Skip to main content

New horizons in molecular mechanisms underlying Parkinson’s disease and in our understanding of the neuroprotective effects of selegiline

  • Conference paper
Deprenyl — Past and Future

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 48))

  • 70 Accesses

Summary

There have been many claims that the selective monoamine oxidase type B (MAO-B) inhibitor selegiline may have distinct properties in slowing the progression of Parkinson’s disease (PD). Degeneration of nigrostriatal dopaminergic neurons is the primary histopathological feature of PD. Although many different hypotheses have been advanced, the cause of chronic nigral cell death and the underlying mechanisms remain elusive as yet. Therefore, there is no clear knowledge regarding an understanding of the reported effects of selegiline on the progression of PD. However, there is a considerable body of indirect evidence that oxidative stress may playa role in the pathogenesis of this illness. Oxidative stress refers to cytotoxic consequences of hydrogen peroxide and oxygen-derived free radicals such as the hydroxyl radical (OH), the superoxide anion (O2), and nitric oxide (NO), which are generated as byproducts of normal and aberrant metabolic processes that utilize molecular oxygen. On the other hand, an increasing body of experimental data has implicated excitotoxicity as a mechanism of cell death in both acute and chronic neurological diseases. One of the receptor which is particularly involved in the toxic effects of excitatory amino acids is the NMDA (N-methyl-D-aspartate) receptor. Excessive stimulation of this type of receptor by glutamic acid or NMDA agonists leads to a massive influx of calcium ions into the neuron followed by activation of a variety of calcium-dependent enzymes, impaired mitochondrial function, and the generation of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD, Klaidman LK, Leung AC (1993) MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Rad Biol Med 15: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Makowiec RL, Hollingworth ZR, Dure LS, Penney JB Jr, Young AB (1992) Excitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study. Neuroscience 46: 35–48

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC (1989) Nimodipine attenuates NMDA-and MDMA-induced toxicity of cultured fetal serotonergic neurons: evidence for a generic model of calcium toxicity. In: Traber J, Gispen WH (eds) Nimodipine and central nervous system function: new vistas. Schattauer, Stuttgart New York, pp 141–159

    Google Scholar 

  • Beart PM, Schousboe A, Frandsen A (1995) Blockade by polyamine NMDA antagonists related to ifenprodil of NMDA-induced synthesis of cylic GMP, increases in calcium and cytotoxicity in cultured neurones. Br J Pharmacol 114: 1359–1364

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Youdim MBH (1991) Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigro-striatal dopamine neurons. J Neurochem 56: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to MadoparR treatment in Parkinson’s disease: a long-term study. J Neural Transm 64: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Koh J-Y, Hatalski CG, Cotman CW (1991) Increased excitotoxic vulnerability of cortical cultures with reduced levels of glutathione. Eur J Pharmacol 192: 199–220

    Article  PubMed  CAS  Google Scholar 

  • Burckard WP, Gey KF, Pletscher A (1963) Diamine oxidase in polyamine catabolism. J Neurochem 10: 183–186

    Article  Google Scholar 

  • Chan PH, Chu L, Chen SF, Carlson EJ, Epstein CJ (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke [Suppl III]21: 11180–11182

    Google Scholar 

  • Chiueh CC, Miyake H, Peng MT (1993) Role of dopamine autoxidation, hydroxyl radical generation and calcium overload in underlying mechanism involved in MPTP-induced parkinsonism. Adv Neurol 60: 251–258

    PubMed  CAS  Google Scholar 

  • Christoffersen CL, Meltzer LT (1995) Evidence for N-methyl-D-aspartate and AMP A subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors. Neuroscience 67: 373–381

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695

    Article  PubMed  CAS  Google Scholar 

  • Desser H, Riederer P (1984) Polyamines in the human central nervous system: preliminary data in hepatic encephalopathy. International Conference on Polyamines, Budapest, August 6-10, 1984

    Google Scholar 

  • Dexter DT, Cater CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989a) Basal lipid per oxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989b) Increased nigral iron content and alterations in other metal ions occuring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Difazio MC, Hollingsworth Z, Young AB, Penney JB (1992) Glutamate receptors in the substantia nigra of Parkinson’s disease brains. Neurology 42: 402–406

    PubMed  CAS  Google Scholar 

  • Erdö SL, Schafer M (1991) Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur J Pharmacol 198: 215–217

    Article  PubMed  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease. Evidence supporting it. Ann Neurol 32: 804–812

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Szelenyi I (ed) Inhibitors of monoamine oxidase B. Birkhäuser, Basel Boston Berlin, pp 25–50

    Google Scholar 

  • Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol [Mol Pharmacol Sect] 208: 273–286

    Article  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1992) The molecular pharmacology of L-deprenyl. Eur J Pharmacol [Mol Pharmacol Sect] 226: 97–108

    Article  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. Adv Neurol 69: 177–194

    PubMed  CAS  Google Scholar 

  • Götz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63: 37–122

    Article  PubMed  Google Scholar 

  • Greenamyre JT, Young AB (1989) Synaptic localization of striatal NMDA, quisqualate and kainate receptors. Neurosci Lett 101: 133–137

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Rulledge JH, Schallert T (1992) MRI brain iron and 6-hydroxydopamine experimental Parkinson’s disease. J Neurol Sci 113: 198–208

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Headley PM, Grillner S (1990) Excitatory amino acid neurotoxicity and synaptic transmission: the evidence for a physiological function. In: Lodge D, Collingridge G (eds) The pharmacology of excitatory amino acids: a TiPS special report. Elsevier, Cambridge, pp 30–36

    Google Scholar 

  • Kalaria RN, Harik S (1987) Blood-brain barrier monoamine oxidase. Enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. J Neurochem 49: 856–864

    Article  PubMed  CAS  Google Scholar 

  • Kupsch A, Loeschmann P, Sauer H, Arnold G, Renner P, Pufal D, Burg M, Wachtel H, ten Bruggencate G, Oertel WH (1992) Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res 592: 74–83

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Cu1casi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44

    CAS  Google Scholar 

  • Lange KW, Löschmann PA, Sofic E, Burg M, Horowski R, Kalveram KT, Wachtel H, Riederer P (1993) The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmiedebergs Arch Pharmacol 348: 586–592

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Collingridge G (1990) The pharmacology of excitatory amino acids: a TiPS special report. Elsevier, Cambridge

    Google Scholar 

  • Majewska MD, Bell JA (1990) Ascorbic acid protects neurons from injury induced by glutamate and NMDA. NeuroReport 1: 194–196

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. In: Lodge D, Collingridge G (eds) The pharmacology of excitatory amino acids: a TiPS special report. Elsevier, Cambridge, pp 36–42

    Google Scholar 

  • McGurk JF, Bennett MVL, Zukin RS (1990) Polyamines potentiate responses of Nmethyl-D-aspartate receptors expressed in Xenopus oocytes. Proc Natl Acad Sci USA 87:9971–9974

    Article  PubMed  CAS  Google Scholar 

  • Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4177–4182

    Article  PubMed  CAS  Google Scholar 

  • Morrison LD, Becker L, Ang LC, Kish SJ (1995) Polyamines in human brain: regional distribution and influence of ageing. J Neurochem 65: 636–642

    Article  PubMed  CAS  Google Scholar 

  • Nussenzveig IZ, Sircar R, Wong M-L, Frusciante MJ, Javitt DC, Zukin SR (1991) Polyamine effects upon N-methyl-D-aspartate receptor functioning: differential alteration by glutamate and glycine site antagonists. Brain Res 561: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash GW (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 95–121

    Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26:505–525

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, McCann PP (1988) Polyamine metabolism and function in mammalian cells and protozoans. ISI Atlas of Science (Biochemistry): 11–18

    Google Scholar 

  • Przedborski S, Kostic V, Jackson LV, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 12: 1658–1667

    PubMed  CAS  Google Scholar 

  • Przuntek H (1994) Clinical aspects of neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 43: 163–169

    CAS  Google Scholar 

  • Puttfarcken PS, Getz RL, Coyle JT (1993) Kainic acid-induced lipid peroxidation: protection with butylated hydroxyl-toluene and U78517F in primary cultures of cerebellar granule cells. Brain Res 624: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 46: 1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Hebenstreit G, Bruinvels J (1989) Pathobiochemistry of the extrapyramidal system: a “short note” review. In: Przuntek H, Riederer P (eds) Early diagnosis and preventive therapy in Parkinson’s disease. Springer, Wien New York, pp 139–149 (Key Topics in Brain Research)

    Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53: 692–697

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos JR, Övervik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2’ deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 3: 197–204

    Google Scholar 

  • Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64: 2239–2247

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (1981) Review. Polyamine metabolism and function in brain. Neurochem Int 3: 95–110

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Knödgen B (1980) High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr 221: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron(III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Stella N, Tence M, Glowinski J, Premont D (1994) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 14: 568–575

    PubMed  CAS  Google Scholar 

  • The Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371

    Article  Google Scholar 

  • The Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328: 176–184

    Article  Google Scholar 

  • Wesemann W, Blaschke S, Solbach M, Grote C, Clement H-W, Riederer P (1994) Intranigral injected iron progressively reduces striatal dopamine metabolism. J Neural Transm [PD Sect] 8: 209–214

    Article  CAS  Google Scholar 

  • Wessel K (1993) MAO-B inhibitors in neurological disorders with special reference to selegiline. In: Szelenyi I (ed) Series of new drugs, vol 1. Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 253–275

    Google Scholar 

  • Williams K, Romano C, Dichter MA, Molinoff PB (1991) Modulation of the NMDA receptor by polyamines. Life Sci 48: 469–479

    Article  PubMed  CAS  Google Scholar 

  • Zuddas A, Oberto G, Vaglini F, Fascetti F, Fornai F, Corsini GU (1992) MK-801 prevents 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism in primates. J Neurochem 59: 733–739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Gerlach, M., Desser, H., Youdim, M.B.H., Riederer, P. (1996). New horizons in molecular mechanisms underlying Parkinson’s disease and in our understanding of the neuroprotective effects of selegiline. In: Kuhn, W., Kraus, P., Przuntek, H. (eds) Deprenyl — Past and Future. Journal of Neural Transmission, vol 48. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7494-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7494-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82891-5

  • Online ISBN: 978-3-7091-7494-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics