Skip to main content

Non-commutative Banach Function Spaces

  • Chapter
Positivity

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this paper we survey some aspects of the theory of non-commutative Banach function spaces, that is, spaces of measurable operators associated with a semi- finite von Neumann algebra. These spaces are also known as non-commutative symmetric spaces. The theory of such spaces emerged as a common generalization of the theory of classical (“commutative”) rearrangement invariant Banach function spaces (in the sense of W.A.J. Luxemburg and A.C. Zaanen) and of the theory of symmetrically normed ideals of bounded linear operators in Hilbert space (in the sense of I.C. Gohberg and M.G. Krein). These two cases may be considered as the two extremes of the theory: in the first case the underlying von Neumann algebra is the commutative algebra L on some measure space (with integration as trace); in the second case the underlying von Neumann algebra is B (), the algebra of all bounded linear operators on a Hilbert space (with standard trace). Important special cases of these non-commutative spaces are the non-commutative L p-spaces, which correspond in the commutative case with the usual L p-spaces on a measure space, and in the setting of symmetrically normed operator ideals they correspond to the Schatten p-classes \( \mathfrak{S}_p \) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, Orlando, 1985.

    MATH  Google Scholar 

  2. C.J.K. Batty, D.W. Robinson, Positive one-parameter semigroups on ordered Banach spaces, Acta Appl. Math. 1 (1984), 221–296.

    Article  MathSciNet  Google Scholar 

  3. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Orlando, 1988.

    MATH  Google Scholar 

  4. M.Š. Birman, M.Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, D. Reidel Publishing Co., Dordrecht, 1987.

    Google Scholar 

  5. M.Š. Birman, M.Z. Solomyak, Operator integration, perturbations and commutators, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Issled. Linein. Teorii Funktsii. 17 (1989), 34–66.

    Google Scholar 

  6. A.P. Calderón, Spaces between L 1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299.

    MATH  MathSciNet  Google Scholar 

  7. V.I. Chilin, F.A. Sukochev, Symmetric spaces on semi-finite von Neumann algebras, Dokl. Akad. Nauk. SSSR 13 (1990), 811–815 (Russian).

    Google Scholar 

  8. E.B. Davies, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc. 37 (1988), 148–157.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Dixmier, Von Neumann Algebras, North-Holland Mathematical Library, Vol. 27, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  10. P.G. Dodds, T.K. Dodds, B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583–597.

    Article  MATH  MathSciNet  Google Scholar 

  11. P.G. Dodds, T.K. Dodds, B. de Pagter, A general Marcus inequality, Proc. Centre Math. Anal. Austral. Nat. Univ. 24 (1989), 47–57.

    Google Scholar 

  12. Peter G. Dodds, Theresa K.-Y. Dodds, Ben de Pagter, Non-commutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), 717–750.

    Article  MATH  MathSciNet  Google Scholar 

  13. P.G. Dodds, T.K. Dodds, B. de Pagter, F.A. Sukochev, Lipschitz Continuity of the Absolute Value and Riesz Projections in Symmetric Operator Spaces, J. of Functional Analysis 148 (1997), 28–69.

    Article  MATH  Google Scholar 

  14. P.G. Dodds, T.K. Dodds, F.A. Sukochev, O.Ye. Tikhonov, A Non-commutative Yosida-Hewitt Theorem and Convex Sets of Measurable Operators Closed Locally in Measure, Positivity 9 (2005), 457–484.

    Article  MATH  MathSciNet  Google Scholar 

  15. Th. Fack, H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986), 269–300.

    MATH  MathSciNet  Google Scholar 

  16. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760–766.

    Article  MATH  MathSciNet  Google Scholar 

  17. D.H. Fremlin, Measure Theory, Volume 3: Measure Algebras, Torres Fremlin, Colchester, 2002.

    Google Scholar 

  18. I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, AMS, Providence, R.I., 1969.

    MATH  Google Scholar 

  19. A. Grothendieck, Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann muni d’une trace, Seminaire Bourbaki, 1955, 113-01-113-13.

    Google Scholar 

  20. P.R. Halmos, A Hilbert Space Problem Book, 2nd Ed., Graduate Texts in Math., Springer-Verlag, New York-Heidelberg-Berlin, 1982.

    MATH  Google Scholar 

  21. R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume I: Elementary Theory, Academic Press, New York, 1983.

    Google Scholar 

  22. R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume II: Advanced Theory, Academic Press, Orlando, 1986.

    MATH  Google Scholar 

  23. T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

    MATH  Google Scholar 

  24. S.G. Krein, Ju.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Translations of Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, 1982.

    Google Scholar 

  25. G.G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, J. Functional An. 2 (1968), 31–51.

    Article  MATH  MathSciNet  Google Scholar 

  26. W.A.J. Luxemburg, Notes on Banach function spaces XV, Indag. Math. 27 (1965), 415–446.

    MathSciNet  Google Scholar 

  27. W.A.J. Luxemburg, Rearrangement invariant Banach function spaces, Proc. Sympos. in Analysis, Queen’s Papers in Pure and Appl. Math. 10 (1967), 83–144.

    Google Scholar 

  28. A.S. Markus, The eigen-and singular values of the sum and product of linear operators, Russian Math. Surveys 19 (1964) 91–120.

    Article  MATH  MathSciNet  Google Scholar 

  29. B. de Pagter, F.A. Sukochev, H. Witvliet, Double Operator Integrals, J. of Functional Analysis 192 (2002), 52–111.

    Article  MATH  Google Scholar 

  30. B. de Pagter, F.A. Sukochev, Differentiation of operator functions in non-commutative L p-spaces, J. of Functional Analysis 212 (2004), 28–75.

    Article  MATH  Google Scholar 

  31. B. de Pagter, F.A. Sukochev, Commutator estimates and R-flows in non-commutative operator spaces, Proc. Edinburgh Math. Soc., to appear.

    Google Scholar 

  32. F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co., New York, 1955.

    Google Scholar 

  33. H.H. Schaefer (with M.P. Wolff), Topological Vector Spaces (2nd Edition), Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  34. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

    MATH  Google Scholar 

  35. M. Takesaki, Theory of Operator Algebras II, Springer-Verlag, Berlin-Heidelberg-New York, 2003.

    MATH  Google Scholar 

  36. M. Terp, L p-spaces associated with von Neumann algebras, Copenhagen University, 1981.

    Google Scholar 

  37. O.Ye. Tikhonov, Continuity of operator functions in topologies connected with a trace on a von Neumann algebra, Izv. Vyssh. Uchebn. Zaved. Mat. (1987), 77–79 (in Russian; translated in Sov. Math. (Iz. VUZ) 31 (1987), 110–114.

    Google Scholar 

  38. H. Witvliet, Unconditional Schauder decompositions and multiplier theorems, Ph.D. thesis, Delft University of Technology, 2000.

    Google Scholar 

  39. A.C. Zaanen, Integration, North-Holland Publishing Company, Amsterdam, 1967.

    MATH  Google Scholar 

  40. A.C. Zaanen, Riesz Spaces II, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG2007

About this chapter

Cite this chapter

de Pagter, B. (2007). Non-commutative Banach Function Spaces. In: Boulabiar, K., Buskes, G., Triki, A. (eds) Positivity. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8478-4_7

Download citation

Publish with us

Policies and ethics