Skip to main content

Surgical Navigation in the Open MRI

  • Conference paper
Intraoperative Imaging in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 85))

Abstract

The introduction of MRI into neurosurgery has opened multiple avenues, but also introduced new challenges.

The open-configuration intraoperative MRI installed at the Brigham and Women’s Hospital in 1996 has been used for more than 500 open craniotomies and beyond 100 biopsies. Furthermore the versatile applicability, employing the same principles, is evident by its frequent use in other areas of the body.

However, while intraoperative scanning in the SignaSP yielded unprecedented imaging during neurosurgical procedures their usage for navigation proved bulky and unhandy.

To be fully integrated into the procedure, acquisition and display of intraoperative data have to be dynamic and primarily driven by the surgeon performing the procedure. To use the benefits of computer-assisted navigation systems together with immediate availability of intraoperative imaging we developed a software package. This “3D Slicer” has been used routinely for biopsies and open craniotomies. The system is stable and reliable. Pre-and intraoperative data can be visualized to plan and perform surgery, as well as to accommodate for intraoperative deformations, “brain shift”, by providing online data acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45–60

    Article  Google Scholar 

  2. Bernays RL, Kollias SS, Khan N, Romanowski B, Yonekawa Y (2000) A new artifact-free device for frameless, magnetic resonance imaging-guided stereotactic procedures. Neurosurgery 46: 112–116

    Article  PubMed  CAS  Google Scholar 

  3. Black PM, Alexander E 3rd, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45: 423–431

    Article  PubMed  CAS  Google Scholar 

  4. Black PM, Moriarty T, Alexander E 3rd, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41: 831–842

    Article  PubMed  CAS  Google Scholar 

  5. Bucholz RD, Yeh DD, Trobaugh JW, McDurmont LL, Sturm C, Baumann C, Henderson JM, Levy A, Kressman P (1997) The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. CVRMed-MRCAS 459–466

    Google Scholar 

  6. Fahlbusch R, Ganslandt O, Nimsky C (2000) Intraoperative imaging with open magnetic resonance imaging and neuronavigation. Childs New Syst 16: 829–831

    Article  CAS  Google Scholar 

  7. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20: 1384–1397

    Article  PubMed  CAS  Google Scholar 

  8. Galloway Jr RL (1998) Frameless stereotactic systems. In: Gildenberg PL, Tasker RR (eds) Textbook on stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 178–182

    Google Scholar 

  9. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM 3rd (2001) An integrated visualization system for surgical planning and guidante using image fusion and an open MR. J Magn Reson Imaging 13: 967–975

    Article  PubMed  CAS  Google Scholar 

  10. Hall WA, Martin AJ, Liu H, Pozza CH, Casey SO, Michel E, Nussbaum ES, Maxwell RE, Truwit CL (1998) High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 29: 253–259

    Article  PubMed  CAS  Google Scholar 

  11. Hata N, Nabavi A, Wells WM, Warfield SK, Kikinis R, Black PM, Jolesz FA (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intra-operative MR images. J Comput Assist Tomogr 24: 531–538

    Article  PubMed  CAS  Google Scholar 

  12. Hill DL, Maurer CR Jr, Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY (1998) Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43: 514–526

    Article  PubMed  CAS  Google Scholar 

  13. Jolesz FA (1998) Interventional and intraoperative MRI: a general overview of the field. J Magn Reson Imaging 8: 3–7

    Article  PubMed  CAS  Google Scholar 

  14. Jolesz FA, Morrison PR, Koran SJ, Kelley RJ, Hushek SG, Newman RW, Fried MP, Melzer A, Seibel RM, Jalahej H (1998) Compatible instrumentation for intraoperative MRI: expanding resources. J Magn Reson Imaging 8: 8–11

    Article  PubMed  CAS  Google Scholar 

  15. Jolesz FA, Nabavi A, Kikinis R (2001) Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging 13: 69–77

    Article  PubMed  CAS  Google Scholar 

  16. Jolesz FA, Young IR (1998) Interventional MR: techniques and clinical experience. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  17. Kikinis R, Gleason PL, Moriarty TM, Moore MR, Alexander E, Stieg PE, Matsumae M, Lorensen WE, Cline HE, Black PM, Jolesz FA (1996) Computer-assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery 38: 640–649

    Article  PubMed  CAS  Google Scholar 

  18. Moriarty TM, Quinones-Hinojosa A, Larson PS, Alexander E, Gleason PL, Schwartz RB, Jolesz FA, Black PM (2000) Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery 47:1138–1145

    Article  PubMed  CAS  Google Scholar 

  19. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48: 787–797

    PubMed  CAS  Google Scholar 

  20. Nabavi A, Mamisch CT, Gering DT, Kacher DF, Pergolizzi RS, Wells III WM, Kikinis R, Black PM, Jolesz FA (2000) Imageguided therapy and intraoperative MRI in neurosurgery. Min Invas Ther & Allied Technol 9: 277–286

    CAS  Google Scholar 

  21. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47: 1070–1079

    Article  PubMed  CAS  Google Scholar 

  22. Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48: 1082–1089

    Article  PubMed  CAS  Google Scholar 

  23. Paulsen KD, Miga MI, Kennedy FE, Hoopes PJ, Hartov A, Roberts DW (1999) A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans Biomed Eng 46: 213–225

    Article  PubMed  CAS  Google Scholar 

  24. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43: 749–758

    Article  PubMed  CAS  Google Scholar 

  25. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549

    Article  PubMed  CAS  Google Scholar 

  26. Schenck JF, Jolesz FA, Roemer PB, Cline HE, Lorensen WE, Kikinis R, Silverman SG, Hardy CJ, Barber WD, Laskaris ET et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195: 805–814

    PubMed  CAS  Google Scholar 

  27. Schwartz RB, Hsu L, Wong TZ, Kacher DF, Zamani AA, Black PM, Alexander E 3rd, Stieg PE, Moriarty TM, Martin CA, Kikinis R, Jolesz FA (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211: 477–488

    PubMed  CAS  Google Scholar 

  28. Seifert V, Zimmermann M, Trantakis C, Vitzthum HE, Kuhnel K, Raabe A, Bootz F, Schneider JP, Schmidt F, Dietrich J (1999) Open MRI-guided neurosurgery. Acta Neurochir (Wien) 141: 455–464

    Article  CAS  Google Scholar 

  29. Silverman SG, Jolesz FA, Newman RW, Morrison PR, Kanan AR, Kikinis R, Schwartz RB, Hsu L, Koran SJ, Topulos GP (1997) Design and implementation of an interventional MR imaging suite. AJR Am J Roentgenol 168: 1465–1471

    PubMed  CAS  Google Scholar 

  30. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43: 739–747

    Article  PubMed  CAS  Google Scholar 

  31. Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery [see comments]. Neurosurgery 40: 891–900

    Article  PubMed  CAS  Google Scholar 

  32. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 27: 543–547

    Article  PubMed  CAS  Google Scholar 

  33. Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1: 35–51

    Article  PubMed  Google Scholar 

  34. Wirtz CR, Tronnier VM, Bonsanto MM, Knauth M, Staubert A, Albert FK, Kunze S (1997) Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68: 39–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Nabavi, A. et al. (2003). Surgical Navigation in the Open MRI. In: Bernays, R.L., Imhof, HG., Yonekawa, Y. (eds) Intraoperative Imaging in Neurosurgery. Acta Neurochirurgica Supplements, vol 85. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6043-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6043-5_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83835-8

  • Online ISBN: 978-3-7091-6043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics