Skip to main content

The Clinical Implications of Impaired Zinc Signaling in the Brain

  • Chapter
  • First Online:

Abstract

Zinc is an essential requirement for normal cellular processes and is involved in the function of more than 300 enzymes. Currently, it is estimated that approximately 10 % of the proteins encoded by the human genome contain zinc. Zinc is necessary for neuromodulation, synaptic transmission, intracellular signal transduction, and myriad other processes. The clinical implications of impaired zinc signaling are, therefore, far reaching, with profound central and peripheral disorders arising as a result of either an acute or a long-term dyshomeostasis in normal zinc levels. Targeting zinc as a therapy is now emerging as a tantalizing, although especially difficult, approach to a variety of diseases, including central nervous system disorders. This chapter reviews the clinical implications of impaired zinc signaling in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes A et al (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59:43–55

    Article  PubMed  CAS  Google Scholar 

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits in Alzheimer’s disease? J Neurosci 30(5):1631–1636

    Article  PubMed  CAS  Google Scholar 

  • Adlard PA, Sedjahtera A, Gunawan L, Bray L, Hare D, Lear J et al (2013) A novel approach to rapidly prevent age-related cognitive decline. Aging Cell. doi:10.1111/acel.12178

    PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    Article  PubMed  CAS  Google Scholar 

  • Bin B-H, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S et al (2011) Biochemical characterisation of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplatic Ehlers–Danlos syndrome. J Biol Chem 286(46):40255–40265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cousins RJ, Lichten LA (2011) Zinc transporters. In: Rink L (ed) Zinc in human health. IOS Press, Amsterdam, pp 136–162

    Google Scholar 

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking and signals. J Biol Chem 281(34):24085–24089

    Article  PubMed  CAS  Google Scholar 

  • Ding W-Q, Lind SE (2009) Metal ionophores: an emerging class of anticancer drugs. Life 61(11):1013–1018

    PubMed  CAS  Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Eur J Physiol 447:796–800

    Article  CAS  Google Scholar 

  • Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signalling in health and diseases. J Biol Inorg Chem 16:1123–1134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. In: Maret W (ed) Zinc biochemistry, physiology and homeostasis. Springer, Dordrecht, pp 65–84

    Chapter  Google Scholar 

  • Galvez-Peralta M, Wang Z, Bao S, Knoell DL, Nebert DW (2014) Tissue-specific induction of mouse ZIP8 and ZIP14 divalent cation/bicarbonate symporters by, and cytokine response to, inflammatory signals. Int J Toxicol 33:246–258

    Article  PubMed  Google Scholar 

  • Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C, Janecke AR et al (2008) Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome: an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82(6):1290–1305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grabrucker AM, Rowan A, Garner CC (2011) Brain-delivery of zinc-ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 1(1):13–23

    PubMed  CAS  PubMed Central  Google Scholar 

  • Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62(5):540–555

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2011) Zinc signalling. In: Rink L (ed) Zinc in human health. IOS Press, Amsterdam, pp 94–117

    Google Scholar 

  • Hennigar SR, Kelleher SL (2012) Zinc networks: the cell-specific compartmentalization of zinc for specialised functions. Biol Chem 393:565–578

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T (2008) Roles of zinc and zinc signalling in immunity: zinc as an intracellular signalling molecule. Adv Immunol 97:149–176

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Asp Med 34:612–619

    Article  CAS  Google Scholar 

  • Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C et al (2012) Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome. Proc Natl Acad Sci USA 109(51):E3530–E3538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kambe T (2012) Molecular architecture and function of ZnT transporters. Curr Top Membr 69:199–220

    Article  PubMed  CAS  Google Scholar 

  • Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M et al (2010) Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 224:567–574

    Article  PubMed  CAS  Google Scholar 

  • King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. Am Soc Nutr Sci 1360S–1366S

    Google Scholar 

  • Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5):1374S–1377S

    PubMed  CAS  Google Scholar 

  • Levenson CW, Tassabehji NM (2007) Role and regulation of copper and zinc transport proteins in the central nervous system. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Plenum, New York

    Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C-X (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  PubMed  CAS  Google Scholar 

  • Manso Y, Adlard PA, Carrasco J, Vasak M, Hidalgo J (2011) Metallothionein and brain inflammation. J Biol Inorg Chem 16:1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    Article  PubMed  CAS  Google Scholar 

  • Martel G, Hevi C, Kane-Goldsmith N, Shumyatsky GP (2011) Zinc transporter ZnT3 is involved in memory dependent on the hippocampus and perirhinal cortex. Behav Brain Res 223:233–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McBean LD, Dove JT, Halsted JA, Smith JC Jr (1972) Zinc concentration in human tissues. Am J Clin Nutr 25:672–676

    PubMed  CAS  Google Scholar 

  • Mocchegiani E, Malavolta M (2011) Zinc and ageing. In: Rink L (ed) Zinc in human health. IOS Press, Amsterdam, pp 325–346

    Google Scholar 

  • Mocchegiani E, Giaconni R, Cipriano C, Muzzioli M, Fattoretti P, Bertoni-Freddari C et al (2001) Zinc-bound metallothioneins as potential biological markers of ageing. Brain Res Bull 55(2):147–153

    Article  PubMed  CAS  Google Scholar 

  • Netsky MG, Harrison WH, Brown M, Benson C (1969) Tissue zinc and human disease. Relationship of zinc content of kidney, liver and lung to atherosclerosis and hypertension. Am J Clin Pathol 51:358

    PubMed  CAS  Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffman A et al (2004) ZnT1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 43:145–155

    Article  Google Scholar 

  • Nyaradi A, Li J, Hickling S, Foster J, Oddy WH (2013) The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158:126–136

    Article  PubMed  CAS  Google Scholar 

  • Perafan-Riveros C, Franca FS, Alves CF, Sanches JA Jr (2002) Acrodermatitis enteropathica: case report and review of the literature. Pediatr Dermatol 19(5):426–431

    Article  PubMed  Google Scholar 

  • Prasad AS, Miale A, Farid Z, Schulert A, Sandstead HH (1963) Zinc metabolism in patients with syndrome of iron deficiency anemia, hypogonadism and dwarfism. J Lab Clin Med 61:537–549

    PubMed  CAS  Google Scholar 

  • Raulin J (1869) Chemical studies on vegetation. Am Sci Nat 11:93–99

    Google Scholar 

  • Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem 120(suppl 1):149–166

    Article  PubMed  CAS  Google Scholar 

  • Sehgal VN, Jain S (2000) Acrodermatitis enteropathica. Clin Dermatol 18(6):745–748

    Article  PubMed  CAS  Google Scholar 

  • Seaquist ER (2010) The final frontier: How does diabetes affect the brain? Diabetes 59:4–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shay NF, Mangan HF (2000) Neurobiology of zinc-influenced eating behaviour. J Nutr 130(5S suppl):1493S–1499S

    PubMed  CAS  Google Scholar 

  • Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith JL, Xiong S, Markesbery WR, Lovell MA (2006) Altered expression of zinc transporters 4- and 6- in mild cognitive impairment, early and late Alzheimer’s disease brain. Neuroscience 140:879–888

    Article  PubMed  CAS  Google Scholar 

  • Staiger H, Machicao F, Stefan N, Tschritter O, Thamer C, Kantartzis K et al (2007) Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. Plos One 9:e832

    Article  Google Scholar 

  • Takeda A (2000) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  Google Scholar 

  • Takeda A, Tamano H (2009) Insight into zinc signalling from dietary zinc deficiency. Brain Res Rev 62:33–44

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H (2012) Proposed glucocorticoid-mediated zinc signalling in the hippocampus. Metallomics 4:614–618

    Article  PubMed  CAS  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411

    Article  PubMed  CAS  Google Scholar 

  • Thirumoorthy N, Shyam SA, Manisethil Kuma KT, Ganesh GNK, Chatterjee M (2011) A review of metallothioneins isoforms and their role in pathophysiology. World J Surg Oncol 9(54)

    Google Scholar 

  • Vasto S, Candore G, Listi F, Balistreri CR, Colonna-Romano G, Malavolta M et al (2008) Inflammation, genes and zinc in Alzheimer’s disease. Brain Res Revs 58:96–105

    Article  CAS  Google Scholar 

  • Wang Z-Y, Stoltenberg M, Huang L, Danscher G, Dahlstrom A, Shi Y et al (2005) Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull 64:441–448

    Article  PubMed  CAS  Google Scholar 

  • Wong CP, Magnusson KR, Ho E (2013) Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. J Nutri Biochem 24:353–359

    Article  CAS  Google Scholar 

  • Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol 251:R398–R408

    PubMed  CAS  Google Scholar 

  • Zhang L-H, Wang X, Zheng Z-H, Ren H, Stoltenberg M, Danscher G et al (2008) Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol Aging 31:74–87

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Adlard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hancock, S.M., Bush, A.I., Adlard, P.A. (2014). The Clinical Implications of Impaired Zinc Signaling in the Brain. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_9

Download citation

Publish with us

Policies and ethics