC, Donohue S, Ghei R, Relyea JD, Ruiz R (2001) 4Hydroxy-2-nonylquinoline: A Novel Iron Chelator Isolated from a Bacterial Cell membrane. Bioorg Chem 29: 387

    Article  CAS  Google Scholar 

  463. Ruangviryachai C, Barelmann I, Fuchs R, Budzikiewicz H (2000) An Exceptionally Large Pyoverdin from aPseudomonasStrain Collected in Thailand. Z Naturforsch 55c: 323

    Google Scholar 

  464. Ruangviriyachai C, Budzikiewicz H, Katekaew S, Amornpunch S (1995) Purification and Characterisation of Siderophores fromPseudomonas aeruginosain Soil Sample. Microb Util Renewable Resources 9: 232

    CAS  Google Scholar 

  465. Ruangviriyachai C, Uria Ferníndez D, Fuchs R, Meyer JM, Budzikiewicz H (2001) A New Pyoverdin fromPseudomonas aeruginosaR’. Z Naturforsch 56c: 933

    Google Scholar 

  466. Ruangviriyachai C, Urfa Ferníndez D, Schäfer M, Budzikiewicz H (2004) Structure Proposal for a New Pyoverdin from a ThaiPseudomonas putidastrain. Spectroscopy in press

    Google Scholar 

  467. Salah-el-Din ALM, KyslIk P, Stephan D, Abdallah MA (1997) Bacterial Iron Transport: Structure Elucidation by FAB-MS and by 2D NMR (1H13C 15N) of Pyoverdin G4R, a Peptidic Siderophore Produced by a Nitrogen-Fixing Strain ofPseudomonas putida.Tetrahedron 53: 12539

    Article  CAS  Google Scholar 

  468. Sasaki K, Hirata Y (1973) Structure of the Decarboxylated Derivative of the Chromophore from the Fluorescent Peptide Produced by Iron-DeficientAzotobacter vinelandii.J Chem Soc Perkin II 485

    Google Scholar 

  469. Sasaki T, Igarashi Y, Saito N, Furumai T (2002) Watasemycins A and B, New Antibiotics Produced byStreptomycessp. TP-A0597. J Antibiot 55: 249

    Article  CAS  Google Scholar 

  470. Schäfer H, Taraz K, Budzikiewicz H (1991) Zur Genese der amidisch an den Chromophor von Pyoverdinen gebundenen Dicarbonsäuren. Z Naturforsch 46c: 398

    Google Scholar 

  471. Schaffner EM (1995) Strukturaufklärung der Peptid-Siderophore ausAzotobacter vinelandiiATCC 12837 und ATCC 13705. Dissertation, Universität zu Köln

    Google Scholar 

  472. Schaffner EM, Hartmann R, Taraz K, Budzikiewicz H (1996) Structure Elucidation of Azotobactin 87, Isolated fromAzotobacter vinelandiiATCC 12837. Z Naturforsch 51c: 139

    Google Scholar 

  473. Schalk U, Abdallah MA, Pattus F (2002) A New Mechanism for Membrane Iron Transport inPseudomonas aeruginosa.Biochem Soc Trans 30: 702

    Article  CAS  Google Scholar 

  474. Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of Pyoverdin on the FpvA Receptor after Ferric Pyoverdin Uptake and Dissociation inPseudomonas aeruginosa.Biochemistry 41: 1663

    Article  CAS  Google Scholar 

  475. Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F (2001) Iron-Free Pyoverdin Binds to its Outer Membrane Receptor FpvA inPseudomonas aeruginosa:a New Mechanism for Membrane Iron Transport. Mol Microbiol 39: 351

    Article  CAS  Google Scholar 

  476. Schalk U, Kyslik P, Prome D, van Dorsselaer A, Poole K, Abdallah MA, Pattus F (1999) Copurification of the FpvA Ferric Pyoverdin Receptor ofPseudomonas aeruginosawith its Iron-Free Ligand: Implications for Siderophore-Mediated Iron Transport. Biochemistry 38: 9357

    Article  CAS  Google Scholar 

  477. Schlegel K (2000) Strukturaufkärung von Siderophoren aus fluoreszierenden Pseudomonaden Dissertation, Universität zu Köln

    Google Scholar 

  478. Schlegel K, Fuchs R, Schäfer M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2001) The Pyoverdins ofPseudomonassp. 96–312 and 96–318. Z Naturforsch 56c: 680

    Google Scholar 

  479. Schröder H, Adam J, Taraz K, Budzikiewicz H (1995) Dihydropyoverdinsulfonsäuren — Zwischenstufen bei der Biogenese? Z Naturforsch 50c: 616

    Google Scholar 

  480. Schwyn B, Neilands JB (1987) Universal Chemical Assay for the Detection and Determination of Siderophores. Anal Biochem 160: 47

    Article  CAS  Google Scholar 

  481. Screen J, Moya E, Blagbrough IS, Smith AW (1995) Iron Uptake inPseudomonas aeruginosaMediated by N-(2,3-Dihydroxybenzoyl)-L-serine and 2,3-Dihydroxybenzoic Acid. FEMS Microbiol Lett 127: 145

    Article  CAS  Google Scholar 

  482. Seinsche D, Taraz K, Budzikiewicz H, Gondol D (1993) Neue Pyoverdin-Siderophore ausPseudomonas putidaC. J Prakt Chemie 335: 157

    Article  CAS  Google Scholar 

  483. Seleen WA, Stark CN (1943) Some Characteristics of Green-Fluorescent Pigment-Producing Bacteria. J Bacteriol 46: 491

    CAS  Google Scholar 

  484. .Serino L, Reimann C, Visca P, Beyeler M, della Chiesa V, Haas D (1997) Biosynthesis of Pyochelin and Dihydroaeruginoic Acid Requires the Iron-RegulatedpchDCBAOperon inPseudomonas aeruginosa.J Bacteriol 179: 248

    CAS  Google Scholar 

  485. Shen J, Meldrum A, Poole K (2002) FpvA Receptor Involvement in Pyoverdine Biosynthesis inPseudomonas aeruginosa.J Bacteriol 184: 3268

    Article  CAS  Google Scholar 

  486. Shiman R, Neilands JB (1965) Isolation, Characterization, and Synthesis of Pyrimine, an Iron(II)-Binding Agent fromPseudomonasGH. Biochemistry 4: 2233

    Article  CAS  Google Scholar 

  487. Shindo K, Takenaka A, Noguchi T, Hayakawa Y, Seto H (1989) Thiazostatin A and Thiazostatin B, New Antioxidants Produced byStreptomyces tolurosus.J Antibiot 42: 1526

    Article  CAS  Google Scholar 

  488. Shirahata K, Deguchi T, Hayashi T, Matsubara I, Suzuki T (1970) The Structures of Fluopsins C and F. J Antibiot 23: 546

    Article  CAS  Google Scholar 

  489. Simidu U, Noguchi T, Hwang DF, Shida Y, Hashimoto K (1987) Marine Bacteria which Produce Tetrodotoxin. Appl Environ Microbiol 53: 1714

    CAS  Google Scholar 

  490. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A Component of Innate Immunity Prevents Bacterial Biofilm Development. Nature 417: 552

    Article  CAS  Google Scholar 

  491. Smith AW, Poyner DR, Hughes HK, Lambert PA (1994) Siderophore Activity of myo-Inositol Hexakisphosphate inPseudomonas aeruginosa.J Bacteriol 176: 3455

    CAS  Google Scholar 

  492. Smith KM, Bu Y, Suga H (2003) Induction and Inhibition ofPseudomonas aeruginosaQuorum Sensing by Synthetic Autoinducer Analogs. Chem Biol 10: 81

    Article  CAS  Google Scholar 

  493. Smith P, Davey S (1993) Evidence for the Competitive Exclusion ofAeromonas salmonicidafrom Fish with Stress-Inducible Furunculosis by a Fluorescent Pseudomonad. J Fish Dis 16: 521

    Article  Google Scholar 

  494. Sokol PA (1986) Production and Utilization of Pyochelin by Clinical Isolates ofPseudomonas cepacia.J Clin Microbiol 23: 560

    CAS  Google Scholar 

  495. Sokol PA, Lewis CJ, Dennis JJ (1992) Isolation of a Novel Siderophor fromPseudomonas cepacia.J Med Microbiol 36: 184

    Article  CAS  Google Scholar 

  496. Sokol PA, Woods DE (1983) Demonstration of an Iron-Siderophore-Binding Protein in the Outer Membrane ofPseudomonas aeruginosa.Infect Immun 40: 665

    CAS  Google Scholar 

  497. Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers Hi (1999) Biochemical and Physiological Aspects of Brown Blotch Disease ofAgaricus bisporus.FEMS Microbiol Rev 23: 591

    CAS  Google Scholar 

  498. Somogyi A, Wysocki VH, Mayer I (1994) The Effect of Protonation Site on Bond Strengths in Simple Peptides: Application ofab initioand Modified Neglect of Differential Overlap Bond Orders and Modified Neglect of Differential Overlap Partitioning. J Am Soc Mass Spectrom 5: 704

    Article  CAS  Google Scholar 

  499. Spencer DH, Kas A, Smith EE, Raymond CK, Sims EH, Hastings M, Burns JL, Kaul R, Olson MV (2003) Whole-Genome Sequence Variations among Multiple Isolates ofPseudomonas aeruginosa.J Bacteriol 185: 1316

    Article  CAS  Google Scholar 

  500. Spiers AJ, Buckling A, Rainey PB (2000) The Causes ofPseudomonasDiversity. Microbiol 146: 2345

    CAS  Google Scholar 

  501. Srikumar R, Li XZ, Poole K (1997) Inner Membrane Efflux Components are Responsible for ß-Lactam Specificity of Multidrug Efflux Pumps inPseudomonas aeruginosa.J Bacteriol 179: 7875

    CAS  Google Scholar 

  502. Stanier RY, Palleroni NJ, Doudoroff M (1966) The Aerobic Pseudomonads: a Taxonomic Study. J Gen Microbiol 43: 159

    Article  CAS  Google Scholar 

  503. Stintzi A (1993) Etude de la voie de biosynthüse de la pyoverdine dePseudomonas aeruginosaPAO1. Diplôme d’Etudes Approfondies, Univ. de Strasbourg (quoted in Ref.324)

    Google Scholar 

  504. Stintzi A, Cornelis P, Hohnadel D, Meyer JM, Dean C, Poole K, Kourambas S, Krishnapillai V (1996) Novel Pyoverdine Biosynthesis Gene(s) ofPseudomonas aeruginosaPAO. Microbiology 142: 1181

    Article  CAS  Google Scholar 

  505. Stintzi A, Johnson Z, Stonehouse M, Ochsner U, Meyer JM, Vasil ML, Poole K (1999) ThepvcGene Cluster ofPseudomonas aeruginosa:Role in Synthesis of the Pyoverdine Chromophore and Regulation by PtxR and PvdS. J Bacteriol 181: 4118

    CAS  Google Scholar 

  506. Stoll A, Renz J, Brack A (1951) Beiträge zur Konstitutionsaufklärung des Nocardamins Helv Chim Acta 34: 862

    Article  CAS  Google Scholar 

  507. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkmann FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson VM (2000) Complete Genom Sequence ofPseudomonas aeruginosaPAO1, an Opportunistic Pathogen. Nature 406: 959

    Article  CAS  Google Scholar 

  508. Sultana R, Fuchs R, Schmickler H, Schlegel K, Budzikiewicz H, Siddiqui BS, Geoffroy V, Meyer JM (2000) A Pyoverdin fromPseudomonassp. CFML 95–275. Z Naturforsch 55c: 857

    Google Scholar 

  509. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2000) A Pyoverdine fromPseudomonas putidaCFML 90–51 with a Lys e-Amino Link in the Peptide Chain. BioMetals 13: 147

    Article  CAS  Google Scholar 

  510. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001) An Isopyoverdin fromPseudomonas putidaCFML 90–44. Z Naturforsch 56c: 303

    Google Scholar 

  511. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001) An Isopyoverdin fromPseudomonas putidaCFML 90–33. Tetrahedron 57: 1019

    Article  CAS  Google Scholar 

  512. Sutra L, Siverio F, Lopez MM, Hunault G, Bollet C, Gardan L (1997) Taxonomy ofPseudomonasStrains Isolated from Tomato Pith Necrosis: Emended Description ofPseudomonas corrugataand Proposal of Three Unnamed FluorescentPseudomonasGenomospecies. Int J System Bacteriol 47: 1020

    Article  CAS  Google Scholar 

  513. Szarapiñska-Kwaszewska J, Mikucki J (2001) Wykorzystywanie egzogennych siderofor¨®w przez enterokoki. Med Dogw Mikrobiol 53: 233

    Google Scholar 

  514. Szilígyi L, Györgydeík Z (1979) Comments on the Putative Stereoselectivity in Cysteine-Aldehyde Reactions. Selective C(2) Inversion and C(4) Epimerization in Thiazolidine-4-carboxylic Acids. J Am Chem Soc 101: 427

    Article  Google Scholar 

  515. Takeda R (1959) Isolation of the Substance B from the Culture ofPseudomonas aeruginosaT359. Hakko Kogaku Zasski 37: 59 (Chem Abstr 1960, 54: 16533)

    Google Scholar 

  516. Tang XJ, Boyd RK (1994) Rearrangements of Doubly Charged Acylium Ions from Lysyl amd Ornithyl Peptides. Rapid Comm Mass Spectrom 8: 678

    Article  CAS  Google Scholar 

  517. Tang XJ, Thibault P, Boyd RK (1993) Fragmentation Reactions of Multi-Protonated Peptides and Implications for Sequencing by Tandem Mass Spectrometry with Low-Energy Collision-Induced Dissociation. Anal Chem 65: 2824

    Article  CAS  Google Scholar 

  518. Tappe R (1991) Ferribactin 3b, ein Siderophor vonPseudomonas aptata3b. Diplomarbeit, Universität zu Köln

    Google Scholar 

  519. Tappe R (1995) Aufklärung der Primärstruktur eines Pyoverdins vonPseudomonas aeruginosaATCC 27853 und Bestimmung der räumlichen Struktur seines Ga(III)Komplexes in Lösung als Modell für den Eisen(III)-Komplex. Dissertation, Universität zu Köln

    Google Scholar 

  520. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefüvre JF (1993) Structure Elucidation of a Pyoverdin Produced byPseudomonas aeruginosaATCC 27853. J Prakt Chem 335: 83

    Article  CAS  Google Scholar 

  521. Taraz K, Schaffner EM, Budzikiewicz H, Korth H, Pulverer G (1991) Die Bildung hydroxylierter Phenazine durchPseudomonas fduorescensY4 bei Bee+-Zusatz zum Kulturmedium — ein Abwehrmechanismus? Z Naturforsch 46c: 194

    Google Scholar 

  522. Taraz K, Seinsche D, Budzikiewicz H (1991) Pseudobactin-und Pseudobactin A-Varianten: Neue Peptidsiderophore vom Pyoverdin-Typ ausPseudomonas fiuorescens “E2”.Z Naturforsch 46c: 522

    Google Scholar 

  523. Taraz K, Seipold L, Amann C, Budzikiewicz H (2000) The Complex Structure of Ferri-Ferribactins. Z Naturforsch 55c: 836

    Google Scholar 

  524. Taraz K, Tappe R, Schröder H, Hohlneicher U, Gwose I, Budzikiewicz H, Mohn G, Lefüvre JF (1991) Ferribactins — the Biogenetic Precursors of Pyoverdins. Z Naturforsch 46c: 527

    Google Scholar 

  525. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) ThePseudomonas aeruginosaAutoinducer N-3Oxododecanoyl Homoserine Lactone Accelerates Apoptosis in Macrophages and Neutrophils. Infect Immun 71: 5785

    Article  CAS  Google Scholar 

  526. Tatsuta K, Tamura T (2000) Novel Synthesis and Structural Elucidation of Quinolone Antibiotics PC-3 (SF2420B) and YM-30059. J Antibiotics 53: 418

    Article  CAS  Google Scholar 

  527. Taylor GW, Machan ZA, Mehmet S, Cole PJ, Wilson R (1995) Rapid Identification of 4-Hydroxy-2-alkylquinolines Produced byPseudomonas aeruginosaUsing Gas Chromatography — Electron-Capture Mass Spectrometry. J Chromatogr B 664: 458

    Article  CAS  Google Scholar 

  528. Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Structure of Ferric Pseudobactin, a Siderophore from a Plant Growth PromotingPseudomonas.Biochemistry 20: 6446

    Article  CAS  Google Scholar 

  529. Teintze M, Leong J (1981) Structure of Pseudobactin A, a Second Siderophore from Plant Growth PromotingPseudomonasB10. Biochemistry 20: 6457

    Article  CAS  Google Scholar 

  530. Terano H, Nomoto K, Takase S (2002) Siderophore Production and Induction of Iron-Regulated Proteins by a Microorganism from Rhizosphere of Barley. Biosci Biotechnol Biochem 66: 2471

    Article  CAS  Google Scholar 

  531. Thumm K (1894) Beiträge zur Biologie der fluoreszierenden Bakterien. Arbeiten a d bakter Inst d Techn Hochsch Karlsruhe 1: 291

    Google Scholar 

  532. Tolaas AG (1915) A Bacterial Disease of Cultivated Mushrooms. Phytopathology 5: 51

    Google Scholar 

  533. Torres L, Pérez-Ortín JE, Tordera V, Beltrín JP (1986) Isolation and Characterization of an Fe(III)-Chelating Compound Produced byPseudomonas syringae.Appl Environ Microbiol 52: 157

    CAS  Google Scholar 

  534. Totter JR, Moseley FT (1953) Influence of the Concentration of Iron on the Production of Fluorescin byPseudomonas aeruginosa.J Bacteriol 65: 45

    CAS  Google Scholar 

  535. Tsubotani S, Katayama N, Funabashi Y, Ono H, Harada S (1993) Ferrrocins, New Iron-Containing Peptide Antibiotics Produced by Bacteria. Isolation, Characterization and Structure Elucidation. J Antibiot 46: 287

    Article  CAS  Google Scholar 

  536. Turfitt GE (1936) Bacteriological and Biochemical Relationships in the Pyocyaneus-Fluorescens Group. I. The Chromogenic Function in Relation to Classification. Biochem J 30: 1323

    CAS  Google Scholar 

  537. Turfitt GE (1937) Bacteriological and Biochemical Relationships in the Pyocyaneus-Fluorescens Group. II. Investigations on the Green Fluorescent Pigment. Biochem J 31: 212

    CAS  Google Scholar 

  538. Turfreijer A (1941) Pyovedinen, de groen fluoresceerende kleurstoffen vanPseudomonas fluorescens.Proefschrift, Univ. Amsterdam

    Google Scholar 

  539. Turfreijer A, Wibaut JP, Boltjes TYK (1938) The Green Fluorescent Pigment ofPseudomonas fluorescens.Rec Tray Chim Pays Bas 57: 1397

    Article  CAS  Google Scholar 

  540. Urfa Ferníndez D, Fuchs R, Schäfer M, Budzikiewicz H, Meyer JM (2003) The Pyoverdin ofPseudomonas fluorescensG173, a Novel Structural Type Accompanied by Unexpected Natural Derivatives of the Corresponding Ferribactin. Z Naturforsch 58c: 1

    Google Scholar 

  541. Urfa Ferníndez D, Fuchs R, Taraz K, Budzikiewicz H, Munsch P, Meyer JM (2001) The Structure of a Pyoverdine Produced by aPseudomonas tolaasii-LikeIsolate. BioMetals 14: 81

    Article  Google Scholar 

  542. UrIa Ferníndez D, Geoffroy V, Schäfer M, Meyer JM, Budzikiewicz H (2003) Structure Revision of Several Pyoverdines Produced by Plant-Growth Promoting and Plant-DeleteriousPseudomonasspecies. Monatsh Chem 134: 1421

    Article  CAS  Google Scholar 

  543. Urfa Ferníndez D, Heim S, Schäfer M, Budzikiewicz H, Waffenschmidt S (2004) Investigations Towards the Structure of the Protein Responsible for the Recognition and Transportation of the Ferri-Siderophore of the BacteriumPseudomonas fluorescensG 173, in preparation

    Google Scholar 

  544. Van Delden C, Iglewski BH (1998) Cell-to-Cell Signaling andPseudomonas aeruginosaInfections. Emerg Infect Diseases 4: 551

    Article  Google Scholar 

  545. van der Hofstad GAJM, Marugg JD, Verjans GMGM, Weisbeek PJ (1986) Characterization and Structural Analysis of the Sidereophore Produced by the PGPRPseudomonas putidaStrain WC 358. In: Swinburne TR (ed) Iron, Siderophores, and Plant Diseases. Plenum: New York, p 71

    Chapter  Google Scholar 

  546. vande Woestyne M, Bruyneel B, Mergeay M, Verstraete W (1991) The Fez+ Chelator Proferrorosamine A is Essential for the Siderophore-Mediated Uptake of Iron byPseudomonas roseus fluorescens.Appl Environ Microbiol 57: 949

    Google Scholar 

  547. vande Woestyne M, Bruyneel B, Verstraete W (1992) Physicochemical Characterization of the Microbial Fe2+ Chelator Proferrorosamine fromPseudomonas roseus fluorescens.J Appl Bacteriol 72: 44

    Google Scholar 

  548. Vartivarian SE, Cowart RE (1999) Extracellular Iron Reductases: Identification of a New Class of Enzymes by Siderophore-Producing Microorganisms. Arch Biochem Biophys 364: 75

    Article  CAS  Google Scholar 

  549. Vasil ML, Ochsner UA (1999) The Response ofPseudomonas aeruginosato Iron: Genetics, Biochemistry and Virulence. Mol Microbiol 34: 399

    Article  CAS  Google Scholar 

  550. Visca P, Ciervo A, Sanfilipo V, Orsi N (1993) Iron-Regulated Salicylate Synthesis byPseudomonasspp. J Gen Microbiol 139: 1995

    Google Scholar 

  551. Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal Regulation of Siderophore Synthesis inPseudomonas aeruginosaand Functional Effects of Siderophore-Metal Complexes. Appl Environ Microbiol 58: 2886

    CAS  Google Scholar 

  552. Visca P, Leoni L, Wilson MI, Lamont IL (2002) Iron Transport and Regulation, Cell Signalling and Genomics: Lessons fromEscherichia coliandPseudomonas.Mol Microbiol 45: 1177

    Article  CAS  Google Scholar 

  553. Visca P, Serino L, Orsi N (1992) Isolation and Characterization ofPseudomonas aeruginosaMutants Blocked in the Synthesis of Pyoverdin. J Bacteriol 174: 5727

    CAS  Google Scholar 

  554. Vogt W (1995) Oxidation of Methionyl Residues in Proteins: Tools, Targets, and Reversal. Free Radical Biol Med 18: 93–105

    Article  CAS  Google Scholar 

  555. Voss J, Taraz K, Budzikiewicz H (1999) A Pyoverdin from the Antarctica Strain 51W ofPseudomonas fluorescens.Z Naturforsch 54c: 156

    Google Scholar 

  556. Voßen W, Fuchs R, Taraz K, Budzikiewicz H (2000) Can the Peptide Chain of a Pyoverdin be Bound by an Ester Bond to the Chromophore? — The Old Problem of Pseudobactin 7SR1. Z Naturforsch 55c: 153

    Google Scholar 

  557. Voßen W, Taraz K (1999) Structure of the Pyoverdin PVD 2908 — a New Pyoverdin fromPseudomonassp. 2908. BioMetals 12: 323

    Article  Google Scholar 

  558. Voßwinkel R, Neidt I, Bothe H (1991) The Production and Utilization of Nitric Oxide by a New, Denitrifying Strain ofPseudomonas aeruginosa.Arch Microbiol 156: 62

    Article  Google Scholar 

  559. Walker RC, Wright Ai (1991) The Fluoroquinolones. Mayo Clin Proc 66: 1249

    CAS  Google Scholar 

  560. Wang SY, Hancock DK, Bellama JM, Wight VE (1990) The Structure of a New Pyoverdine Type Siderophore fromPseudomonas fluorescens244. Reported at the 38`hASMS Conference on Mass Spectrometry and Allied Topics, Tucson AZ, USA

    Google Scholar 

  561. Wasielewski E, Abdallah MA, Kyslik P, Kieffer B (2001) Sequence Determination and Resonance Assignments of anAzomonasSiderophore Using13C Natural Abundance13C-1H HNCA Experiment. C R Acad Sci Paris Chimie 4: 765

    CAS  Google Scholar 

  562. Wasielewski E, Adkinson RA, Abdallah MA, Kieffer B (2002) The Three-Dimensional Structure of the Gallium Complex of Azoverdin, a Siderophore ofAzomonas macrocytogenesATCC 12334, Determined by NMR Using Residual Dipolar Coupling Constants. Biochemistry 41: 12488

    Article  CAS  Google Scholar 

  563. Wasserman AE (1965) Absorption and Fluorescence of Water-Soluble Pigments Produced by Four Species ofPseudomonas.Appl Microbiol 13: 175

