Skip to main content

Solving Linear Recurrence Equations with Polynomial Coefficients

  • Chapter
  • First Online:
Computer Algebra in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Summation is closely related to solving linear recurrence equations, since an indefinite sum satisfies a first-order linear recurrence with constant coefficients, and a definite proper-hypergeometric sum satisfies a linear recurrence with polynomial coefficients. Conversely, d’Alembertian solutions of linear recurrences can be expressed as nested indefinite sums with hypergeometric summands. We sketch the simplest algorithms for finding polynomial, rational, hypergeometric, d’Alembertian, and Liouvillian solutions of linear recurrences with polynomial coefficients, and refer to the relevant literature for state-of-the-art algorithms for these tasks. We outline an algorithm for finding the minimal annihilator of a given P-recursive sequence, prove the salient closure properties of d’Alembertian sequences, and present an alternative proof of a recent result of Reutenauer’s that Liouvillian sequences are precisely the interlacings of d’Alembertian ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    C-recursive sequences are also called linear recurrent (or: recurrence) sequences. This neglects sequences satisfying linear recurrences with non-constant coefficients, and may lead to confusion.

  2. 2.

    A hypergeometric sequence is also called a hypergeometric term, because the nth term of a hypergeometric series, considered as a function of n, is a hypergeometric sequence in our sense.

References

  1. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 1–52 (2011)

    Article  Google Scholar 

  2. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. (2013, to appear)

    Google Scholar 

  3. Abramov, S.A.: Problems in computer algebra that are connected with a search for polynomial solutions of linear differential and difference equations. Moscow Univ. Comput. Math. Cybern. 3, 63–68 (1989). Transl. from Vestn. Moskov. univ. Ser. XV. Vychisl. mat. kibernet. 3, 56–60 (1989)

    Google Scholar 

  4. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Maths. Math. Phys. 29, 7–12 (1989). Transl. from Zh. vychisl. mat. mat. fyz. 29, 1611–1620 (1989)

    Google Scholar 

  5. Abramov, S.A.: On d’Alembert substitution. In: Proceedings of the ISSAC’93, Kiev, pp. 20–26 (1993)

    Google Scholar 

  6. Abramov, S.A.: Rational solutions of linear difference and q-difference equations with polynomial coefficients. Progr. Comput. Softw. 21, 273–278 (1995). Transl. from Programmirovanie 21, 3–11 (1995)

    Google Scholar 

  7. Abramov, S.A., Barkatou, M.A.: Rational solutions of first order linear difference systems. In: Proceedings of the ISSAC’98, Rostock, pp. 124–131 (1998)

    Google Scholar 

  8. Abramov, S.A., Barkatou, M.A., Khmelnov, D.E.: On m-interlacing solutions of linear difference equations. In: Proceedings of the CASC’09, Kobe. LNCS 5743, pp. 1–17. Springer, Berlin/Heidelberg/New York (2009)

    Google Scholar 

  9. Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of the ISSAC’95, Montreal, pp. 290–296 (1995)

    Google Scholar 

  10. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear operator equations. In: Proceedings of the ISSAC’94, Oxford, pp. 169–174 (1994)

    Google Scholar 

  11. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. Appl. Math. 37, 139–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47, 1267–1289 (2012)

    Article  MATH  Google Scholar 

  13. Bomboy, R.: Liouvillian solutions of ordinary linear difference equations. In: Proceedings of the CASC’02, Simeiz (Yalta), pp. 17–28 (2002)

    Google Scholar 

  14. Bronstein, M., Petkovšek, M.: Ore rings, linear operators and factorization. Progr. Comput. Softw. 20, 14–26 (1994)

    Google Scholar 

  15. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157, 3–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cha, Y., van Hoeij, M.: Liouvillian solutions of irreducible linear difference equations. In: Proceedings of the ISSAC’09, Seoul, pp. 87–94 (2009)

    Google Scholar 

  17. Cha, Y., van Hoeij, M., Levy, G.: Solving recurrence relations using local invariants. In: Proceedings of the ISSAC’10, München, pp. 303–309 (2010)

    Google Scholar 

  18. Cluzeau, T., van Hoeij, M.: Computing hypergeometric solutions of linear recurrence equations. Appl. Algebra Eng. Comm. Comput. 17, 83–115 (2006)

    Article  MATH  Google Scholar 

  19. Cohn, R.M.: Difference Algebra. Interscience Publishers/Wiley, New York/London/Sydney (1965)

    MATH  Google Scholar 

  20. Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm. II. Identities, recurrences, and symbolic computation. Ramanujan J. 11, 139–158 (2006)

    Google Scholar 

  21. Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm. III. Alternative methods and additional results, Ramanujan J. 12, 299–314 (2006)

    Google Scholar 

  22. Feng, R., Singer, M.F., Wu, M.: Liouvillian solutions of linear difference-differential equations. J. Symb. Comput. 45, 287–305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, R., Singer, M.F., Wu, M.: An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations. J. Symb. Comput. 45, 306–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symb. Comput. 27, 239–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khmelnov, D.E.: Search for Liouvillian solutions of linear recurrence equations in MAPLE computer algebra system. Progr. Comput. Softw. 34, 204–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Larson, R.G., Taft, E.J.: The algebraic structure of linearly recursive sequences under Hadamard product. Israel J. Math. 72, 118–132 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31, 359–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14, 243–264 (1992)

    Article  MATH  Google Scholar 

  29. Petkovšek, M., Wilf, H.S., Zeilberger, D.: A =B. A K Peters, Wellesley (1996)

    Google Scholar 

  30. Reutenauer, C.: On a matrix representation for polynomially recursive sequences. Electron. J. Combin. 19(3), P36 (2012)

    MathSciNet  Google Scholar 

  31. Schneider, C.: The summation package Sigma: underlying principles and a rhombus tiling application. Discret. Math. Theor. Comput. Sci. 6, 365–386 (2004). (electronic)

    Google Scholar 

  32. Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equ. Appl. 11, 799–821 (2005)

    Article  MATH  Google Scholar 

  33. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56 (2006/07). Art. B56b (electronic), 36 pp

    Google Scholar 

  34. Schneider, C.: Simplifying sums in Π Σ -extensions. J. Algebra Appl. 6, 415–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneider, C.: A refined difference field theory for symbolic summation. J. Symb. Comput. 43, 611–644 (2008)

    Article  MATH  Google Scholar 

  36. Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Eng. Comm. Comput. 21, 1–32 (2010)

    Article  MATH  Google Scholar 

  37. Stanley, R.P.: Differentiably finite power series. Eur. J. Combin. 1, 175–188 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997) (corrected reprint of the 1986 original)

    Book  MATH  Google Scholar 

  39. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  40. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  41. van Hoeij, M.: Rational solutions of linear difference equations. In: Proceedings of the ISSAC’98, Rostock, pp. 120–123 (1998)

    Google Scholar 

  42. van Hoeij, M.: Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure Appl. Algebra 139, 109–131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. van Hoeij, M., Levy, G.: Liouvillian solutions of irreducible second order linear differential equations. In: Proceedings of the ISSAC’10, München, pp. 297–301 (2010)

    Google Scholar 

  44. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80, 207–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11, 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Petkovšek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Petkovšek, M., Zakrajšek, H. (2013). Solving Linear Recurrence Equations with Polynomial Coefficients. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics