Skip to main content

Is selegiline neuroprotective in Parkinson’s disease?

  • Conference paper
Amine Oxidases: Function and Dysfunction

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 41))

Summary

Recent findings emphasize the significance of oxidative mechanisms, involving the activity of monoamine oxidase (MAO) and the formation of free radicals, in the pathogenesis of Parkinson’s disease. The possible role of such mechanisms in the degeneration of neurones in the substantia nigra has led to clinical trials aimed at preventing or slowing the progressively disabling course of the disease. However, conclusive clinical evidence of a neuroprotective effect in PD is still lacking. In this paper, we discuss possible mechanisms by which selegiline manifests neuroprotective effects in experimental and clinical situations. Besides MAO-B inhibition, which above all explains the prevention of protoxin activation and substrate oxidation by MAO-B, selegiline appears to exhibit other mechanisms of action (induction of Superoxide dismutase, stimulation of neurotrophic factor synthesis, antagonistic modulation of the polyamine binding site of the NMDA-receptor) which are independent of its action on MAO-B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albino-Teixeira A, Azevedo I, Martel F, Osswald W (1991) Superoxide dismutase partially prevents sympathetic denervation by 6-hydroxydopamine. Arch Pharmacol 344: 36–40.

    Article  CAS  Google Scholar 

  • Basma AN, Heikkila E, Nicklas WJ, Giovanni A, Geller HM (1990) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-and 1-methyl-4-(2’-ethylphenyl-1,2,3,6-tetra-hydropyridine-induced toxicity in PC12 cells: role of monoamine oxidase A. J Neurochem 55: 870–877.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to MadoparR treatment in Parkinson’s disease: a long-term study. J Neural Transm 64: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Carrillo M-C, Kanai S, Nokubo M, Kitani K (1991) (-)-Deprenyl induces activities of both Superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48: 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Chiba K, Trevor A, Castagnoli Jr N (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Clow A, Hussain T, Glover V, Sandier M, Dexter DT, Walker M (1991) (—)-Deprenyl can induce soluble Superoxide dismutase in rat striata. J Neural Transm [Gen Sect] 86: 77–80.

    Article  CAS  Google Scholar 

  • Cohen G, Spina MB (1989) Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26: 689–690.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr MD (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methy1-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210.

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin RC (1982) The cause of Parkinson’s disease. In: Marsden CD, Fahn S (eds) Neurology, vol 2. Butterworth Scientific, London, pp 8–24.

    Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease — evidence supporting it. Ann Neurol 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol 208: 273–286.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1992) The molecular pharmacology of L-deprenyl. Eur J Pharmacol 226: 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Szelenyi I (ed) Series of new drugs, vol 1. Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 25-50.

    Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1993) The mode of action of MAO-B inhibitors. In: Szelenyi I (ed) Series of new drugs, vol 1. Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 183-200.

    Google Scholar 

  • Gibb C, Willoughby J, Glover V, Sandier M, Testa B, Jenner P, Marsden CD (1987) Analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as monoamine oxidase substrates: a second ring is not necessary. Neurosci Lett 76: 316–322.

    Article  PubMed  Google Scholar 

  • Gibson C (1987) Inhibition of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons. Eur J Pharmacol 141: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Glover V, Elsworth JD, Sandier M (1980) Dopamine oxidation and its inhibition by (-)-deprenyl in man. J Neural Transm [Suppl] 16: 163–172.

    CAS  Google Scholar 

  • Götz ME, Freyberger A, Riederer P (1990) Oxidative stress: a role in the pathogenesis of Parkinson’s disease. J Neural Transm [Suppl] 29: 241–249.

    Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RS (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311: 467–469.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1973) Parkinson’s disease: from brain homogenate to treatment. Fed Proc 32: 183–190.

    PubMed  CAS  Google Scholar 

  • Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Calne DB (ed) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg New York Tokyo, pp 47–112.

    Google Scholar 

  • Jellinger K (1991) Pathology of Parkinson’s disease: changes other than the nigro-striatal pathway. Mol Chem Neuropathol 14: 153–197.

    Article  PubMed  CAS  Google Scholar 

  • Kellog EW, Fridovich I (1976) Superoxide dismutase in the rat and mouse as a function of age and longevity. J Gerontol 4: 405–408.

    Google Scholar 

  • Knoll J (1988) The striatal dopamine dependency of life span in male rats, longevity study with (—)deprenyl. Mech Ageing Dev 46: 237–262.

    Article  PubMed  CAS  Google Scholar 

  • Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44.

    CAS  Google Scholar 

  • Langston JW (1988) The etiology of Parkinson’s disease: new directions for research. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Urban & Schwarzenberg, Baltimore Munich, pp 75–85.

    Google Scholar 

  • Langston JW, Irwin I (1989) Pyridine toxins. In: Calne (ed) Drugs for the treatment of Parkinson’s disease. Springer, Wien New York, pp 205–226.

    Chapter  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225: 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA (1993) Neuroprotective effects of MAO-B inhibition: clinical studies in Parkinson’s disease. In: Szelenyi I (ed) Series of new drugs, vol 1. Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 289-299.

    Google Scholar 

  • Lodge D, Johnson KM (1990) Noncompetitive excitatory amino acid receptor antagonists. TIPS [The Pharmacology of Excitatory Amino Acids: A Special Report 1991]: 13-18.

    Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Markey JP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intra-neuronal generation of a pyridinium metabolite may cause drug-induced parkinson-ism. Nature 311: 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurode-generative disease. TIPS [The Pharmacology of Excitatory Amino Acids: A Special Report 1991]: 54-62.

    Google Scholar 

  • Nagatsu T, Hirata Y (1987) Inhibition of the tyrosine hydroxylase system by MPTP, 1-methyl-4-phenylpyridinium ion (MPP+) and the structurally related compounds in vitro and in vivo. Eur Neurol 26[Suppl 1]: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Neafsey EJ, Drucker G, Raikoff K, Collins MA (1989) Striatal dopaminergic toxicity following intranigral injection in rats of 2-methyl-norharman, a analog of N-methyl-4-phenylpyridinium ion (MPP+). Neurosci Lett 105: 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26: 505–526.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371.

    Article  Google Scholar 

  • Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328: 176–184.

    Article  Google Scholar 

  • Poirier J, Kogan S, Gauthier S (1991) Environment, genetics and idiopathic Parkinson’s disease. Can J Neurol Sci 18: 70–76.

    PubMed  CAS  Google Scholar 

  • Przedborski S, Kostic V, Jackson-Lewis V, Carlson E, Epstein CJ, Cadet JL (1990) Transgenic mice expressing the human SOD gene are resistant to MPTP-induced toxicity. Soc Neurosci Abstr 16: 1260.

    Google Scholar 

  • Przuntek H, Welzel D, Blümner E, Danielcyzk W, Letzel H, Kaiser H-J, Kraus PH, Riederer P, Schwarzmann D, Wolf H, Überla K (1992) Bromocriptine lessens the incidence of mortality in L-Dopa-treated parkinsonian patients: prado-study discontinued. Eur J Clin Pharmacol 43: 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Riederer P, Sandier M, Jellinger K, Seemann D (1978) Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (-)-deprenyl administration. J Neural Transm 43: 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Jellinger K, Seemann D (1984) Monoamine oxidase and parkinsonism. In: Tipton K, Dostert P, Strolin-Benedetti M (eds) Monoamine oxidase and disease. Academic Press, London, pp 403–415.

    Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 46: 1359–1365.

    Article  PubMed  CAS  Google Scholar 

  • Riggs JE (1991) Parkinson’s disease: an epidemiologic method for distinguishing between symptomatic and neuroprotective treatments. Clin Pharmacol 14: 489–497.

    CAS  Google Scholar 

  • Runge I, Horowski R (1991) Can we differentiate symptomatic and neuroprotective effects in parkinsonism?. J Neural Transm [PD Sect] 4: 273–283.

    Google Scholar 

  • Salo PT, Tatton WG (1992) Deprenyl reduces the death of motorneurons caused by axotomy. J Neurosci Res 31: 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Farmer KJ, Allen RG (1987) Correlates of longevity in two strains of the housefly, Musca domestica. Mech Ageing Dev 40: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672.

    Article  PubMed  CAS  Google Scholar 

  • Tetrud J, Langston W (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77: 2777–2781.

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Delini-Stula A, Maitre L (1976) Preferential deamination of dopamine by an A type monamine oxidase B substrate in rat brain. Naunyn Schmiedebergs Arch Pharmacol 292: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Werner P, Cohen G (1991) Intramitochondrial formation of oxidized glutathione during the oxidation of benzylamine by monoamine oxidase. FEBS Lett 280: 44–46.

    Article  PubMed  CAS  Google Scholar 

  • Wessel K (1993) MAO-B inhibitors in neurological disorders with special reference to selegiline. In: Szelenyi I (ed) Series of new drugs, vol 1. Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 253-275.

    Google Scholar 

  • Yoshida M, Niwa T, Nagatsu T (1990) Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: the behavioral and biochemical changes. Neurosci Lett 109-113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Gerlach, M., Youdim, M.B.H., Riederer, P. (1994). Is selegiline neuroprotective in Parkinson’s disease?. In: Tipton, K.F., Youdim, M.B.H., Barwell, C.J., Callingham, B.A., Lyles, G.A. (eds) Amine Oxidases: Function and Dysfunction. Journal of Neural Transmission, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9324-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9324-2_24

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82521-1

  • Online ISBN: 978-3-7091-9324-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics