Skip to main content

Role of the tapetum in pollen and spore dispersal

  • Conference paper
The Tapetum

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 7))

Abstract

Group-specific functions linked to the dispersal of pollen and spores are reported in all the groups of land plants. Anthocerotopsida tapetal cells envelop developing meiocytes and spores; after exine formation their walls thicken, the cytoplasm starts to degenerate, and elaters from more than one tapetal cell are formed. Elaters aid spore dispersal from the sporangium. In some Marchantiopsida the tapetal cells form elaters but each originates from one cell. In Equisetophyta, the spores have two or four elaters composed of lignin and connected with the exine. They are formed with the aid of the tapetal cytoplasm once exine is complete. The elaters of this group (called also adpressors) differ from the above in that they adhere to and originate connected with the exine. In Polypodiophyta like Lecanopteris mirabilis, the spores have superficial strands which facilitate adhesion to dispersing ants. One of the main features of Spermatophyta parietal tapetum is to produce orbicules. In strictly anemophilous species pollenkitt is not produced and pollen grains are dispersed individually. Since both exine and orbicules consist of sporopollenin, they have the same electrostatic charges. This is believed to aid expulsion from the anther at anthesis. Pollenkitt is a degeneration product of amoeboid and periplasmodial tapetum in Magnoliophyta. It forms a layer on pollen grains and has at least four different functions related to dispersal: (1) it causes the grains to unite in clumps and (2) to adhere to pollinator bodies; (3) it protects the pollen grain cytoplasm from sunlight; and (4) the oily and perfumed components attract pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audran, J. C., Batcho, M., 1981: Cytochemical and intrastructural of pollen and tapetum ontogeny in Silene dioica(Caryophyllaceae). -Grana 20: 65–80.

    Article  Google Scholar 

  • Beattie, A. J., Turnbull, C., Hough, T., Jonson, S., Knox, R. B., 1985: The vulnerability of pollen and fungal spores to ant secretions: evidence and some evolutionary implications. — Amer. J. Bot. 72: 606–614.

    Article  Google Scholar 

  • Bind, R. J., Devente, N.,Meeuse, A. D. N., 1984:Entomophily in the dioecious gymnospermEphedra aphylla FORSK. (—E. alteC. A.Mey.) with some notes on E. campylopodaC. A.Mey. — Proc. Kon. Nederl. Akad. 87: 15–24.

    Google Scholar 

  • Carniel, K., 1971: Ãœber die lamelläre Struktur und die Herkunft des Pollenkittes bei Heleocharis palustris. —Östen. Bot. Z. 119: 464–474.

    Article  Google Scholar 

  • Ciampolini, F., Nepi, M., Pacini, E., 1993: Tapetum development in Cucurbita pepo. — Pl. Syst. Evol. [Suppl.] 7: 13–22.

    Article  Google Scholar 

  • Coetzee, H., Robbertse, P. J., 1985: Pollen and tapetal development in Securidaca longepeduculata. — S. African J. Bot. 51: 111–124.

    Google Scholar 

  • Cox, P., Knox, B. R., 1989: Two-dimensional pollination in hydrophilous plants. — Amer. J. Bot. 76: 164–175.

    Article  Google Scholar 

  • Crepet, W. L., Friis, E. M., 1992: The evolution of insect pollination in angiosperms. — In Friis, E. M., Chaloner, W. G., Crane, P. R., (Eds): The origin of angiosperms and their biological consequences, pp. 181–201. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Dickinson, H. G., Bell, P. R., 1970: The development of the sacci during pollen formation in Pinus banksiana. — Grana 10: 101–118.

    Article  Google Scholar 

  • Lewis, D., 1973: The formation of tryphine coating the pollen grains of Raphanus and its properties relating to self-incompatibility system. — Proc. Roy. Soc. London B 184: 149–165.

    Article  Google Scholar 

  • Ducker, S., Knox, R. B., 1976: Submarine pollination in seagrasses. — Nature 263: 705–706.

    Article  Google Scholar 

  • Echlin, P., 1971: Production of sporopollenin by the tapetum. — In Muir, P. M., Van Gijzel, P., Shaw, G., (Eds): Sporopollenin, pp. 220–241. — London: Academic Press.

    Google Scholar 

  • Erdtman, G., 1965: Pollen and spore morphology — Plant taxonomy — Gymnospermae, Bryophyta (text). An introduction to palynology. III. — Stockholm: Almqvist & Wiksell.

    Google Scholar 

  • Fitzgerald, M. A., Knox, R. B., Calder, D. M., Pacini, E., 1993: To glue or not to glue. — Ann. Bot. (in press).

    Google Scholar 

  • Franchi, G. G., Pacini, E., 1981: Gli orbicoli: formazione, morfologia e loro significato. — Giorn. Bot. Ital. 115: 133.

    Google Scholar 

  • Heslop-Harrison, J., Dickinson, H. G., 1969: Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. — Planta 84: 199–214.

    Article  Google Scholar 

  • Hesse, M., 1979a: Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo-und anemophilen Angiospermen: Salicaceae, Tiliaceae und Ericaceae. — Flora 168: 540–557.

    Google Scholar 

  • Hesse, M., 1979b: Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo-und anemophilen Angiospermen: Polygonaceae. — Flora 168: 558–577.

    Google Scholar 

  • Hesse, M., 1980a: Zur Frage der Anheftung des Pollens an bliitenbesuchende Insekten mittels Pollenkitt und Viscinfaden. — Pl. Syst. Evol. 133: 135–148.

    Article  Google Scholar 

  • Hesse, M., 1980b: Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae und Araceae. — Pl. Syst. Evol. 134: 229–267.

    Article  Google Scholar 

  • Hesse, M., 1981: Pollenkitt and viscin threads: their role in cementing pollen grains. — Grana 20: 145–152.

    Google Scholar 

  • Hesse, M., 1984a: Pollenkitt is lacking in Gnetatae: Ephedra and Welwitschia; further proof for its restriction to the angiosperms. — Pl. Syst. Evol. 144: 9–16.

    Article  Google Scholar 

  • Hesse, M., 1984b: An exine architecture model for viscin threads. — Grana 23: 69–75.

    Google Scholar 

  • Hesse, M., 1986: Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. — Pl. Syst. Evol. 153: 37–48.

    CAS  Google Scholar 

  • Burns-Balogh, P., 1984: Pollen and pollinarium morphology of Habenaria (Orchidaceae). — Pollen & Spores 26: 385–400.

    Google Scholar 

  • Kenrick, J., Knox, R. B., 1979: Pollen development and cytochemistry in some Australian species of Acacia. — Austral. J. Bot. 27: 413–427.

    Google Scholar 

  • Keijzer, C. J., 1987: The processes of anther dehiscence and pollen dispersal. II. — New Phytol. 105: 499–509.

    Google Scholar 

  • Kronestedt-Robards, E. C., Rowley, J. R., 1989: Pollen grain development and tapetal changes in Strelitzia reginae (Strelitziaceae). — Amer. J. Bot. 76: 856–870.

    Google Scholar 

  • Kurmann, M. H., 1989: Pollen wall formation in Abies concolor and a discussion on wall layer homologies. — Canad. J. Bot. 67: 2489–2504.

    Google Scholar 

  • Lugardon, B., 1981: Les globules des Filicinées, homologues des corps d’Ubisch des Spermaphytes. — Pollen & Spores 23: 93–124.

    Google Scholar 

  • Murgia, M., Charzynska, M., Rougier, M., Crest!, M., 1991: Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. — Sex. Pl. Reprod. 4: 28–35.

    Google Scholar 

  • Nicklas, K. L., 1985: The aerodynamics of wind pollination. — Bot. Rev. 51: 328–386.

    Google Scholar 

  • Pacini, E., 1990: Tapetum and microspore function. — In Blackmore, S., Knox, R. B., (Eds): Microspores—evolution and ontogeny, pp. 213–237. — London: Academic Press.

    Google Scholar 

  • Bellani, L. M., 1986: Lagerstroemia indica L. pollen: form and function. — In Blackmore, S., Ferguson, I. K., (Eds): Pollen and spores: form and function, pp. 347–357. — London: Academic Press.

    Google Scholar 

  • Franchi, G. G., 1988: Sporophyte development in Phaecoceros laevis (L.) Prosk. Giorn. Bot. Ital. 122 [Suppl. 1]: 93.

    Google Scholar 

  • Franchi, G. G., 1991: Diversification and evolution of the tapetum. — In Blackmore, S., Barnes, S. H., (Eds): Pollen and spores — patterns of diversification, pp. 301–316. — Oxford: Systematic Association, Clarendon Press.

    Google Scholar 

  • Juniper, P. E., 1979: The ultrastructure of pollen grain development in the olive (Olea europaea). II. Secretion by the tapetal cells. — New Phytol. 83: 165–174.

    Google Scholar 

  • Juniper, P. E., 1984: The ultrastructure of pollen grain development in Lycopersicum peruvianum. Caryologia 37: 21–50.

    Google Scholar 

  • Keijzer, C. J., 1989: Ontogeny of intruding non-periplasmodial tapetum in the wild chicory, Cichorium intybus (Compositae). — Pl. Syst. Evol. 167: 149–164.

    Google Scholar 

  • Bellani, L. M., Lozzl, R., 1986: Pollen, tapetum and anther development in two cultivars of sweet cherry (Prunus avium). — Phytomorphology 36: 197–210.

    Google Scholar 

  • Franchi, G. G., Hesse, M., 1985: The tapetum: its form, function and possible phylogeny in Embryophyta. — Pl. Syst. Evol. 149: 155–185.

    Google Scholar 

  • Taylor, P. E., Singh, M. B., Knox, R. B., 1992: Development of plastids in pollen and tapetum of rye-grass, Lolium perenne L. — Ann. Bot. 70: 179–188.

    Google Scholar 

  • Page, C. N., 1979: Experimental aspects of ferns ecology. — In Dyer, A. F., (Ed.): The experimental biology of ferns, pp. 552–589. — London: Academic Press.

    Google Scholar 

  • Patel, V., Skvarla, J. J., Ferguson, I. K., Graham, A., Raven, P. H., 1985: The nature of threadlike structures and other morphological characters in Jacqueshuberia pollen (Lequminosae: Caesalpinioideae). — Amer. J. Bot. 72: 407–413.

    Google Scholar 

  • Proctor, M. C. F., 1984: Structure and ecological adaptation. — In Dyer, A. F., Duckett, J. G., (Eds): The experimental biology of Bryophytes, pp. 9–37. — London: Academic Press.

    Google Scholar 

  • Reznickova, S. A., Willemse, M. T. M., 1980: Formation of pollen in the anther of Lilium: the function of the surrounding tissues in the formation of pollen and pollen wall. — Acta Bot. Neerl. 29: 141–156.

    Google Scholar 

  • Richardson, D. H. S., 1981: The biology of mosses. — London: Blackwell.

    Google Scholar 

  • Schill, R., Wolter, M., 1985: Ontogeny of elastoviscin in the Orchidaceae. — Nordic J. Bot. 5: 575–580.

    Article  CAS  Google Scholar 

  • Schill, R., 1986: On the presence of elastoviscin in all subfamilies of the Orchidaceae and the homology to pollenkitt. — Nordic J. Bot. 6: 321–324.

    CAS  Google Scholar 

  • Skvarla, J. J., Raven, P. H., Praglowski, J., 1975: The evolution of pollen tetrads. — Amer. J. Bot. 62: 6–35.

    Google Scholar 

  • Takahashi, M., 1987: Development of omniaperturate pollen in Trillium kamtschaticum (Liliaceae). — Amer. J. Bot. 74: 1842–1852.

    Google Scholar 

  • Tryon, A. F., 1985: Spores of myrmecophytic ferns. — Proc. Roy. Soc. Edinburgh 86B: 105–110.

    Google Scholar 

  • Uehara, K., Kurita, S., 1989: An ultrastructural study of spore wall morphogenesis in Equisetum arvense. — Amer. J. Bot. 76: 939–951.

    Article  Google Scholar 

  • Waha, M., 1984: Zur Ultrastruktur und Funktion pollenverbindender Faden bei Ericaceae und anderen Angiospermenfamilien. — Pl. Syst. Evol. 147: 189–203.

    Article  Google Scholar 

  • Walker, T. G., 1985: Spore filaments in the ant-fern Lecanopteris mirabilis — an alternative viewpoint. — Proc. Roy. Soc. Edinburgh 86B: 111–114.

    Google Scholar 

  • Weber, M., 1991: The transfer of pollenkitt in Smyrnium perfoliatum (Apiaceae). — Ann. Bot. 68: 63–68.

    Google Scholar 

  • Willemse, M. T. M., 1971: Morphological and fluorescence microscopical investigation on sporopollenin formation at Pinus sylvestris and Gasteria verrucosa. — In Brooks, J., Grant, P. R., Muir, M., Van Glizel, P., Shaw, G., (Eds): Sporopollenin, pp. 68–107, London: Academic Press.

    Google Scholar 

  • Wolter, M., Seuffert, C., Schill, R., 1988: The ontogeny of pollinia and elastoviscin in the anthers of Doritis pulcherrima (Orchidaceae). — Nordic J. Bot. 8: 77–88.

    Article  Google Scholar 

  • Yeung, E. C., Law, S. K., 1987: The formation of hyaline caudicle in two vandoid orchids. Canad. J. Bot. 65: 1459–1464.

    Article  Google Scholar 

  • Zavada, M. S., 1984: Pollen wall development of Austrobaileya maculata. — Bot. Gaz. 145: 11–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this paper

Cite this paper

Pacini, E., Franchi, G.G. (1993). Role of the tapetum in pollen and spore dispersal. In: Hesse, M., Pacini, E., Willemse, M. (eds) The Tapetum. Plant Systematics and Evolution, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6661-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6661-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7373-2

  • Online ISBN: 978-3-7091-6661-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics