Skip to main content

Endpoints and Methodologies

  • Chapter
Electromagnetics in Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.4 References

  • Baddeley AD (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4: 417–423

    Article  Google Scholar 

  • Bartsch H, Bartsch C, Mecke D, Lippert TH (1994) Seasonality of pineal melatonin production in rat-possible synchronization by the geomagnetic field. Chronobiol Int 11: 21–26.

    Google Scholar 

  • Berger H (1929) Ueber das Elektroenkephalogramm des Menschen. I. Mitteilung. Arch f Psychiat 87: 527–570

    Article  Google Scholar 

  • Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28: 193–202.

    Article  Google Scholar 

  • Costall B, Naylor RJ (1973) The role of telencephalic dopaminergic systems in the mediation of apomorphine-stereotyped behavior. Eur J Pharmacol 24: 8–24.

    Article  Google Scholar 

  • Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson, F, Reiter RJ (1998) Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 24: 193–200.

    Google Scholar 

  • Ekman AC, tLeppaeluoto J, Huttumen P, et al. (1993) Ethanol inhibits melatonin secretion in healthy volunteers in a dose-dependent, randomized, double-blind cross-over study. J Clin Endocrinol Metab 77: 780–783.

    Article  Google Scholar 

  • Golombek DA, Escolar E, Burin LJ, De Brito-Sanchez MG, Cardinali DP (1991) Timedependent melatonin analgesia in mice; inhibition by opiate or benzodiazepine antagonism. Eur J Pharmacol 194: 25–30.

    Article  Google Scholar 

  • Graham C, Cook MR, Kavet R, Satre A, Smith DK (1998) Prediction of nocturnal plasma melatonin from morning urinary measures. J Pineal Res 24: 230–238

    Google Scholar 

  • Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci USA, 96: 5884–5889.

    Article  Google Scholar 

  • Henshaw DL, Reiter RJ (2005) Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption? Bioelectromagnetics Suppl 7: 1–12

    Google Scholar 

  • Hirose H, Nakahara T, Zhang Q.-M., Yonei S, Miyakoshi J (2003) Static magnetic field with a strong magnetic field gradient (41.7 T/M) induces c-jun expression in HL-60 Cells. In Vitro Developl Biology Animal 39:348–352.

    Article  Google Scholar 

  • Hrushesky WJM (2001) Melatonin cancer therapy. In Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy, Berlin: Springer-Verlag, 476–508.

    Google Scholar 

  • Kado M, Yoshida A, Hira Y, Sakai Y, Matsushima S (1999) Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes. Brain Res 842: 359–375.

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. 4th ed. Pp. 1247–1279. New York: McGraw Hill.

    Google Scholar 

  • Kato M(1999) Research on nervous and endocrine systems, In Takebe H, Shiga T, Kato M, Masada E(eds), Effects of electromagnetic fields Tokyo, Bunkodo Publ. Ltd, 44–65

    Google Scholar 

  • Koyama S, Isozumi Y, Suzuki Y, Taki M, Miyakoshi J (2004) Effects of 2.45 GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. Scientific World J 4:29–40.

    Google Scholar 

  • Koyama S, Nakahara T, Wake K, Taki M, Isozumi Y, Miyakoshi J (2003) Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat Res 541:81–89.

    Google Scholar 

  • Lambrozo J, Touitou Y, Dab W (1996) Exploring the EMF melatonin connection. A review of the possible effects of 50/60 Hz electric and magnetic fields on melatonin secretion. Int J Occup Environ Med 2: 37–47.

    Google Scholar 

  • Langer M, Hartmann T, Waldhauser F (1997) Melatonin beim Menschen.Ein Ueberblick. Wiener Klin Wochenschr 109: 707–713.

    Google Scholar 

  • Liebermann PM, Woelfler A, Shauenstein K (2001) Melatonin and immune functions. In Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer-Verlag, 371–383.

    Google Scholar 

  • Liu P, Bilkey DK (1998) Perirhinal cortex contributions to performance in the Morris water maze. Behav Neurosci 112: 304–315.

    Article  Google Scholar 

  • Loövsund P, Nilsson SEG, Oeberg PA (1981) Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity. Med Biol Eng Comput, 19: 679–685.

    Article  Google Scholar 

  • Maestroni GJM (1993) The immuno-neuroendocrine role of melatonin. J Pineal Res 14: 1–10.

    Google Scholar 

  • Maestroni GJM, Conti A (1990) The pineal neurohormone melatonin stimulates activated CD4+,Thy-1+ cells to release opioid agonist(s) with immunoenhancing and antistress properties. J Neuroimmunol 28: 167–176.

    Article  Google Scholar 

  • Maguire EA, Frackowiak RS, Frith CD (1996) Learning to find your way: a role for the human hippocampal formation. Proc. Roy Soc Lond B Biol Sci 263: 1745–1750.

    Article  Google Scholar 

  • Matsushima S, Sakai Y, Hira Y (1999) Peptidergic peripheral nervous systems in the mammalian pineal gland. Microscopy Res Technique 46: 265–280.

    Article  Google Scholar 

  • Miyakoshi J, Kitagawa K, Takebe H (1997) Mutation induction by high-density 50 Hz magnetic fields in human MeWo cells exposed in the DNA synthesizing phase. Intern J Radiation Biology 7: 75–79.

    Article  Google Scholar 

  • Miyakoshi J, Koji T, Wakasa T, Takebe H (1999) Long term exposure to a magnetic field (5 mT at 60 Hz) increases X-ray-induced mutations. J Radiat.Res 40:13–21.

    Article  Google Scholar 

  • Miyakoshi J, Mori Y, Yaguchi H, Ding G-R, Fujimori A (2000b) Suppression of heat-induced HSP-70 by simultaneous exposure to 50 mT magnetic field. Life Sci 66:1187–1196.

    Article  Google Scholar 

  • Miyakoshi J, Ohtsu S, Tatsumi-Miyajima J, Takebe H (1994) A newly designed experimental system for exposure of mammalian cells to extremely low frequency magnetic fields. J Radiat Res 35:26–34.

    Article  Google Scholar 

  • Miyakoshi J, Takemasa K, Takashima Y, Ding G-R, Hirose H, Koyama S (2005) Effects of exposure to a 1950 MHz radio-frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26:251–257.

    Article  Google Scholar 

  • Miyakoshi J, Yoshida M, Shibuya K, Hiraoka M(2000a) Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J Radiat Res 41:293–302.

    Article  Google Scholar 

  • Miyakoshi J, Yoshida M, Tarusawa Y, Nojima T, Wake K, Taki M (2002) Effects of highfrequency electromagnetic fields on DNA strand breaks using comet assay method. Electric Engineer Japan 141:9–15.

    Article  Google Scholar 

  • Miyakoshi J, Yoshida M, Yaguchi H, Ding G-R (2000c) Exposure to extremely low frequency magnetic fields suppresses X-ray-induced transformation in mouse C3H10T1/2 cells. Biochem Biophysl Res Commun 271:323–327.

    Article  Google Scholar 

  • Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J (2002) Effects of exposure of CHO-K1 cells to a 10 T static magnetic field. Radiology 224:817–822.

    Google Scholar 

  • Nakatani M, Ohara Y, Katagiri S, Nakano K. (1940) Studien ueber die zirbellosen wieblichen weissen Ratten. (Original in Japanese.) Nippon Byori Gakkai Kaishi, 30: 232–236.

    Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: Preliminary evidence from the unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  Google Scholar 

  • Olton DS (1977) The function of septo-hippocampal connections in spatially organized behaviour. Ciba Found Symp 58: 327–349

    Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: Genetic, cellular physiology and subcortical networks. Nat Rev Neurosci 3: 591–605

    Google Scholar 

  • Panzer A, Viljoen M (1997) Validity of melatonin as an oncostatic agent. J Pineal Res 22: 184–202.

    Google Scholar 

  • Reiter RJ, Tang L, Garcia JJ, Munoz-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60: 2255–2271.

    Article  Google Scholar 

  • Sakai Y, Hira Y, Matsushima S (2000) Central GABAergic innervation of the mammalian pineal gland: A light and electron microscopic immunocytochemical investigation in rodent and nonrodent species. J Comp Neurol 430: 72–84.

    Article  Google Scholar 

  • Schmidt RF, Thews G (1989) Human Physiology, 2nd ed, p. 362. Berlin: Springer-Verlag.

    Google Scholar 

  • Shah PN, Mhatre MC, Kothari LS (1984) Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44: 3403–3407.

    Google Scholar 

  • Shavali S, Ho B, Govitrapong P, Sawlom S, Ajjimaporn A, Klongpanichapak S, Ebadi M (2005) Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 64: 471–479.

    Article  Google Scholar 

  • Stevens RG (1987) Electric power use and breast cancer: A hypothesis. Amer J Epidemiol 125: 556–561.

    Google Scholar 

  • Stolk JM, Rech RH (1970) Antagonism of d-amphetamine by alpha-methyl-L-tyrosine: Behavioral evidence for the participation of catecholamine stores and synthesis in the amphetamine stimulant response. Neuropharmacol 9: 249–264.

    Article  Google Scholar 

  • Szamel M, Resch K (1995) T-cell antigen receptor-induced signal-transduction pathways. Activation and function of protein kinase C in T lymphocytes. Eur J Biochem 228: 1–15.

    Article  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Zhang M, Weintraub ST, Cabrera J, Sainz RM, Mayo JC (1999) Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1472: 206–214.

    Google Scholar 

  • Tian F-R, Nakahara T, Wake K, Taki M, Miyakoshi J (2002) Exposure to 2.45GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg, but not at a lower SAR of 5W/kg, in human glioma MO54 cells. Intern J Radiation Biology 78: 433–440

    Article  Google Scholar 

  • Yaguchi H, Yoshida M, Ding G-R, Shingu K, Miyakoshi J (2000) Increased chromatid-type chromosomal aberrations in mouse m5S cells exposed to power-line frequency magnetic fields. Intern J Radiat Biol 76:1677–1684.

    Article  Google Scholar 

  • Yaguchi H, Yoshida M, Ejima Y, Miyakoshi J (1999) Effect of high-density extremely low frequency magnetic field on sister chromatid exchanges in mouse m5S cells. Mutat Res 440:189–194.

    Google Scholar 

  • Young IM, Leone RM, Francis P, Stovell P, Silman RE (1985) Melatonin is metabolized to N-acetylserotonin and 6-hydroxymelatonin in man. J Clin Endocrinol Metab 60, 114–119

    Google Scholar 

  • Vollrath L (2001) Biology of the pineal gland and melatonin in humans. In: Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer-Verlag, 5–49.

    Google Scholar 

  • Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper M, Frische H (1988) Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metabolism 66: 648–652.

    Article  Google Scholar 

  • Wurtman R, Zhdanova I (1995) Improvement of sleep quality by melatonin. Lancet 346: 1491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Fujiwara, O., Wang, J., Kato, M., Miyakoshi, J. (2006). Endpoints and Methodologies. In: Kato, M. (eds) Electromagnetics in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-27914-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-27914-3_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-27913-6

  • Online ISBN: 978-4-431-27914-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics