Skip to main content

Growth Factor Signaling in Lens Fiber Differentiation

  • Chapter
  • First Online:
Lens Epithelium and Posterior Capsular Opacification

Abstract

Since the first reports of experimental lens inversion causing changes in lens cell fate in the 1960s, various factors including the mitogens IGF, EGF, PDGF, as well as Wnts, Notch, and BMPs have been implicated in the regulation of lens fiber cell differentiation, although the preponderance of evidence suggests that FGFs provide the major signal for this process. It is becoming increasingly apparent that complex interactions between the signaling pathways activated by these factors are required to generate functional fiber cells. Disruption of these signaling cascades usually results in the formation of congenital lens defects, including cataracts, and it is likely that these signaling cascades also regulate lens “regenerative” processes that follow extracapsular cataract extraction and lead to Soemmering’s ring and Elschnig’s pearls. Improved knowledge of the signaling processes that occur in normal lens development as well as in the lens epithelial cells (LECs) remaining in the capsular bag following cataract surgery may not only improve the outcomes of cataract treatment but may also eventually lead to the capacity to regenerate functional lenses either from “induced pluripotent stem cells” or from the patient’s own remnant LECs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

Dvl:

Dishevelled

EGF:

Epidermal growth factor

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular-regulated kinase

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

Fzd:

Frizzled

HSPG:

Heparan sulfate proteoglycan

IGF:

Insulin-like growth factor

JAK:

Janus kinase

LEC:

Lens epithelial cell

MAPK:

Mitogen-activated protein kinase

NICD:

Notch intracellular domain

PCO:

Posterior capsule opacification

PCP:

Planar cell polarity

PDGF:

Platelet-derived growth factor

PI3K:

Phosphatidylinositol-3-kinase

PLC:

Phospholipase C

STAT:

Signal transducer and activator of transcription

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

References

  1. Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88(2):151–164. doi:10.1016/j.exer.2008.08.002

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Piatigorsky J (1981) Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation 19:134–152

    CAS  PubMed  Google Scholar 

  3. Rampalli AM, Gao CY, Chauthaiwale VM, Zelenka PS (1998) pRb and p107 regulate E2F activity during lens fiber cell differentiation. Oncogene 16(3):399–408. doi:10.1038/sj.onc.1201546

    CAS  PubMed  Google Scholar 

  4. Martinez G, de Iongh RU (2010) The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 42(12):1945–1963. doi:10.1016/j.biocel.2010.09.012

    CAS  PubMed  Google Scholar 

  5. Sellitto C, Li L, White TW (2004) Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 45(9):3196–3202. doi:10.1167/iovs.04-0194

    PubMed  Google Scholar 

  6. White TW, Gao Y, Li L, Sellitto C, Srinivas M (2007) Optimal lens epithelial cell proliferation is dependent on the connexin isoform providing gap junctional coupling. Invest Ophthalmol Vis Sci 48(12):5630–5637. doi:10.1167/iovs.06-1540

    PubMed  Google Scholar 

  7. Rajagopal R, Dattilo LK, Kaartinen V, Deng CX, Umans L, Zwijsen A, Roberts AB, Bottinger EP, Beebe DC (2008) Functions of the type 1 BMP receptor Acvr1 (Alk2) in lens development: cell proliferation, terminal differentiation, and survival. Invest Ophthalmol Vis Sci 49(11):4953–4960. doi:10.1167/iovs.08-2217

    PubMed Central  PubMed  Google Scholar 

  8. Zhou M, Leiberman J, Xu J, Lavker RM (2006) A hierarchy of proliferative cells exists in mouse lens epithelium: implications for lens maintenance. Invest Ophthalmol Vis Sci 47(7):2997–3003. doi:10.1167/iovs.06-0130

    PubMed Central  PubMed  Google Scholar 

  9. Bassnett S, Shi Y, Vrensen GF (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 366(1568):1250–1264. doi:10.1098/rstb.2010.0302

    PubMed Central  PubMed  Google Scholar 

  10. Bassnett S, Beebe DC (2004) Lens fiber differentiation. In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, New York, pp 214–244

    Google Scholar 

  11. Korlimbinis A, Berry Y, Thibault D, Schey KL, Truscott RJ (2009) Protein aging: truncation of aquaporin 0 in human lens regions is a continuous age-dependent process. Exp Eye Res 88(5):966–973. doi:10.1016/j.exer.2008.12.008

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kumari SS, Eswaramoorthy S, Mathias RT, Varadaraj K (2011) Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency. Biochim Biophys Acta 1812(9):1089–1097. doi:10.1016/j.bbadis.2011.04.001

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu J, Xu J, Gu S, Nicholson BJ, Jiang JX (2011) Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J Cell Sci 124(Pt 2):198–206. doi:10.1242/jcs.072652

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Gonen T, Cheng Y, Kistler J, Walz T (2004) Aquaporin-0 membrane junctions form upon proteolytic cleavage. J Mol Biol 342(4):1337–1345. doi:10.1016/j.jmb.2004.07.076

    CAS  PubMed  Google Scholar 

  15. Werten PJ, Vos E, De Jong WW (1999) Truncation of betaA3/A1-crystallin during aging of the bovine lens; possible implications for lens optical quality. Exp Eye Res 68(1):99–103. doi:10.1006/exer.1998.0584

    CAS  PubMed  Google Scholar 

  16. Lampi KJ, Ma Z, Hanson SR, Azuma M, Shih M, Shearer TR, Smith DL, Smith JB, David LL (1998) Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp Eye Res 67(1):31–43. doi:10.1006/exer.1998.0481

    CAS  PubMed  Google Scholar 

  17. Ma Z, Hanson SR, Lampi KJ, David LL, Smith DL, Smith JB (1998) Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Exp Eye Res 67(1):21–30. doi:10.1006/exer.1998.0482

    CAS  PubMed  Google Scholar 

  18. Lampi KJ, Shih M, Ueda Y, Shearer TR, David LL (2002) Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest Ophthalmol Vis Sci 43(1):216–224

    PubMed  Google Scholar 

  19. Ueda Y, Duncan MK, David LL (2002) Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci 43(1):205–215

    PubMed  Google Scholar 

  20. Shestopalov VI, Bassnett S (2000) Expression of autofluorescent proteins reveals a novel protein permeable pathway between cells in the lens core. J Cell Sci 113(Pt 11):1913–1921

    CAS  PubMed  Google Scholar 

  21. Shestopalov VI, Bassnett S (2003) Development of a macromolecular diffusion pathway in the lens. J Cell Sci 116(Pt 20):4191–4199. doi:10.1242/jcs.00738

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Coulombre JL, Coulombre AJ (1963) Lens development : fiber elongation and lens orientation. Science 142(3598):1489–1490

    CAS  PubMed  Google Scholar 

  23. Yamamoto Y (1976) Growth of lens and ocular environment: role of neural retina in the growth of mouse lens as revealed by an implantation experiment. Dev Growth Differ 18(3):273–278. doi:10.1111/j.1440-169X.1976.00273.x

    Google Scholar 

  24. Lovicu FJ, McAvoy JW, de Iongh RU (2011) Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 366(1568):1204–1218. doi:10.1098/rstb.2010.0339

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280(1):1–14. doi:10.1016/j.ydbio.2005.01.020

    CAS  PubMed  Google Scholar 

  26. Itoh N, Ornitz DM (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149(2):121–130. doi:10.1093/jb/mvq121

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Beenken A, Mohammadi M (2012) The structural biology of the FGF19 subfamily. Adv Exp Med Biol 728:1–24. doi:10.1007/978-1-4614-0887-1_1

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lovicu FJ, de Iongh RU, McAvoy JW (1997) Expression of FGF-1 and FGF-2 mRNA during lens morphogenesis, differentiation and growth. Curr Eye Res 16(3):222–230

    CAS  PubMed  Google Scholar 

  29. Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105(1):131–136

    CAS  PubMed  Google Scholar 

  30. Gelfman CM, Kelleher CM, Hjelmeland LM (1998) Differentiation of retinal pigment epithelial cells in vitro uncovers silencer activity in the FGF-5 gene promoter. Exp Eye Res 67(2):151–162. doi:10.1006/exer.1998.0506

    CAS  PubMed  Google Scholar 

  31. Weng J, Liang Q, Mohan RR, Li Q, Wilson SE (1997) Hepatocyte growth factor, keratinocyte growth factor, and other growth factor-receptor systems in the lens. Invest Ophthalmol Vis Sci 38(8):1543–1554

    CAS  PubMed  Google Scholar 

  32. Wilson SE, Walker JW, Chwang EL, He YG (1993) Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea. Invest Ophthalmol Vis Sci 34(8):2544–2561

    CAS  PubMed  Google Scholar 

  33. Kurose H, Bito T, Adachi T, Shimizu M, Noji S, Ohuchi H (2004) Expression of Fibroblast growth factor 19 (Fgf19) during chicken embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr Patterns 4(6):687–693. doi:10.1016/j.modgep.2004.04.005

    CAS  PubMed  Google Scholar 

  34. Kurose H, Okamoto M, Shimizu M, Bito T, Marcelle C, Noji S, Ohuchi H (2005) FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo. Dev Growth Differ 47(4):213–223. doi:10.1111/j.1440-169X.2005.00795.x

    CAS  PubMed  Google Scholar 

  35. Cinaroglu A, Ozmen Y, Ozdemir A, Ozcan F, Ergorul C, Cayirlioglu P, Hicks D, Bugra K (2005) Expression and possible function of fibroblast growth factor 9 (FGF9) and its cognate receptors FGFR2 and FGFR3 in postnatal and adult retina. J Neurosci Res 79(3):329–339. doi:10.1002/jnr.20363

    CAS  PubMed  Google Scholar 

  36. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol (Baltimore, MD) 24(10):2050–2064. doi:10.1210/me.2010-0142

    Google Scholar 

  37. Brooks AN, Kilgour E, Smith PD (2012) Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 18(7):1855–1862. doi:10.1158/1078-0432.ccr-11-0699

    CAS  PubMed  Google Scholar 

  38. Trueb B (2011) Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell Mol Life Sci 68(6):951–964. doi:10.1007/s00018-010-0576-3

    CAS  PubMed  Google Scholar 

  39. Robinson ML (2006) An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol 17(6):726–740. doi:10.1016/j.semcdb.2006.10.002

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Garcia CM, Huang J, Madakashira BP, Liu Y, Rajagopal R, Dattilo L, Robinson ML, Beebe DC (2011) The function of FGF signaling in the lens placode. Dev Biol 351(1):176–185. doi:10.1016/j.ydbio.2011.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149. doi:10.1016/j.cytogfr.2005.01.001

    CAS  PubMed  Google Scholar 

  42. Campbell MT, McAvoy JW (1984) Onset of fibre differentiation in cultured rat lens epithelium under the influence of neural retina-conditioned medium. Exp Eye Res 39(1):83–94

    CAS  PubMed  Google Scholar 

  43. Barritault D, Arruti C, Courtois Y (1981) Is there a ubiquitous growth factor in the eye? Proliferation induced in different cell types by eye-derived growth factors. Differentiation 18(1):29–42

    CAS  PubMed  Google Scholar 

  44. Arruti C, Cirillo A, Courtois Y (1985) An eye-derived growth factor regulates epithelial cell proliferation in the cultured lens. Differentiation 28(3):286–290

    CAS  PubMed  Google Scholar 

  45. Chamberlain CG, McAvoy JW (1987) Evidence that fibroblast growth factor promotes lens fibre differentiation. Curr Eye Res 6(9):1165–1169

    CAS  PubMed  Google Scholar 

  46. Chamberlain CG, McAvoy JW (1989) Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors 1(2):125–134

    CAS  PubMed  Google Scholar 

  47. Moenner M, Chevallier B, Badet J, Barritault D (1986) Evidence and characterization of the receptor to eye-derived growth factor I, the retinal form of basic fibroblast growth factor, on bovine epithelial lens cells. Proc Natl Acad Sci U S A 83(14):5024–5028

    CAS  PubMed Central  PubMed  Google Scholar 

  48. McAvoy JW, Chamberlain CG (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107(2):221–228

    CAS  PubMed  Google Scholar 

  49. McAvoy JW, Chamberlain CG, de Iongh RU, Richardson NA, Lovicu FJ (1991) The role of fibroblast growth factor in eye lens development. Ann N Y Acad Sci 638:256–274

    CAS  PubMed  Google Scholar 

  50. Le AC, Musil LS (2001) FGF signaling in chick lens development. Dev Biol 233(2):394–411. doi:10.1006/dbio.2001.0194

    CAS  PubMed  Google Scholar 

  51. Schulz MW, Chamberlain CG, de Iongh RU, McAvoy JW (1993) Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 118(1):117–126

    CAS  PubMed  Google Scholar 

  52. Caruelle D, Groux-Muscatelli B, Gaudric A, Sestier C, Coscas G, Caruelle JP, Barritault D (1989) Immunological study of acidic fibroblast growth factor (aFGF) distribution in the eye. J Cell Biochem 39(2):117–128. doi:10.1002/jcb.240390204

    CAS  PubMed  Google Scholar 

  53. de Iongh RU, Lovicu FJ, Chamberlain CG, McAvoy JW (1997) Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest Ophthalmol Vis Sci 38(9):1688–1699

    PubMed  Google Scholar 

  54. de Iongh RU, Lovicu FJ, Hanneken A, Baird A, McAvoy JW (1996) FGF receptor-1 (flg) expression is correlated with fibre differentiation during rat lens morphogenesis and growth. Dev Dyn 206(4):412–426. doi:10.1002/(SICI)1097-0177(199608)206:4<412::AID-AJA7>3.0.CO;2-L

    PubMed  Google Scholar 

  55. de Iongh R, McAvoy JW (1992) Distribution of acidic and basic fibroblast growth factors (FGF) in the foetal rat eye: implications for lens development. Growth Factors 6(2):159–177

    PubMed  Google Scholar 

  56. de Iongh R, McAvoy JW (1993) Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis. Dev Dyn 198(3):190–202. doi:10.1002/aja.1001980305

    PubMed  Google Scholar 

  57. Lovicu FJ, Overbeek PA (1998) Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125(17):3365–3377

    CAS  PubMed  Google Scholar 

  58. Robinson ML, Ohtaka-Maruyama C, Chan CC, Jamieson S, Dickson C, Overbeek PA, Chepelinsky AB (1998) Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/int-2 in transgenic mice. Dev Biol 198(1):13–31

    CAS  PubMed  Google Scholar 

  59. Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R, Maciag T, Thompson JA (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121(2):505–514

    CAS  PubMed  Google Scholar 

  60. Robinson ML, MacMillan-Crow LA, Thompson JA, Overbeek PA (1995) Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development 121(12):3959–3967

    CAS  PubMed  Google Scholar 

  61. Garcia CM, Yu K, Zhao H, Ashery-Padan R, Ornitz DM, Robinson ML, Beebe DC (2005) Signaling through FGF receptor-2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev Dyn 233(2):516–527. doi:10.1002/dvdy.20356

    CAS  PubMed  Google Scholar 

  62. Zhao H, Yang Y, Partanen J, Ciruna BG, Rossant J, Robinson ML (2006) Fibroblast growth factor receptor 1 (Fgfr1) is not essential for lens fiber differentiation in mice. Mol Vis 12:15–25

    PubMed  Google Scholar 

  63. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84(6):911–921

    CAS  PubMed  Google Scholar 

  64. Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18):3615–3623

    CAS  PubMed  Google Scholar 

  65. Zhao H, Yang T, Madakashira BP, Thiels CA, Bechtle CA, Garcia CM, Zhang H, Yu K, Ornitz DM, Beebe DC, Robinson ML (2008) Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol 318(2):276–288. doi:10.1016/j.ydbio.2008.03.028

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhao S, Hung FC, Colvin JS, White A, Dai W, Lovicu FJ, Ornitz DM, Overbeek PA (2001) Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128(24):5051–5060

    CAS  PubMed  Google Scholar 

  67. Puk O, Moller G, Geerlof A, Krowiorz K, Ahmad N, Wagner S, Adamski J, de Angelis MH, Graw J (2011) The pathologic effect of a novel neomorphic Fgf9(Y162C) allele is restricted to decreased vision and retarded lens growth. PLoS One 6(8):e23678. doi:10.1371/journal.pone.0023678

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nakayama Y, Miyake A, Nakagawa Y, Mido T, Yoshikawa M, Konishi M, Itoh N (2008) Fgf19 is required for zebrafish lens and retina development. Dev Biol 313(2):752–766. doi:10.1016/j.ydbio.2007.11.013

    CAS  PubMed  Google Scholar 

  69. Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL (2004) Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 269(1):264–275. doi:10.1016/j.ydbio.2004.02.003

    CAS  PubMed  Google Scholar 

  70. Baird A, Esch F, Gospodarowicz D, Guillemin R (1985) Retina- and eye-derived endothelial cell growth factors: partial molecular characterization and identity with acidic and basic fibroblast growth factors. Biochemistry 24(27):7855–7860

    CAS  PubMed  Google Scholar 

  71. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22(2):108–112. doi:10.1002/(sici)1521-1878(200002)22:2<108::aid-bies2>3.0.co;2-m

    CAS  PubMed  Google Scholar 

  72. Mohan PS, Spiro RG (1991) Characterization of heparan sulfate proteoglycan from calf lens capsule and proteoglycans synthesized by cultured lens epithelial cells. Comparison with other basement membrane proteoglycans. J Biol Chem 266(13):8567–8575

    CAS  PubMed  Google Scholar 

  73. Schulz MW, Chamberlain CG, McAvoy JW (1997) Binding of FGF-1 and FGF-2 to heparan sulphate proteoglycans of the mammalian lens capsule. Growth Factors 14(1):1–13

    CAS  PubMed  Google Scholar 

  74. Lovicu FJ, McAvoy JW (1993) Localization of acidic fibroblast growth factor, basic fibroblast growth factor, and heparan sulphate proteoglycan in rat lens: implications for lens polarity and growth patterns. Invest Ophthalmol Vis Sci 34(12):3355–3365

    CAS  PubMed  Google Scholar 

  75. Mascarelli F, Fuhrmann G, Courtois Y (1993) aFGF binding to low and high affinity receptors induces both aFGF and aFGF receptors dimerization. Growth Factors 8(3):211–233

    CAS  PubMed  Google Scholar 

  76. Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, Fukai N, Olsen BR, Tryggvason K, Soininen R (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J 22(2):236–245. doi:10.1093/emboj/cdg019

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pan Y, Woodbury A, Esko JD, Grobe K, Zhang X (2006) Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 133(24):4933–4944. doi:10.1242/dev.02679

    CAS  PubMed  Google Scholar 

  78. Qu X, Hertzler K, Pan Y, Grobe K, Robinson ML, Zhang X (2011) Genetic epistasis between heparan sulfate and FGF-Ras signaling controls lens development. Dev Biol 355(1):12–20. doi:10.1016/j.ydbio.2011.04.007

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ishibashi T, Araki H, Sugai S, Tawara A, Inomata H (1995) Detection of proteoglycans in human posterior capsule opacification. Ophthalmic Res 27(4):208–213

    CAS  PubMed  Google Scholar 

  80. Hayashi N, Kato H, Kiyosawa T, Hayashi H, Oshima K, Yamaoka M (1991) The change in immunohistochemical localization of basic fibroblast growth factor (b-FGF) around the lens capsule after extracapsular extraction. Nihon Ganka Gakkai Zasshi 95(7):621–624

    CAS  PubMed  Google Scholar 

  81. Wormstone IM, Del Rio-Tsonis K, McMahon G, Tamiya S, Davies PD, Marcantonio JM, Duncan G (2001) FGF: an autocrine regulator of human lens cell growth independent of added stimuli. Invest Ophthalmol Vis Sci 42(6):1305–1311

    CAS  PubMed  Google Scholar 

  82. Song X, Sato Y, Felemban A, Ito A, Hossain M, Ochiai H, Yamamoto T, Sekiguchi K, Tanaka H, Ohta K (2012) Equarin is involved as an FGF signaling modulator in chick lens differentiation. Dev Biol 368(1):109–117. doi:10.1016/j.ydbio.2012.05.029

    CAS  PubMed  Google Scholar 

  83. Jarrin M, Pandit T, Gunhaga L (2012) A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells. Mol Biol Cell 23(16):3266–3274. doi:10.1091/mbc.E12-01-0075

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Song X, Sato Y, Sekiguchi K, Tanaka H, Ohta K (2013) Equarin is involved in cell adhesion by means of heparan sulfate proteoglycan during lens development. Dev Dyn 242(1):23–29. doi:10.1002/dvdy.23902

    CAS  PubMed  Google Scholar 

  85. Lovicu FJ, McAvoy JW (2001) FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development 128(24):5075–5084

    CAS  PubMed  Google Scholar 

  86. Iyengar L, Wang Q, Rasko JE, McAvoy JW, Lovicu FJ (2007) Duration of ERK1/2 phosphorylation induced by FGF or ocular media determines lens cell fate. Differentiation 75(7):662–668. doi:10.1111/j.1432-0436.2007.00167.x

    CAS  PubMed  Google Scholar 

  87. Wang Q, Stump R, McAvoy JW, Lovicu FJ (2009) MAPK/ERK1/2 and PI3-kinase signalling pathways are required for vitreous-induced lens fibre cell differentiation. Exp Eye Res 88(2):293–306. doi:10.1016/j.exer.2008.08.023

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Wang Q, McAvoy JW, Lovicu FJ (2010) Growth factor signaling in vitreous humor-induced lens fiber differentiation. Invest Ophthalmol Vis Sci 51(7):3599–3610. doi:10.1167/iovs.09-4797

    PubMed Central  PubMed  Google Scholar 

  89. Le AC, Musil LS (2001) A novel role for FGF and extracellular signal-regulated kinase in gap junction-mediated intercellular communication in the lens. J Cell Biol 154(1):197–216

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Boswell BA, Le AC, Musil LS (2009) Upregulation and maintenance of gap junctional communication in lens cells. Exp Eye Res 88(5):919–927. doi:10.1016/j.exer.2008.11.031

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zatechka SD Jr, Lou MF (2002) Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. 1. The mitogenic and stress responses. Exp Eye Res 74(6):703–717

    CAS  PubMed  Google Scholar 

  92. Chandrasekher G, Sailaja D (2003) Differential activation of phosphatidylinositol 3-kinase signaling during proliferation and differentiation of lens epithelial cells. Invest Ophthalmol Vis Sci 44(10):4400–4411

    PubMed  Google Scholar 

  93. Gotoh N, Ito M, Yamamoto S, Yoshino I, Song N, Wang Y, Lax I, Schlessinger J, Shibuya M, Lang RA (2004) Tyrosine phosphorylation sites on FRS2alpha responsible for Shp2 recruitment are critical for induction of lens and retina. Proc Natl Acad Sci U S A 101(49):17144–17149. doi:10.1073/pnas.0407577101

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ebong S, Yu CR, Carper DA, Chepelinsky AB, Egwuagu CE (2004) Activation of STAT signaling pathways and induction of suppressors of cytokine signaling (SOCS) proteins in mammalian lens by growth factors. Invest Ophthalmol Vis Sci 45(3):872–878

    PubMed  Google Scholar 

  95. Ebong S, Chepelinsky AB, Robinson ML, Zhao H, Yu CR, Egwuagu CE (2004) Characterization of the roles of STAT1 and STAT3 signal transduction pathways in mammalian lens development. Mol Vis 10:122–131

    CAS  PubMed  Google Scholar 

  96. Boros J, Newitt P, Wang Q, McAvoy JW, Lovicu FJ (2006) Sef and Sprouty expression in the developing ocular lens: implications for regulating lens cell proliferation and differentiation. Semin Cell Dev Biol 17(6):741–752. doi:10.1016/j.semcdb.2006.10.007

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Newitt P, Boros J, Madakashira BP, Robinson ML, Reneker LW, McAvoy JW, Lovicu FJ (2010) Sef is a negative regulator of fiber cell differentiation in the ocular lens. Differentiation 80(1):53–67. doi:10.1016/j.diff.2010.05.005

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Pan Y, Carbe C, Powers A, Feng GS, Zhang X (2010) Sprouty2-modulated Kras signaling rescues Shp2 deficiency during lens and lacrimal gland development. Development 137(7):1085–1093. doi:10.1242/dev.042820

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Xie L, Overbeek PA, Reneker LW (2006) Ras signaling is essential for lens cell proliferation and lens growth during development. Dev Biol 298(2):403–414. doi:10.1016/j.ydbio.2006.06.045

    CAS  PubMed  Google Scholar 

  100. Reneker LW, Xie L, Xu L, Govindarajan V, Overbeek PA (2004) Activated Ras induces lens epithelial cell hyperplasia but not premature differentiation. Int J Dev Biol 48(8–9):879–888. doi:10.1387/ijdb.041889lr

    CAS  PubMed  Google Scholar 

  101. Upadhya D, Ogata M, Reneker LW (2013) MAPK1 is required for establishing the pattern of cell proliferation and for cell survival during lens development. Development 140(7):1573–1582. doi:10.1242/dev.081042

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Iyengar L, Patkunanathan B, Lynch OT, McAvoy JW, Rasko JE, Lovicu FJ (2006) Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Exp Eye Res 83(3):667–678. doi:10.1016/j.exer.2006.03.008

    CAS  PubMed  Google Scholar 

  103. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329–343. doi:10.1016/j.devcel.2009.02.012

    CAS  PubMed  Google Scholar 

  104. Beyer TA, Narimatsu M, Weiss A, David L, Wrana JL (2013) The TGFbeta superfamily in stem cell biology and early mammalian embryonic development. Biochim Biophys Acta 1830(2):2268–2279. doi:10.1016/j.bbagen.2012.08.025

    CAS  PubMed  Google Scholar 

  105. Mueller TD, Nickel J (2012) Promiscuity and specificity in BMP receptor activation. FEBS Lett 586(14):1846–1859. doi:10.1016/j.febslet.2012.02.043

    CAS  PubMed  Google Scholar 

  106. Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2(1):47–63. doi:10.1002/wdev.86

    CAS  PubMed  Google Scholar 

  107. de Iongh RU, Lovicu FJ, Overbeek PA, Schneider MD, Joya J, Hardeman ED, McAvoy JW (2001) Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation. Development 128(20):3995–4010

    PubMed  Google Scholar 

  108. Beebe D, Garcia C, Wang X, Rajagopal R, Feldmeier M, Kim JY, Chytil A, Moses H, Ashery-Padan R, Rauchman M (2004) Contributions by members of the TGFbeta superfamily to lens development. Int J Dev Biol 48(8–9):845–856. doi:10.1387/ijdb.041869db

    CAS  PubMed  Google Scholar 

  109. Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC (2009) The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol 335(2):305–316. doi:10.1016/j.ydbio.2009.08.027

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Reneker LW, Chen H, Overbeek PA (2011) Activation of unfolded protein response in transgenic mouse lenses. Invest Ophthalmol Vis Sci 52(5):2100–2108. doi:10.1167/iovs.10-5650

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Firtina Z, Danysh BP, Bai X, Gould DB, Kobayashi T, Duncan MK (2009) Abnormal expression of collagen IV in lens activates unfolded protein response resulting in cataract. J Biol Chem 284(51):35872–35884. doi:10.1074/jbc.M109.060384

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Gunhaga L (2011) The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos Trans R Soc Lond B Biol Sci 366(1568):1193–1203. doi:10.1098/rstb.2010.0175

    PubMed Central  PubMed  Google Scholar 

  113. Boswell BA, Lein PJ, Musil LS (2008) Cross-talk between fibroblast growth factor and bone morphogenetic proteins regulates gap junction-mediated intercellular communication in lens cells. Mol Biol Cell 19(6):2631–2641. doi:10.1091/mbc.E08-02-0124

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Boswell BA, Overbeek PA, Musil LS (2008) Essential role of BMPs in FGF-induced secondary lens fiber differentiation. Dev Biol 324(2):202–212. doi:10.1016/j.ydbio.2008.09.003

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Eldred JA, Dawes LJ, Wormstone IM (2011) The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 366(1568):1301–1319. doi:10.1098/rstb.2010.0341

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Saika S, Ikeda K, Yamanaka O, Flanders KC, Ohnishi Y, Nakajima Y, Muragaki Y, Ooshima A (2006) Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am J Physiol Cell Physiol 290(1):C282–C289. doi:10.1152/ajpcell.00306.2005

    CAS  PubMed  Google Scholar 

  117. Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25(2):254–264. doi:10.1016/j.ceb.2013.01.004

    CAS  PubMed  Google Scholar 

  118. Kim W, Kim M, Jho EH (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J 450(1):9–21. doi:10.1042/bj20121284

    CAS  PubMed  Google Scholar 

  119. Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20(8):986–997. doi:10.1016/j.semcdb.2009.09.004

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Strutt D (2003) Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 130(19):4501–4513. doi:10.1242/dev.00695

    CAS  PubMed  Google Scholar 

  121. Gao B (2012) Wnt regulation of planar cell polarity (PCP). Curr Topics Dev Biol 101:263–295. doi:10.1016/b978-0-12-394592-1.00008-9

    CAS  Google Scholar 

  122. Smith AN, Miller LA, Song N, Taketo MM, Lang RA (2005) The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev Biol 285(2):477–489. doi:10.1016/j.ydbio.2005.07.019

    CAS  PubMed  Google Scholar 

  123. Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujimura N, Lachova J, Kozmik Z (2010) Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis 48(2):86–95. doi:10.1002/dvg.20583

    CAS  PubMed  Google Scholar 

  124. Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU (2008) Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 321(2):420–433. doi:10.1016/j.ydbio.2008.07.002

    CAS  PubMed  Google Scholar 

  125. Lyu J, Joo CK (2004) Wnt signaling enhances FGF2-triggered lens fiber cell differentiation. Development 131(8):1813–1824. doi:10.1242/dev.01060

    CAS  PubMed  Google Scholar 

  126. Stump RJ, Ang S, Chen Y, von Bahr T, Lovicu FJ, Pinson K, de Iongh RU, Yamaguchi TP, Sassoon DA, McAvoy JW (2003) A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol 259(1):48–61

    CAS  PubMed  Google Scholar 

  127. Dawes LJ, Sugiyama Y, Tanedo AS, Lovicu FJ, McAvoy JW (2013) Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci 54(3):1582–1590. doi:10.1167/iovs.12-11357

    CAS  PubMed  Google Scholar 

  128. Sugiyama Y, Lovicu FJ, McAvoy JW (2011) Planar cell polarity in the mammalian eye lens. Organogenesis 7(3):191–201. doi:10.4161/org.7.3.18421

    PubMed Central  PubMed  Google Scholar 

  129. Chen Y, Stump RJ, Lovicu FJ, McAvoy JW (2006) A role for Wnt/planar cell polarity signaling during lens fiber cell differentiation? Semin Cell Dev Biol 17(6):712–725. doi:10.1016/j.semcdb.2006.11.005

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Chen Y, Stump RJ, Lovicu FJ, Shimono A, McAvoy JW (2008) Wnt signaling is required for organization of the lens fiber cell cytoskeleton and development of lens three-dimensional architecture. Dev Biol 324(1):161–176. doi:10.1016/j.ydbio.2008.09.002

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Chong CC, Stump RJ, Lovicu FJ, McAvoy JW (2009) TGFbeta promotes Wnt expression during cataract development. Exp Eye Res 88(2):307–313. doi:10.1016/j.exer.2008.07.018

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Martinez G, Wijesinghe M, Turner K, Abud HE, Taketo MM, Noda T, Robinson ML, de Iongh RU (2009) Conditional mutations of beta-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest Ophthalmol Vis Sci 50(10):4794–4806. doi:10.1167/iovs.09-3567

    PubMed  Google Scholar 

  133. Bao XL, Song H, Chen Z, Tang X (2012) Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis 18:1983–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH (2012) Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 3:735. doi:10.1038/ncomms1734

    PubMed Central  PubMed  Google Scholar 

  135. Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, Sonnylal S, de Crombrugghe B, Taketo MM, Distler O, Schett G, Distler JH (2012) beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 71(5):761–767. doi:10.1136/annrheumdis-2011-200568

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Guo Y, Xiao L, Sun L, Liu F (2012) Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res 61(4):337–346

    CAS  PubMed  Google Scholar 

  137. Fior R, Henrique D (2009) “Notch-Off”: a perspective on the termination of Notch signalling. Int J Dev Biol 53(8–10):1379–1384. doi:10.1387/ijdb.072309rf

    CAS  PubMed  Google Scholar 

  138. Dang TP (2012) Notch, apoptosis and cancer. Adv Exp Med Biol 727:199–209. doi:10.1007/978-1-4614-0899-4_15

    CAS  PubMed  Google Scholar 

  139. Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol 727:186–198. doi:10.1007/978-1-4614-0899-4_14

    CAS  PubMed  Google Scholar 

  140. Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 23(4):421–428. doi:10.1016/j.semcdb.2012.01.009

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Savill NJ, Sherratt JA (2003) Control of epidermal stem cell clusters by Notch-mediated lateral induction. Dev Biol 258(1):141–153

    CAS  PubMed  Google Scholar 

  142. del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21(1):R40–R47. doi:10.1016/j.cub.2010.10.034

    PubMed  Google Scholar 

  143. Le TT, Conley KW, Brown NL (2009) Jagged 1 is necessary for normal mouse lens formation. Dev Biol 328(1):118–126. doi:10.1016/j.ydbio.2009.01.015

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL (2012) Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 362(2):219–229. doi:10.1016/j.ydbio.2011.11.011

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Jia J, Lin M, Zhang L, York JP, Zhang P (2007) The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol Cell Biol 27(20):7236–7247. doi:10.1128/mcb.00780-07

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321(1):111–122. doi:10.1016/j.ydbio.2008.06.002

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Saravanamuthu SS, Gao CY, Zelenka PS (2009) Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 332(1):166–176. doi:10.1016/j.ydbio.2009.05.566

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Beebe DC, Silver MH, Belcher KS, Van Wyk JJ, Svoboda ME, Zelenka PS (1987) Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors. Proc Natl Acad Sci U S A 84(8):2327–2330

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Alemany J, Zelenka P, Serrano J, de Pablo F (1989) Insulin-like growth factor I and insulin regulate delta-crystallin gene expression in developing lens. J Biol Chem 264(29):17559–17563

    CAS  PubMed  Google Scholar 

  150. Alemany J, Borras T, de Pablo F (1990) Transcriptional stimulation of the delta 1-crystallin gene by insulin-like growth factor I and insulin requires DNA cis elements in chicken. Proc Natl Acad Sci U S A 87(9):3353–3357

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Milstone LM, Piatigorsky J (1977) Delta-crystallin gene expression in embryonic chick lens epithelia cultured in the presence of insulin. Exp Cell Res 105(1):9–14

    CAS  PubMed  Google Scholar 

  152. Klok E, Lubsen NH, Chamberlain CG, McAvoy JW (1998) Induction and maintenance of differentiation of rat lens epithelium by FGF-2, insulin and IGF-1. Exp Eye Res 67(4):425–431

    CAS  PubMed  Google Scholar 

  153. Richardson NA, Chamberlain CG, McAvoy JW (1993) IGF-1 enhancement of FGF-induced lens fiber differentiation in rats of different ages. Invest Ophthalmol Vis Sci 34(12):3303–3312

    CAS  PubMed  Google Scholar 

  154. Civil A, van Genesen ST, Klok EJ, Lubsen NH (2000) Insulin and IGF-I affect the protein composition of the lens fibre cell with possible consequences for cataract. Exp Eye Res 70(6):785–794. doi:10.1006/exer.2000.0846

    CAS  PubMed  Google Scholar 

  155. Hejtmancik JF, Beebe DC, Ostrer H, Piatigorsky J (1985) Delta- and beta-crystallin mRNA levels in the embryonic and posthatched chicken lens: temporal and spatial changes during development. Dev Biol 109(1):72–81

    CAS  PubMed  Google Scholar 

  156. Xie L, Chen H, Overbeek PA, Reneker LW (2007) Elevated insulin signaling disrupts the growth and differentiation pattern of the mouse lens. Mol Vis 13:397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Shirke S, Faber SC, Hallem E, Makarenkova HP, Robinson ML, Overbeek PA, Lang RA (2001) Misexpression of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization. Mech Dev 101(1–2):167–174

    CAS  PubMed  Google Scholar 

  158. Brewitt B, Clark JI (1990) A new method for study of normal lens development in vitro using pulsatile delivery of PDGF or EGF in HL-1 serum-free medium. In Vitro Cell Dev Biol 26(3 Pt 1):305–314

    CAS  PubMed  Google Scholar 

  159. Kok A, Lovicu FJ, Chamberlain CG, McAvoy JW (2002) Influence of platelet-derived growth factor on lens epithelial cell proliferation and differentiation. Growth Factors 20(1):27–34

    CAS  PubMed  Google Scholar 

  160. Vinader LM, van Genesen ST, de Jong WW, Lubsen NH (2003) Influence of hormones and growth factors on lens protein composition: the effect of dexamethasone and PDGF-AA. Mol Vis 9:723–729

    CAS  PubMed  Google Scholar 

  161. Reneker LW, Overbeek PA (1996) Lens-specific expression of PDGF-A alters lens growth and development. Dev Biol 180(2):554–565. doi:10.1006/dbio.1996.0328

    CAS  PubMed  Google Scholar 

  162. Potts JD, Kornacker S, Beebe DC (1998) Activation of the Jak-STAT-signaling pathway in embryonic lens cells. Dev Biol 204(1):277–292. doi:10.1006/dbio.1998.9077

    CAS  PubMed  Google Scholar 

  163. Gwon A (2006) Lens regeneration in mammals: a review. Surv Ophthalmol 51(1):51–62. doi:10.1016/j.survophthal.2005.11.005

    PubMed  Google Scholar 

  164. Call MK, Grogg MW, Del Rio-Tsonis K, Tsonis PA (2004) Lens regeneration in mice: implications in cataracts. Exp Eye Res 78(2):297–299

    CAS  PubMed  Google Scholar 

  165. Gwon A, Gruber L (2010) Engineering the crystalline lens with a biodegradable or non-degradable scaffold. Exp Eye Res 91(2):220–228. doi:10.1016/j.exer.2010.05.011

    CAS  PubMed  Google Scholar 

  166. Apple DJ, Escobar-Gomez M, Zaugg B, Kleinmann G, Borkenstein AF (2011) Modern cataract surgery: unfinished business and unanswered questions. Surv Ophthalmol 56(6 Suppl):S3–S53. doi:10.1016/j.survophthal.2011.10.001

    PubMed  Google Scholar 

  167. Sveinsson O (1993) The ultrastructure of Elschnig’s pearls in a pseudophakic eye. Acta Ophthalmol 71(1):95–98

    CAS  Google Scholar 

  168. Moreno-Montanes J, Alvarez A, Maldonado MJ (2005) Objective quantification of posterior capsule opacification after cataract surgery, with optical coherence tomography. Invest Ophthalmol Vis Sci 46(11):3999–4006. doi:10.1167/iovs.04-1531

    PubMed  Google Scholar 

  169. Cheng CY, Yen MY, Chen SJ, Kao SC, Hsu WM, Liu JH (2001) Visual acuity and contrast sensitivity in different types of posterior capsule opacification. J Cataract Refract Surg 27(7):1055–1060

    CAS  PubMed  Google Scholar 

  170. Findl O, Neumayer T, Hirnschall N, Buehl W (2010) Natural course of Elschnig pearl formation and disappearance. Invest Ophthalmol Vis Sci 51(3):1547–1553. doi:10.1167/iovs.09-3989

    PubMed  Google Scholar 

  171. Neumayer T, Findl O, Buehl W, Georgopoulos M (2006) Daily changes in the morphology of Elschnig pearls. Am J Ophthalmol 141(3):517–523. doi:10.1016/j.ajo.2005.11.019

    PubMed  Google Scholar 

  172. Yoneya H, Kato S, Sugita G, Oshika T (2007) Spontaneous regression of Elschnig pearl posterior capsule opacification. J Cataract Refract Surg 33(5):913–914. doi:10.1016/j.jcrs.2006.12.028

    PubMed  Google Scholar 

  173. O’Connor MD, Wederell ED, de Iongh R, Lovicu FJ, McAvoy JW (2008) Generation of transparency and cellular organization in lens explants. Exp Eye Res 86(5):734–745. doi:10.1016/j.exer.2008.01.020

    PubMed  Google Scholar 

  174. O’Connor MD, McAvoy JW (2007) In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract. Invest Ophthalmol Vis Sci 48(3):1245–1252. doi:10.1167/iovs.06-0949

    PubMed  Google Scholar 

  175. Sugiyama Y, Stump RJ, Nguyen A, Wen L, Chen Y, Wang Y, Murdoch JN, Lovicu FJ, McAvoy JW (2010) Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev Biol 338(2):193–201. doi:10.1016/j.ydbio.2009.11.033

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Walker JL, Zhai N, Zhang L, Bleaken BM, Wolff I, Gerhart J, George-Weinstein M, Menko AS (2010) Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proc Natl Acad Sci U S A 107(31):13730–13735. doi:10.1073/pnas.0910382107

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Yamamoto N, Majima K, Marunouchi T (2008) A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol 41(2):83–91. doi:10.1007/s00795-008-0395-x

    PubMed  Google Scholar 

  178. Nishi Y, Mireskandari K, Khaw P, Findl O (2009) Lens refilling to restore accommodation. J Cataract Refract Surg 35(2):374–382. doi:10.1016/j.jcrs.2008.10.054

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robb U. de Iongh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

de Iongh, R.U., Duncan, M.K. (2014). Growth Factor Signaling in Lens Fiber Differentiation. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics