Skip to main content

The role of biological markers in the early and differential diagnosis of Alzheimer’s disease

  • Conference paper
Ageing and Dementia Current and Future Concepts

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 62))

Abstract

Biological markers can be used to identify the neurodegenerative process of Alzheimer’s disease (AD) and to differentiate it from other brain diseases which may cause similar symptoms. Structural imaging can detect atrophic changes which are largely non-specific and provide little diagnostic information in single patients. Increasing atrophy upon repeated measurement is much more specific to AD. Functional imaging can demonstrate regional alterations of cerebral blood flow and metabolism but is not sufficiently sensitive at the stage of mild dementia. The measurement of neuronal proteins in the cerebrospinal fluid including tau, phospho-tau, and Bamyloid, achieve high diagnostic sensitivity and specificity even at the stage of pre-dementia. Genetic tests for mutations in the amyloid precursor and presenilin genes are applicable in very few cases. Apolipoprotein E genotyping is not useful as a diagnostic test. With respect to the limitations of biological markers clinical expertise will continue to be an essential element of the early and differential diagnosis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American College of Medical Genetics (1995) Consensus statement: statement on use of apolipoprotein E testing for Alzheimer disease. JAMA 274: 1627–1629

    Article  Google Scholar 

  • Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, Blennow K (1999) Cerebrospinal fluid tau and A ß 42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273: 5–8

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Ishiguro K, Ohno H, Moriyama M, Hoh N, Okamura N, Matsui T, Morikawa Y, Horikawa E, Kohno H, et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol166: 201–203

    Google Scholar 

  • Bartres-Faz D, Junque C, Lpez-Alomar A, Velveny N, Moral P, Casamayor R, Salido A, Bel C, Clemente IC (2001) Neuropsychological and genetic differences between ageassociated memory impairment and mild cognitive impairment entities. JAm Geriatr Soc 49: 985–990

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand [Suppl] 165: 3–12

    Article  CAS  Google Scholar 

  • Catani M, Cherubini A, Howard R, Tarducci R, Pellicciolo CP, Piccirilli M, Gobbi G, Senin U, Mecocci P (2001) (l)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport 12: 2315–2317

    Article  CAS  PubMed  Google Scholar 

  • De Leon MJ, George AE, Golomb J, Tarshish S, Convit A, Kluger A, De-Santi S, McRae T, Ferris SH, Reisberg B, et al (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18: 1–11

    Article  PubMed  Google Scholar 

  • De Santi S, de Leon MH, Rusinek H, Convit A, Tashish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, et al (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22: 529–539

    Article  PubMed  Google Scholar 

  • Fox NC, Warrington EK, Stevens JM, Rossor MN (1996) Atrophy of the hippocampal formation in early familial Alzheimer’s disease. A longitudinal MRI study of at-risk members of a family with an amyloid precursor protein 717 Val-Gly mutation. Ann NY Acad Sci 777: 226–232

    Article  CAS  PubMed  Google Scholar 

  • Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D, Thomas R, Kholodenko D, Schenk D, Lieberburg I, et al (1998) High cerebrospinal fluid tau and low amyloid ß 42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 55: 937–945

    Article  CAS  Google Scholar 

  • Gonzalez RG, Guimaraes AR, Moore GJ, Crawley A, Cupples LA, Growdon JH (1996) Quantiative in vivo 31P magnetic resonance spectroscopy of Alzheimer disease. Alzheimer Dis Assoc Disord 10: 46–52

    CAS  PubMed  Google Scholar 

  • Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, DeDeyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, et al (1999) Improved discrimination of AD patients using ß-amyloid(l--42) and tau levels in CSF. Neurology 52: 15551562

    Google Scholar 

  • Jack CR, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy in normal aging and very mild Alzheimer’s disease. Neurology 49: 786–794 Biological markers and AD 133

    Google Scholar 

  • Jelic V, Nordberg A (2000) Early diagnosis of Alzheimer disease with positron emission tomography. Alzheimer Dis Assoc Disord 14: S109–113

    Article  PubMed  Google Scholar 

  • Jessen F, Block W, Traber F, Keller E, Placke S, Papassotiropoulos A, Lamerichs R, Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease of Nacetylaspartate in the medial temporal lobe of patients with AD. Neurology 55: 684688

    Google Scholar 

  • Kantarci K, Jack CR, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55: 210–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, Hiinninen T, Vainio P, Soininen H (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology 46: 678–681

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager NT, Riemenschneider M, Drzezga A, Kurz AF (20Gl) Primary degenerative mild cognitive impairment: study population, clinical, brain imaging, and biochemical findings. Dement Geriatr Cogn Disord 12: 379–386

    Article  Google Scholar 

  • Linn RT, Wolf PA, Bachman DL, Knoefel IE, Cobb JL, Belanger AI Kaplan EF, D’Agostino RB (1995) The ’preclinical phase’ of probable Alzheimer’s disease. A 13year prospective study of the Framingham cohort. Arch Neurol 52: 485–490

    Article  CAS  PubMed  Google Scholar 

  • Maruyama M, Arai H, Sugita M, Tanji H, Higuchi M, Okamura N, Matsui T, Higuchi S, Matsushita S, Yoshida H, et al (2001) Cerebrospinal fluid amyloid beta(1–42) levels in mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol l72: 433–436

    Article  Google Scholar 

  • Matsuda H (2001) Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann Nucl Med 15: 85–92

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC (1995) Normal aging, mild cognitive impairment, and early Alzheimer’s disease. Neurologist 1: 326–344

    Google Scholar 

  • Rasmusson DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF (1996) Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis Assoc Disord 10: 180188

    Google Scholar 

  • Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG (1997) Diagnosis of Alzheimer’s disease with cerebrospinal fluid tau protein and aspartate aminotransferase. Lancet 350: 784

    Article  CAS  PubMed  Google Scholar 

  • Scheltens P, Karf ES (2000) Contribution of neuroimaging in the diagnosis of Alzheimer’s disease and other dementias. CUff Opin Neurol13: 391–396

    Google Scholar 

  • Smith AD, Jobst KA (1996) Use of structural imaging to study the progression of Alzheimer’s disease. Br Med Bull 52: 575–586

    Article  CAS  PubMed  Google Scholar 

  • Terajima M, Arai H, Higuchi M, Zhu C, Sasaki H (1996) Elevated cerebrospinal fluid tau: Implications for early diagnosis of Alzheimer’s disase. J Am Geriatr Soc 44: 10121013

    Google Scholar 

  • Valenzuela MI, Sachdev P (2001) Magnetic resonance spectroscopy in AD. Neuroloy 56: 592–598

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this paper

Cite this paper

Kurz, A., Riemenschneider, M., Drzezga, A., Lautenschlager, N. (2002). The role of biological markers in the early and differential diagnosis of Alzheimer’s disease. In: Jellinger, K.A., Schmidt, R., Windisch, M. (eds) Ageing and Dementia Current and Future Concepts. Journal of Neural Transmission. Supplementa, vol 62. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6139-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6139-5_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83796-2

  • Online ISBN: 978-3-7091-6139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics