Skip to main content

Amortized Bound for Root Isolation via Sturm Sequences

  • Conference paper
Book cover Symbolic-Numeric Computation

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper presents two results on the complexity of root isolation via Sturm sequences. Both results exploit amortization arguments.

For a square-free polynomial A (X) of degree d with L-bit integer coefficients, we use an amortization argument to show that all the roots, real or complex, can be isolated using at most O(dL + dlgd) Sturm probes. This extends Davenport’s result for the case of isolating all real roots.

We also show that a relatively straightforward algorithm, based on the classical subresultant PQS, allows us to evaluate the Sturm sequence of A(X) at rational Õ(dL)-bit values in time Õ(d 3 L); here the Õ-notation means we ignore logarithmic factors. Again, an amortization argument is used. We provide a family of examples to show that such amortization is necessary.

The work is supported by NSF Grant #CCF-043836. A preliminary version of this work appeared at the International Workshop on Symbolic-Numeric Computation (SNC 2005), Xi’an, China, July 19–21, 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger, G. E. Collins and R. Loos, editors, Computer Algebra, pages 83–94. Springer-Verlag, 2nd edition, 1983.

    Google Scholar 

  2. T.H. Corman, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second edition, 2001.

    Google Scholar 

  3. J.H. Davenport. Computer algebra for cylindrical algebraic decomposition. Technical report, The Royal Institute of Technology, Dept. of Numerical Analysis and Computing Science, S-100 44, Stockholm, Sweden, 1985. Reprinted as: Tech. Report 88-10, School of Mathematical Sciences, Univ. of Bath, Claverton Down, bath BA2 7AY, England.

    Google Scholar 

  4. A. Eigenwillig, V. Sharma and Chee Yap. Almost tight complexity bounds for the Descartes method. In Proc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’06), 2006. To appear. Genova, Italy. Jul 9–12, 2006.

    Google Scholar 

  5. J.R. Johnson. Algorithms for polynomial real root isolation. In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and monographs in Symbolic Computation, pages 269–299. Springer, 1998.

    Google Scholar 

  6. M.-H. Kim and S. Sutherland. Polynomial root-finding algorithms and branched covers. SIAM J. Computing, 23:415–436, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Lickteig and M.-F. Roy. Sylvester-Habicht sequences and fast Cauchy index computation. J. of Symbolic Computation, 31:315–341, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Mignotte and D. Ştefănescu. Polynomials: An Algorithmic Approach. Springer, 1999.

    Google Scholar 

  9. P.S. Milne. On the solutions of a set of polynomial equations. In B. R. Donald, D. Kapur, and J. L. Mundy, editors, Symbolic and Numerical Computation for Artificial Intelligence, pages 89–102. Academic Press, London, 1992.

    Google Scholar 

  10. C.A. Neff and J.H. Reif. An efficient algorithm for the complex roots problem. J.Complexity, 12(3):81–115, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. V.Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers Mathematics and Applications, 31(12):97–138, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. V.Y. Pan. Solving a polynomial equation: some history and recent progress. SIAM Review, 39(2):187–220, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Pedersen. Counting real zeroes. Technical Report 243, Courant Institute of Mathematical Sci., Robotics Lab., New York Univ., 1990. PhD Thesis, Courant Institute, New York University.

    Google Scholar 

  14. J.R. Pinkert. An exact method for finding the roots of a complex polynomial. ACM Trans. on Math. Software, 2:351–363, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Reischert. Asymptotically fast computation of subresultants. In ISSAC 97, pages 233–240, 1997. Maui, Hawaii.

    Google Scholar 

  16. J. Renegar. On the worst-case arithmetic complexity of approximating zeros of polynomials. Journal of Complexity, 3:90–113, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Schönhage. The fundamental theorem of algebra in terms of computational complexity, 1982. Manuscript, Department of Mathematics, University of Tübingen.

    Google Scholar 

  18. V. Strassen. The computational complexity of continued fractions. SIAM J. Computing, 12:1–27, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.S. Wilf. A global bisection algorithm for computing the zeros of polynomials in the complex plane. Journal of the ACM, 25:415–420, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  20. C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Du, Z., Sharma, V., Yap, C.K. (2007). Amortized Bound for Root Isolation via Sturm Sequences. In: Wang, D., Zhi, L. (eds) Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7984-1_8

Download citation

Publish with us

Policies and ethics