    CAS  Google Scholar 

  564. .Weber M (2000) Strukturaufklärung der Pyoverdine ausPseudomonassp. CFML 6.188. Dissertation, Universität zu Köln

    Google Scholar 

  565. Weber M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2000) The Structure of a Pyoverdine fromPseudomonassp. CFML 96.188 and its Relation to other Pyoverdines with a Cyclic C-terminus.BioMetals13: 301

    Article  CAS  Google Scholar 

  566. Weisbeek PJ, van der Hofstad MM, Schippers B, Marugg DJ (1986) In: Swinburne TR (ed) Iron, Siderophores and Plant Diseases, NATO ASI Ser. A: Life Sciences, vol. 117. Plenum, New York, p 299

    Google Scholar 

  567. Wells IC (1952) Antibiotic Substances Produced byPseudomonas aeruginosa.Syntheses of Pyo Ib, Pyo Ic, and Pyo III. J Biol Chem 196: 331

    CAS  Google Scholar 

  568. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA (1983) The Structure of PyoverdinePathe Siderophore ofPseudomonas aeruginosa.Tetrahedron Lett 24: 4877

    Article  CAS  Google Scholar 

  569. Westervelt P, Bloom ML, Mabbott GA, Fekete FA (1985) The Isolation and Identification of 3,4-Dihydroxybenzoic Acid Formed by Nitrogen-FixingAzomonas macrocytogenes.FEMS Microbiol Lett 30: 331

    Article  CAS  Google Scholar 

  570. Winkler S, Ockels W, Budzikiewicz H, Korth H, Pulverer G (1986) 2-Hydroxy-4methoxy-5-methylpyridin-N-oxid, ein Ala+bindender Metabolit vonPseudomonas cepacia.Z Naturforsch 41c: 807

    Google Scholar 

  571. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Steward GSAB, Williams P (1995) Multiple N-Acylhomoserine Lactone Signal Molecules Regulate Production of Virulence Determinants and Secondary Metabolites inPseudomonas aeruginosa.Proc Natl Acad Sci USA 92: 9427

    Article  CAS  Google Scholar 

  572. Wittmann S, Schnabelrauch M, Scherlitz-Hofmann I, Möllmann U, Ankel-Fuchs D, Heinisch L (2002) New Synthetic Siderophores and their ¡3-Lactam Conjugates Based on Dimino Acids and Dipeptides. Bioorg Med Chem 10: 1659

    Article  CAS  Google Scholar 

  573. Wong WC, Preece TF (1979) Identification ofPseudomonas tolaasii:the White Line in Agar and Mushroom Tissue Block Rapid Pitting Tests. J Appl Bacteriol 47: 401

    Article  Google Scholar 

  574. Wong-Lun-Sang S, Bernardin JJ, Hennard C, Kyslík P, Dell A, Abdallah MA (1996) Bacterial Siderophores: Structure Elucidation, 2D1H and13C NMR Assignments of Pyoverdins Produced byPseudomonas fluorescensCHAO. Tetrahedron Lett 37: 3329

    Article  CAS  Google Scholar 

  575. Wratten SJ, Wolfe MS, Andersen RJ, Faulkner DJ (1977) Antibiotic Metabolites from a Marine Pseudomonad. Antimicrob Agents Chemother 11: 411

    Article  CAS  Google Scholar 

  576. Xiao R, Kisaalita WS (1995) Purification of Pyoverdines ofPseudomonas fluorescens2–79 by Copper-Chelate Chromatography. Appl Environ Microbiol 61: 3769

    CAS  Google Scholar 

  577. Xiao R, Kisaalita WS (1997) Iron Acquisition from Transferrin and Lactoferrin byPseudomonas aeruginosaPyoverdin. Microbiology 143: 2509

    Article  CAS  Google Scholar 

  578. Xiao R, Kisaalita WS (1998) Fluorescent Pseudomonad Pyoverdines Bind and Oxidize Ferrous Ion. Appl Environ Microbiol 64: 1472

    CAS  Google Scholar 

  579. Yalcin T, Khouw C, Csizmadia IG, Peterson MR, Harrison AG (1995) Why are B Ions Stable Species in Peptide Spectra? J Am Soc Mass Spectrom 6: 1165

    Article  CAS  Google Scholar 

  580. Yamada Y, Seki N, Kitahara T, Takahashi M, Matsui M (1970) Structure and Synthesis of Aeruginoic Acid (2-o-Hydroxyphenyl-4-thiazolecarboxylic Acid). Agr Biol Chem 34: 780

    Article  CAS  Google Scholar 

  581. Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and Structure Elucidation of Acinetobactin, a Novel Siderophore fromAcinetobacter baumannii.Arch Microbiol 162: 249

    CAS  Google Scholar 

  582. Yamaoka Y, Inoue H, Takimura O, Oota S (2001) Degradation of Triphenyltin Compounds in Sea Water by Pyoverdins fromPseudomonas chlororaphis.Appl Organomet Chem 15: 757

    Article  CAS  Google Scholar 

  583. Yang CC, Leong J (1984) Structure of Pseudobactin 7SR1, a Siderophore from a Plant-DeleteriousPseudomonas.Biochemistry 23: 3534

    Article  CAS  Google Scholar 

  584. Yang W, Dostal L, Rosazza JPN (1993) Aeruginol [2-(2’-Hydroxyphenyl)-4-hydroxymethylthiazole], a New Secondary Metabolite fromPseudomonas aeruginosa.J Nat Prod 56: 1993

    Article  CAS  Google Scholar 

  585. Yeole RD, Dave BP, Dube HC (2001) Siderophore Production by Fluorescent Pseudomonads Colonizing Roots of Certain Crop Plants. Ind J Exp Biol 39: 464

    CAS  Google Scholar 

  586. Yoshikawa M, Hirai N, Wakabayashi K, Sugizaki H, Iwamura H (1993) Succinic and Lactic Acids as Plant Growth Promoting Compounds Produced by RhizosphericPseudomonas putida.Can J Microbiol 39: 1150

    Article  CAS  Google Scholar 

  587. Yotsu M, Yamazaki T, Meguro Y, Endo A, Murata M, Naoki H, Yasumoto T (1987) Production of Tetrodotoxin and its Derivatives byPseudomonassp. Isolated from the Skin of a Pufferfish. Toxicon 25: 225

    Article  CAS  Google Scholar 

  588. Yu H, Boucher JC, Deretic V (1998) Molecular Analysis ofPseudomonas aeruginosaVirulence. Meth Microbiol 27: 383

    Article  CAS  Google Scholar 

  589. Zamri A, Abdallah MA (2000) An Improved Stereocontrolled Synthesis of Pyochelin, Siderophore ofPseudomonas aeruginosaandBurkholderia cepacia.Tetrahedron 56: 249

    Article  CAS  Google Scholar 

  590. Zamri A, Schalk IJ, Pattus F, Abdallah MA (2003) Bacterial Siderophores: Synthesis and Biological Activities of Novel Pyochelin Analogues. Bioorg Med Chem Lett 13: 1147

    Article  CAS  Google Scholar 

  591. Zamri A, Sirockin F, Abdallah MA (1999) A Sereocontrolled Synthesis of a New Class of 3,4,5,6-Tetrahydropyrimidine-Based Chiral Amino Acids. Tetrahedron 55: 5157

    Article  CAS  Google Scholar 

  592. Zarkower PA, Wuest PJ, Royse DJ, Myers B (1984) Phenotypic Traits of Fluorescent Pseudomonads Causing Bacterial Blotch ofAgaricus bisporusMushrooms and other Mushroom-Derived Fluorescent Pseudomonads. Can J Microbiol 30: 360

    Article  Google Scholar 

  593. Zhu W, Hunt DJ, Richardson AR, Stojiljkovic I (2000) Use of Heme Compounds as Iron Sources by Pathogenic Neisseriae Requires the Product ofhemeOGene. J Bacteriol 182: 439

    Article  CAS  Google Scholar 

  594. Zunnundzhanov A, Bessonova IA, Abdullaev ND, Ogai DK (1987) Structure of Aerugine fromPseudomonas aeruginosa.XuM IIpxpoTt Coemm 553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Budzikiewicz, H. (2004). Siderophores of the Pseudomonadaceae sensu stricto(Fluorescent and Non-Fluorescent Pseudomonas spp.). In: Herz, W., Falk, H., Kirby, G.W. (eds) Progress in the Chemistry of Organic Natural Products. Progress in the Chemistry of Organic Natural Products, vol 87. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0581-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0581-8_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7199-8

  • Online ISBN: 978-3-7091-0581-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics