Skip to main content

Paradigm of Susceptibility Genes in AMD and PCV

  • Chapter
  • First Online:
Advances in Vision Research, Volume I

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Age-related macular degeneration (AMD) is a neurodegenerative disease and a cause of progressive blindness effecting millions of elderly people (over age of 50 years) worldwide. It is a complex disease with differing epidemiology, clinical features, pathogenesis, treatment, and genetics in Europeans and Asians. Specifically, polypoidal choroidal vasculopathy (PCV), a subtype of neovascular AMD, is more common in Asians compared to Western counterparts and exhibits different characteristics in all of these features.

Since the first genome-wide association study (GWAS) in 2005, which led to the discovery of the complement factor H (CFH) gene as a major risk factor in AMD, a number of studies have reported association of genes in the complement pathway, indicating its key role in AMD susceptibility. In addition, common genetic variants associated with AMD have been extensively investigated by two consortia, the International AMD Gene Consortium and the Genetics of AMD in Asians (GAMA), where GWAS has been undertaken on both large European and Asian AMD cohorts, respectively. These studies reported different genetic risk factors associated with AMD in Europeans and Asians.

In the case of PCV, it has been shown that a number of common genetic risk factors are shared with neovascular AMD but have different clinical presentations, perhaps indicating involvement of differential biological mechanisms, for which separate GWAS studies in large PCV cohorts are warranted.

Currently the standard treatment for neovascular AMD, as well as more recently for PCV, is anti-vascular endothelial growth factor (anti-VEGF) injections. However, different treatment outcomes have been reported and the reason for this is likely to be partly explained by genetic variants. While much progress has already been made, there are still many challenges that remain in understanding both AMD and PCV, in terms of early diagnosis, disease prediction, and personalized treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, De Jong P, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  PubMed  Google Scholar 

  2. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728–38.

    Article  PubMed  Google Scholar 

  3. Kawasaki R, Yasuda M, Song SJ, Chen S-J, Jonas JB, Wang JJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117(5):921–7.

    Article  PubMed  Google Scholar 

  4. Priya RR, Chew EY, Swaroop A. Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management. Ophthalmology. 2012;119(12):2526–36.

    Article  PubMed  Google Scholar 

  5. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaiser PK, Friedman NJ, RP II. The Massachusetts eye and ear infirmary illustrated manual of ophthalmology. Philadelphia: Elsevier Health Sciences; 2014.

    Google Scholar 

  7. Bonilha VL. Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol (Auckland, NZ). 2008;2(2):413.

    Article  Google Scholar 

  8. Ferris FL, Wilkinson C, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844–51.

    Article  PubMed  Google Scholar 

  9. Lu M, Adamis AP. Vascular endothelial growth factor gene regulation and action in diabetic retinopathy. Ophthalmol Clin N Am. 2002;15(1):69–79.

    Article  Google Scholar 

  10. Appukuttan B, McFarland TJ, Davies MH, Atchaneeyasakul L-O, Zhang Y, Babra B, et al. Identification of novel alternatively spliced isoforms of RTEF-1 within human ocular vascular endothelial cells and murine retina. Invest Ophthalmol Vis Sci. 2007;48(8):3775.

    Article  PubMed  Google Scholar 

  11. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010;55(6):501–15.

    Article  PubMed  Google Scholar 

  12. Desmettre T, Devoisselle J, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  13. Koh AH, Chen L-J, Chen S-J, Chen Y, Giridhar A, Iida T, et al. Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina. 2013;33(4):686–716.

    Article  PubMed  Google Scholar 

  14. Cho HJ, Kim HS, Jang YS, Han JI, Lew YJ, Lee TG, et al. Effects of choroidal vascular hyperpermeability on anti–vascular endothelial growth factor treatment for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;156(6):1192–200. e1.

    Article  CAS  PubMed  Google Scholar 

  15. Sonoda S, Sakamoto T, Otsuka H, Yoshinaga N, Yamashita T, Ki Y, et al. Responsiveness of eyes with polypoidal choroidal vasculopathy with choroidal hyperpermeability to intravitreal ranibizumab. BMC Ophthalmol. 2013;13(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hikichi T, Kitamei H, Shioya S. Prognostic factors of 2-year outcomes of ranibizumab therapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99(6):817–22.

    Article  PubMed  Google Scholar 

  17. Uyama M, Wada M, Nagai Y, Matsubara T, Matsunaga H, Fukushima I, et al. Polypoidal choroidal vasculopathy: natural history. Am J Ophthalmol. 2002;133(5):639–48.

    Article  PubMed  Google Scholar 

  18. Honda S, Matsumiya W, Negi A. Polypoidal choroidal vasculopathy: clinical features and genetic predisposition. Ophthalmologica. 2014;231(2):59–74.

    Article  PubMed  Google Scholar 

  19. Miki A, Honda S, Kondo N, Negi A. The association of age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) variants with two angiographic subtypes of polypoidal choroidal vasculopathy. Ophthalmic Genet. 2013;34(3):146–50.

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka K, Nakayama T, Mori R, Sato N, Kawamura A, Mizutani Y, et al. Associations of complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genotypes with subtypes of polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2011;52(10):7441–4.

    Article  CAS  PubMed  Google Scholar 

  21. Kawamura A, Yuzawa M, Mori R, Haruyama M, Tanaka K. Indocyanine green angiographic and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy into two types. Acta Ophthalmol. 2013;91(6):e474–e81.

    Article  PubMed  Google Scholar 

  22. Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38(7):450–71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia: the Blue Mountains Eye Study. Ophthalmology. 1995;102(10):1450–60.

    Article  CAS  PubMed  Google Scholar 

  24. Klein R, Chou C-F, Klein BE, Zhang X, Meuer SM, Saaddine JB. Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol. 2011;129(1):75–80.

    Article  PubMed  Google Scholar 

  25. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e16.

    Article  PubMed  Google Scholar 

  26. Kawasaki R, Wang JJ, Ji G-J, Taylor B, Oizumi T, Daimon M, et al. Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology. 2008;115(8):1376–81. e2.

    Article  PubMed  Google Scholar 

  27. Song SJ, Youm DJ, Chang Y, Yu HG. Age-related macular degeneration in a screened South Korean population: prevalence, risk factors, and subtypes. Ophthalmic Epidemiol. 2009;16(5):304–10.

    Article  PubMed  Google Scholar 

  28. Stein JD, VanderBeek BL, Talwar N, Nan B, Musch DC, Zacks DN. Rates of nonexudative and exudative age-related macular degeneration among Asian American ethnic groups. Invest Ophthalmol Vis Sci. 2011;52(9):6842.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oguido APMT, Casella AMB, Matsuo T. Ramos Filho EHdF, Berbel R, Silva RMA. Prevalence of age-related macular degeneration in Japanese immigrants and their descendants living in Londrina (PR)-Brazil. Arq Bras Oftalmol. 2008;71(3):375–80.

    Article  PubMed  Google Scholar 

  30. Ye H, Zhang Q, Liu X, Cai X, Yu W, Yu S, et al. Prevalence of age-related macular degeneration in an elderly urban Chinese population in China: the Jiangning Eye Study. Invest Ophthalmol Vis Sci. 2014;55(10):6374–80.

    Article  PubMed  Google Scholar 

  31. Oshima Y, Ishibashi T, Murata T, Tahara Y, Kiyohara Y, Kubota T. Prevalence of age related maculopathy in a representative Japanese population: the Hisayama study. Br J Ophthalmol. 2001;85(10):1153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang EJ, Wu S, Lai C, Kuo C, Wu P, Chen C, et al. Prevalence and risk factors for age-related macular degeneration in the elderly Chinese population in south-western Taiwan: the Puzih eye study. Eye. 2014;28(6):705–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Xu L, Jonas JB, Yang H, Ma Y, Li J. Prevalence of age-related maculopathy in the adult population in China: the Beijing eye study. Am J Ophthalmol. 2006;142(5):788–93. e1.

    Article  PubMed  Google Scholar 

  34. Cho B-J, Heo JW, Kim TW, Ahn J, Chung H. Prevalence and risk factors of age-related macular degeneration in Korea: the Korea National Health and Nutrition Examination Survey 2010–2011. Invest Ophthalmol Vis Sci. 2014;55(2):1101–8.

    Article  PubMed  Google Scholar 

  35. Yang K, Liang YB, Gao LQ, Peng Y, Shen R, Duan XR, et al. Prevalence of age-related macular degeneration in a rural Chinese population: the Handan Eye Study. Ophthalmology. 2011;118(7):1395–401.

    PubMed  Google Scholar 

  36. Chen S-J, Cheng C-Y, Peng K-L, Li A-F, Hsu W-M, Liu J-H, et al. Prevalence and associated risk factors of age-related macular degeneration in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Invest Ophthalmol Vis Sci. 2008;49(7):3126–33.

    Article  PubMed  Google Scholar 

  37. Nakata I, Yamashiro K, Nakanishi H, Akagi-Kurashige Y, Miyake M, Tsujikawa A, et al. Prevalence and characteristics of age-related macular degeneration in the Japanese population: the nagahama study. Am J Ophthalmol. 2013;156(5):1002–9. e2.

    Article  PubMed  Google Scholar 

  38. Cheung CM, Tai ES, Kawasaki R, Tay WT, Lee JL, Hamzah H, et al. Prevalence of and risk factors for age-related macular degeneration in a multiethnic Asian cohort. Arch Ophthalmol. 2012;130(4):480–6. PubMed PMID: 22159171

    Article  PubMed  Google Scholar 

  39. Woo JH, Sanjay S, Au Eong KG. The epidemiology of age-related macular degeneration in the Indian subcontinent. Acta Ophthalmol. 2009;87(3):262–9. PubMed PMID: 19016663

    Article  PubMed  Google Scholar 

  40. Yasuda M, Kiyohara Y, Hata Y, Arakawa S, Yonemoto K, Doi Y, et al. Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population: the Hisayama study. Ophthalmology. 2009;116(11):2135–40.

    Article  PubMed  Google Scholar 

  41. Wen F, Chen C, Wu D, Li H. Polypoidal choroidal vasculopathy in elderly Chinese patients. Graefes Arch Clin Exp Ophthalmol. 2004;242(8):625–9.

    Article  PubMed  Google Scholar 

  42. Cheung CMG, Li X, Mathur R, Lee SY, Chan CM, Yeo I, et al. A prospective study of treatment patterns and 1-year outcome of asian age-related macular degeneration and polypoidal choroidal vasculopathy. PLoS One. 2014;9:e101057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Maruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol. 2007;144(1):15–22. e2.

    Article  PubMed  Google Scholar 

  44. Liu Y, Wen F, Huang S, Luo G, Yan H, Sun Z, et al. Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol. 2007;245(10):1441–5.

    Article  PubMed  Google Scholar 

  45. Byeon SH, Lee SC, Oh H-S, Kim SS, Koh HJ, Kwon OW. Incidence and clinical patterns of polypoidal choroidal vasculopathy in Korean patients. Jpn J Ophthalmol. 2008;52(1):57–62.

    Article  PubMed  Google Scholar 

  46. Chang Y-C, Wu W-C. Polypoidal choroidal vasculopathy in Taiwanese patients. Ophthalmic Surg Lasers Imaging Retina. 2009;40(6):576.

    Article  Google Scholar 

  47. Li Y, You QS, Wei WB, Xu J, Chen CX, Wang YX, et al. Polypoidal choroidal vasculopathy in adult Chinese: the Beijing Eye Study. Ophthalmology. 2014;11(121):2290–1.

    Article  Google Scholar 

  48. Ciardella AP, Donsoff IM, Huang SJ, Costa DL, Yannuzzi LA. Polypoidal choroidal vasculopathy. Surv Ophthalmol. 2004;49(1):25–37.

    Article  PubMed  Google Scholar 

  49. La TY, Cho E, Kim EC, Kang S, Jee D. Prevalence and risk factors for age-related macular degeneration: Korean National Health and Nutrition Examination Survey 2008–2011. Curr Eye Res. 2014;39(12):1232–9.

    Article  CAS  PubMed  Google Scholar 

  50. You QS, Xu L, Yang H, Li YB, Wang S, Da Wang J, et al. Five-year incidence of age-related macular degeneration: the Beijing Eye Study. Ophthalmology. 2012;119(12):2519–25.

    Article  PubMed  Google Scholar 

  51. Silvestri G, Johnston P, Hughes A. Is genetic predisposition an important risk factor in age-related macular degeneration? Eye. 1994;8:564.

    Article  PubMed  Google Scholar 

  52. Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137(3):486–95.

    Article  PubMed  Google Scholar 

  53. Sakurada Y, Yoneyama S, Imasawa M, Iijima H. Systemic risk factors associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Retina. 2013;33(4):841–5.

    Article  PubMed  Google Scholar 

  54. Sandberg MA, Tolentino MJ, Miller S, Berson EL, Gaudio AR. Hyperopia and neovascularization in age-related macular degeneration. Ophthalmology. 1993;100(7):1009–13.

    Article  CAS  PubMed  Google Scholar 

  55. Wu KH, Tan AG, Rochtchina E, Favaloro EJ, Williams A, Mitchell P, et al. Circulating inflammatory markers and hemostatic factors in age-related maculopathy: a population-based case-control study. Investig Ophthalmol Vis Sci. 2007;48(5):1983.

    Article  Google Scholar 

  56. Vine AK, Stader J, Branham K, Musch DC, Swaroop A. Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology. 2005;112(12):2076–80.

    Article  PubMed  Google Scholar 

  57. Zeng R, Wen F, Zhang X, Su Y. Serum levels of matrix metalloproteinase 2 and matrix metalloproteinase 9 elevated in polypoidal choroidal vasculopathy but not in age-related macular degeneration. Mol Vis. 2013;19:729.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chau K, Sivaprasad S, Patel N, Donaldson T, Luthert P, Chong N. Plasma levels of matrix metalloproteinase-2 and-9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye. 2008;22(6):855–9.

    Article  CAS  PubMed  Google Scholar 

  59. Hong T, Tan AG, Mitchell P, Wang JJ. A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol. 2011;56(3):184–94.

    Article  PubMed  Google Scholar 

  60. Kikuchi M, Nakamura M, Ishikawa K, Suzuki T, Nishihara H, Yamakoshi T, et al. Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration. Ophthalmology. 2007;114(9):1722–7.

    Article  PubMed  Google Scholar 

  61. Ueta T, Obata R, Inoue Y, Iriyama A, Takahashi H, Yamaguchi T, et al. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology. 2009;116(12):2400–6.

    Article  PubMed  Google Scholar 

  62. Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118(5):840–5.

    Article  PubMed  Google Scholar 

  63. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012;53(7):3663–72.

    Article  CAS  PubMed  Google Scholar 

  64. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1123–8.

    Article  PubMed  Google Scholar 

  65. Rishi P, Rishi E, Mathur G, Raval V. Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye. 2013;27(9):1038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthalmol. 1997;123(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  67. Klein ML, Mauldin WM, Stoumbos VD. Heredity and age-related macular degeneration: observations in monozygotic twins. Arch Ophthalmol. 1994;112(7):932–7.

    Article  CAS  PubMed  Google Scholar 

  68. Klein ML, Schultz DW, Edwards A, Matise TC, Rust K, Berselli CB, et al. Age-related macular degeneration: clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol. 1998;116(8):1082–8.

    Article  CAS  PubMed  Google Scholar 

  69. Barral S, Francis PJ, Schultz DW, Schain MB, Haynes C, Majewski J, et al. Expanded genome scan in extended families with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(12):5453–9.

    Article  PubMed  Google Scholar 

  70. Schick JH, Iyengar SK, Klein BE, Klein R, Reading K, Liptak R, et al. A whole-genome screen of a quantitative trait of age-related maculopathy in sibships from the Beaver Dam Eye Study. Am J Hum Genet. 2003;72(6):1412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iyengar SK, Song D, Klein BE, Klein R, Schick JH, Humphrey J, et al. Dissection of genomewide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet. 2004;74(1):20–39.

    Article  CAS  PubMed  Google Scholar 

  72. Abecasis GR, Yashar BM, Zhao Y, Ghiasvand NM, Zareparsi S, Branham KE, et al. Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet. 2004;74(3):482–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seddon JM, Santangelo SL, Book K, Chong S, Cote J. A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet. 2003;73(4):780–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baird PN, Richardson A, Islam A, Lim L, Guymer R. Analysis of the RDS/peripherin gene in age-related macular degeneration. Clin Exp Ophthalmol. 2007;35(2):194–5.

    Article  PubMed  Google Scholar 

  75. Stone EM, Lotery AJ, Munier FL, Héon E, Piguet B, Guymer RH, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999;22(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  76. Lotery AJ, Munier FL, Fishman GA, Weleber RG, Jacobson SG, Affatigato LM, et al. Allelic variation in the VMD2 gene in best disease and age-related macular degeneration. Investig Ophthalmol Vis Sci. 2000;41(6):1291–6.

    CAS  Google Scholar 

  77. De La Paz M, Pericak-Vance MA, Lennon F, Haines JL, Seddon JM. Exclusion of TIMP3 as a candidate locus in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1997;38(6):1060–5.

    CAS  PubMed  Google Scholar 

  78. Ayyagari R, Zhang K, Hutchinson A, Yu Z, Swaroop A, Kakuk LE, et al. Evaluation of the ELOVL4 gene in patients with age-related macular degeneration. Ophthalmic Genet. 2001;22(4):233–9.

    Article  CAS  PubMed  Google Scholar 

  79. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277(5333):1805–7.

    Article  CAS  PubMed  Google Scholar 

  80. Stone EM, Webster AR, Vandenburgh K, Streb LM, Hockey RR, Lotery AJ, et al. Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nat Genet. 1998;20(4):328–9.

    Article  CAS  PubMed  Google Scholar 

  81. Fritsche LG, Fleckenstein M, Fiebig BS, Schmitz-Valckenberg S, Bindewald-Wittich A, Keilhauer CN, et al. A subgroup of age-related macular degeneration is associated with mono-allelic sequence variants in the ABCA4 geneage-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(4):2112–8.

    Article  PubMed  Google Scholar 

  82. Klaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE, et al. Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet. 1998;63(1):200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baird PN, Richardson AJ, Robman LD, Dimitrov PN, Tikellis G, McCarty CA, et al. Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Hum Mutat. 2006;27(4):337–42.

    Article  CAS  PubMed  Google Scholar 

  84. Liu X, Zhao P, Tang S, Lu F, Hu J, Lei C, et al. Association study of complement factor H, C2, CFB, and C3 and age-related macular degeneration in a Han Chinese population. Retina. 2010;30(8):1177–84. PubMed PMID: 20523265

    Article  PubMed  Google Scholar 

  85. Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T, Yasuda M, et al. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet. 2011;43(10):1001–4. PubMed PMID: 21909106

    Article  CAS  PubMed  Google Scholar 

  86. Lau LI, Chen SJ, Cheng CY, Yen MY, Lee FL, Lin MW, et al. Association of the Y402H polymorphism in complement factor H gene and neovascular age-related macular degeneration in Chinese patients. Invest Ophthalmol Vis Sci. 2006;47(8):3242–6. PubMed PMID: 16877387

    Article  PubMed  Google Scholar 

  87. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45(4):433–9. 9e1-2

    Article  CAS  PubMed  Google Scholar 

  88. Robman L, Baird PN, Dimitrov PN, Richardson AJ, Guymer RH. C-reactive protein levels and complement factor H polymorphism interaction in age-related macular degeneration and its progression. Ophthalmology. 2010;117(10):1982–8.

    Article  PubMed  Google Scholar 

  89. Khandhadia S, Cipriani V, Yates J, Lotery AJ. Age-related macular degeneration and the complement system. Immunobiology. 2012;217(2):127–46.

    Article  CAS  PubMed  Google Scholar 

  90. Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet: EJHG. 2009;17(1):100–4. PubMed PMID: 18685559. Pubmed Central PMCID: 2985963

    Article  CAS  PubMed  Google Scholar 

  91. Thakkinstian A, McKay GJ, McEvoy M, Chakravarthy U, Chakrabarti S, Silvestri G, et al. Systematic review and meta-analysis of the association between complement component 3 and age-related macular degeneration: a HuGE review and meta-analysis. Am J Epidemiol. 2011;173:1365–79.

    Article  PubMed  Google Scholar 

  92. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J, et al. Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci. 2010;107(16):7401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu Y, Bhangale TR, Fagerness J, Ripke S, Thorleifsson G, Tan PL, et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet. 2011;20:3699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553–61.

    Article  CAS  PubMed  Google Scholar 

  95. Nishiguchi KM, Yasuma TR, Tomida D, Nakamura M, Ishikawa K, Kikuchi M, et al. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(1):508–12.

    Article  CAS  PubMed  Google Scholar 

  96. Edwards AO, Fridley BL, James KM, Sharma A, Cunningham JM, Tosakulwong N. Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study. PLoS One. 2008;3(11):e3813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Despriet DD, van Duijn CM, Oostra BA, Uitterlinden AG, Hofman A, Wright AF, et al. Complement component C3 and risk of age-related macular degeneration. Ophthalmology. 2009;116(3):474–80. e2

    Article  PubMed  Google Scholar 

  98. Bergeron-Sawitzke J, Gold B, Olsh A, Schlotterbeck S, Lemon K, Visvanathan K, et al. Multilocus analysis of age-related macular degeneration. Eur J Hum Genet. 2009;17(9):1190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grassi MA, Fingert JH, Scheetz TE, Roos BR, Ritch R, West SK, et al. Ethnic variation in AMD-associated complement factor H polymorphism p. Tyr402His. Hum Mutat. 2006;27(9):921.

    Article  CAS  PubMed  Google Scholar 

  100. Klein R, Knudtson MD, Klein BE, Wong TY, Cotch MF, Liu K, et al. Inflammation, complement factor h, and age-related macular degeneration: the multi-ethnic study of Atherosclerosis. Ophthalmology. 2008;115(10):1742–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Majewski J, Schultz DW, Weleber RG, Schain MB, Edwards AO, Matise TC, et al. Age-related macular degeneration—a genome scan in extended families. Am J Hum Genet. 2003;73(3):540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeWan A, Liu M, Hartman S, Zhang SS-M, Liu DT, Zhao C, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314(5801):989–92.

    Article  CAS  PubMed  Google Scholar 

  103. Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet. 2006;38(9):1055–9.

    Article  CAS  PubMed  Google Scholar 

  104. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314(5801):992–3.

    Article  CAS  PubMed  Google Scholar 

  105. Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am J Ophthalmol. 2007;144(4):608–12. e1

    Article  CAS  PubMed  Google Scholar 

  106. Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet. 2008;40(7):892–6.

    Article  CAS  PubMed  Google Scholar 

  107. Cheng Y, Huang L, Li X, Zhou P, Zeng W, Zhang C. Genetic and functional dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy. PLoS One. 2013;8(1):e53665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci. 2007;104(41):16227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu Y, Reynolds R, Fagerness J, Rosner B, Daly MJ, Seddon JM. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(7):4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zareparsi S, Reddick AC, Branham KE, Moore KB, Jessup L, Thoms S, et al. Association of apolipoprotein E alleles with susceptibility to age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci. 2004;45(5):1306–10.

    Article  PubMed  Google Scholar 

  111. McKay GJ, Patterson CC, Chakravarthy U, Dasari S, Klaver CC, Vingerling JR, et al. Evidence of association of APOE with age-related macular degeneration-a pooled analysis of 15 studies. Hum Mutat. 2011;32(12):1407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet. 2014;15:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng C-Y, Yamashiro K, Chen LJ, Ahn J, Huang L, Huang L, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015;6:6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang L-Z, Li Y-J, Xie X-F, Zhang J-J, Cheng C-Y, Yamashiro K, et al. Whole-exome sequencing implicates UBE3D in age-related macular degeneration in East Asian populations. Nat Commun. 2015;6:6687.

    Article  CAS  PubMed  Google Scholar 

  115. Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL, Gowrisankar S, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet. 2013;45(11):1366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhan X, Larson DE, Wang C, Koboldt DC, Sergeev YV, Fulton RS, et al. Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet. 2013;45(11):1375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kavanagh D, Yu Y, Schramm EC, Triebwasser M, Wagner E, Raychaudhuri S, et al. Rare genetic variants in the CFI gene are associated with advanced age-related macular degeneration and commonly result in reduced serum factor I levels. Hum Mol Genet. 2015;24:3861–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lima LH, Schubert C, Ferrara DC, Merriam JE, Imamura Y, Freund KB, et al. Three major loci involved in age-related macular degeneration are also associated with polypoidal choroidal vasculopathy. Ophthalmology. 2010;117(8):1567–70.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, Nakata I, Tsujikawa A, et al. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci. 2010;51(11):5914–9. PubMed PMID: 20574013

    Article  PubMed  Google Scholar 

  120. Kondo N, Honda S. Kuno S-i, Negi A. Coding variant I62V in the complement factor H gene is strongly associated with polypoidal choroidal vasculopathy. Ophthalmology. 2009;116(2):304–10.

    Article  PubMed  Google Scholar 

  121. Sakurada Y, Kubota T, Imasawa M, Mabuchi F, Tateno Y, Tanabe N, et al. Role of complement factor H I62V and age-related maculopathy susceptibility 2 A69S variants in the clinical expression of polypoidal choroidal vasculopathy. Ophthalmology. 2011;118(7):1402–7. PubMed PMID: 21397333

    PubMed  Google Scholar 

  122. Gotoh N, Nakanishi H, Hayashi H, Yamada R, Otani A, Tsujikawa A, et al. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol. 2009;147(6):1037–41. e2

    Article  CAS  PubMed  Google Scholar 

  123. Sakurada Y, Kubota T, Mabuchi F, Imasawa M, Tanabe N, Iijima H. Association of LOC387715 A69S with vitreous hemorrhage in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2008;145(6):1058–62. PubMed PMID: 18400199

    Article  CAS  PubMed  Google Scholar 

  124. Lee KY, Vithana EN, Mathur R, Yong VH, Yeo IY, Thalamuthu A, et al. Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49(6):2613–9. PubMed PMID: 18515590

    Article  PubMed  Google Scholar 

  125. Ma L, Li Z, Liu K, Rong SS, Brelen ME, Young AL, et al. Association of genetic variants with polypoidal choroidal vasculopathy: a systematic review and updated meta-analysis. Ophthalmology. 2015;122(9):1854–65.

    Article  PubMed  Google Scholar 

  126. Gotoh N, Kuroiwa S, Kikuchi T, Arai J, Arai S, Yoshida N, et al. Apolipoprotein E polymorphisms in Japanese patients with polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Am J Ophthalmol. 2004;138(4):567–73.

    Article  CAS  PubMed  Google Scholar 

  127. Li M, Wen F, Zuo C, Zhang X, Chen H, Huang S, et al. SERPING1 polymorphisms in polypoidal choroidal vasculopathy. Mol Vis. 2010;16:231–9. PubMed PMID: 20161815. Pubmed Central PMCID: 2822549

    PubMed  PubMed Central  Google Scholar 

  128. Lima LH, Merriam JE, Freund KB, Barbazetto IA, Spaide RF, Yannuzzi LA, et al. Elastin rs2301995 polymorphism is not associated with polypoidal choroidal vasculopathy in caucasians. Ophthalmic Genet. 2011;32(2):80–2. PubMed PMID: 21391811

    Article  CAS  PubMed  Google Scholar 

  129. Sng CCCP, Yeo IY, Thalamuthu A, Venkatraman A, Venkataraman D, Koh AH, Tai ES, Wong TY, Aung T, Vithana EN. Toll-like receptor 3 polymorphism rs3775291 is not associated with choroidal neovascularization or polypoidal choroidal vasculopathy in Chinese subjects. Ophthalmic Res. 2011;45(4):191–6.

    Article  CAS  PubMed  Google Scholar 

  130. Goto A, Akahori M, Okamoto H, Minami M, Terauchi N, Haruhata Y, et al. Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population. J Ocul Biol Dis Infor. 2009;2(4):164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kondo N, Bessho H, Honda S, Negi A. SOD2 gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis. 2009;15:1819.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nakata I, Yamashiro K, Akagi-Kurashige Y, Miyake M, Kumagai K, Tsujikawa A, et al. Association of genetic variants on 8p21 and 4q12 with age-related macular degeneration in Asian populations. Invest Ophthalmol Vis Sci. 2012;53(10):6576–81. PubMed PMID: 22930721

    Article  CAS  PubMed  Google Scholar 

  133. Su Y, Zhang X, Zuo C, Li M, Wu K, Ji Y, et al. Three variants of or near VEGF-A gene are not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese population. Ophthalmic Genet. 2013;36:1–6.

    Google Scholar 

  134. Asako Goto MA, Okamoto H, Minami M, Terauchi N, Haruhata Y, Obazawa M, Noda T, Honda M, Mizota A, Tanaka M, Hayashi T, Tanito M, Ogata N, Iwata T. Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population. J Ocul Biol Dis Infor. 2009;2(4):164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang X, Li M, Wen F, Zuo C, Chen H, Wu K, et al. Different impact of high-density lipoprotein-related genetic variants on polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population. Exp Eye Res. 2013;108:16–22.

    Article  CAS  PubMed  Google Scholar 

  136. Nakata I, Yamashiro K, Kawaguchi T, Gotoh N, Nakanishi H, Akagi-Kurashige Y, et al. Association between the cholesteryl ester transfer protein gene and polypoidal choroidal vasculopathycetp in patients with PCV. Invest Ophthalmol Vis Sci. 2013;54(9):6068–73.

    Article  CAS  PubMed  Google Scholar 

  137. Liu K, Chen LJ, Lai TY, Tam PO, Ho M, Chiang SW, et al. Genes in the high-density lipoprotein metabolic pathway in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology. 2014;121(4):911–6.

    Article  PubMed  Google Scholar 

  138. Regillo C, editor. Lampalizumab (anti-factor D) in patients with geography atrophy: the mahalo phase 2 results. Annual meeting of the American Academy of Ophthalmology, New Orleans, November; 2013.

    Google Scholar 

  139. Group MPS. Argon laser photocoagulation for senile macular degeneration: results of a randomized clinical trial. Arch Ophthalmol. 1982;100(6):912.

    Article  Google Scholar 

  140. Group MPS. Krypton laser photocoagulation for neovascular lesions of age-related macular degeneration: results of a randomized clinical trial. Arch Ophthalmol. 1990;108(6):816.

    Article  Google Scholar 

  141. Group ToA-rMDWPTS. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report 1. Arch Ophthalmol. 1999;117(10):1329.

    Article  Google Scholar 

  142. Spitzer MS, Ziemssen F, Bartz-Schmidt KU, Gelisken F, Szurman P. Treatment of age-related macular degeneration: focus on ranibizumab. Clini Ophthalmol. 2008;2(1):1.

    Article  CAS  Google Scholar 

  143. Heier JS, Boyer DS, Ciulla TA, Ferrone PJ, Jumper JM, Gentile RC, et al. Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration: year 1 results of the FOCUS Study. Arch Ophthalmol. 2006;124(11):1532–42.

    Article  CAS  PubMed  Google Scholar 

  144. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  PubMed  Google Scholar 

  145. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57–65. e5

    Article  PubMed  Google Scholar 

  146. Zhang M, Zhang J, Yan M, Luo D, Zhu W, Kaiser PK, et al. A phase 1 study of KH902, a vascular endothelial growth factor receptor decoy, for exudative age-related macular degeneration. Ophthalmology. 2011;118(4):672–8.

    Article  PubMed  Google Scholar 

  147. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, Group S-Us. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120(11):2292–9.

    Article  PubMed  Google Scholar 

  148. Martin DF, Maguire MG, Fine SL, G-s Y, Jaffe GJ, Grunwald JE, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119(7):1388–98.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Heier JS, Brown DM, Chong V, Korobelnik J-F, Kaiser PK, Nguyen QD, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.

    Article  PubMed  Google Scholar 

  150. Bakall B, Folk JC, Boldt HC, Sohn EH, Stone EM, Russell SR, et al. Aflibercept therapy for exudative age-related macular degeneration resistant to bevacizumab and ranibizumab. Am J Ophthalmol. 2013;156(1):15–22. e1

    Article  CAS  PubMed  Google Scholar 

  151. Ho VY, Yeh S, Olsen TW, Bergstrom CS, Yan J, Cribbs BE, et al. Short-term outcomes of aflibercept for neovascular age-related macular degeneration in eyes previously treated with other vascular endothelial growth factor inhibitors. Am J Ophthalmol. 2013;156(1):23–8. e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee M, Yeo I, Wong D, Ang C. Argon laser photocoagulation for the treatment of polypoidal choroidal vasculopathy. Eye. 2009;23(1):145–8.

    Article  PubMed  Google Scholar 

  153. Kokame GT, Yeung L, Lai JC. Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results. Br J Ophthalmol. 2010;94(3):297–301.

    Article  PubMed  Google Scholar 

  154. Koh A, Lee WK, Chen L-J, Chen S-J, Hashad Y, Kim H, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina. 2012;32(8):1453–64.

    Article  CAS  PubMed  Google Scholar 

  155. Cheung CMG, Yeo I, Li X, Mathur R, Lee SY, Chan CM, et al. Argon laser with and without anti-vascular endothelial growth factor therapy for extrafoveal polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;155(2):295–304. e1

    Article  Google Scholar 

  156. Oishi A, Miyamoto N, Mandai M, Honda S, Matsuoka T, Oh H, et al. LAPTOP study: a 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. Ophthalmology. 2014;121(5):1151.

    Article  PubMed  Google Scholar 

  157. Cho HJ, Baek JS, Lee DW, Kim CG, Kim JW. Short-term effectiveness of intravitreal bevacizumab vs. ranibizumab injections for patients with polypoidal choroidal vasculopathy. Korean J Ophthalmol. 2012;26(3):157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hikichi T, Higuchi M, Matsushita T, Kosaka S, Matsushita R, Takami K, et al. Factors predictive of outcomes 1 year after 3 monthly ranibizumab injections and as-needed reinjections for polypoidal choroidal vasculopathy in Japanese patients. Retina. 2013;33(9):1949–58.

    Article  CAS  PubMed  Google Scholar 

  159. Kang HM, Koh HJ. Long-term visual outcome and prognostic factors after intravitreal ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;156(4):652–60. e1

    Article  PubMed  Google Scholar 

  160. Lai TY, Chan W-M, Liu DT, Luk FO, Lam DS. Intravitreal bevacizumab (Avastin) with or without photodynamic therapy for the treatment of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2008;92(5):661–6.

    Article  CAS  PubMed  Google Scholar 

  161. Cho H, Kim J, Lee D, Cho S, Kim C. Intravitreal bevacizumab and ranibizumab injections for patients with polypoidal choroidal vasculopathy. Eye. 2012;26(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  162. Inoue M, Arakawa A, Yamane S, Kadonosono K. Short-term efficacy of intravitreal aflibercept in treatment-naive patients with polypoidal choroidal vasculopathy. Retina. 2014;34(11):2178–84.

    Article  CAS  PubMed  Google Scholar 

  163. Kloeckener-Gruissem B, Barthelmes D, Schindler C, Kurz-Levin M, Michels S, Fleischhauer J, et al. Genetic association with response to intravitreal ranibizumab in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 2011;52(7):4694–702.

    Article  CAS  PubMed  Google Scholar 

  164. Lee AY, Raya AK, Kymes SM, Shiels A, Brantley MA. Pharmacogenetics of complement factor H (Y402H) and treatment of exudative age-related macular degeneration with ranibizumab. Br J Ophthalmol. 2009;93(5):610–3.

    Article  CAS  PubMed  Google Scholar 

  165. Yamashiro K, Tomita K, Tsujikawa A, Nakata I, Akagi-Kurashige Y, Miyake M, et al. Factors associated with the response of age-related macular degeneration to intravitreal ranibizumab treatment. Am J Ophthalmol. 2012;154(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  166. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Pharmacogenetics of complement factor H Y402H polymorphism and treatment of neovascular AMD with anti-VEGF agents: a meta-analysis. Sci Rep. 2015;5:14517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lotery AJ, Gibson J, Cree AJ, Downes SM, Harding SP, Rogers CA, et al. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN study. Ophthalmology. 2013;120(12):2637–43.

    Article  PubMed  Google Scholar 

  168. Orlin A, Hadley D, Chang W, Ho AC, Brown G, Kaiser RS, et al. Association between high-risk disease loci and response to anti–vascular endothelial growth factor treatment for wet age-related macular degeneration. Retina. 2012;32(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  169. Hagstrom SA, Ying G-S, Pauer GJ, Sturgill-Short GM, Huang J, Callanan DG, et al. Pharmacogenetics for genes associated with age-related macular degeneration in the Comparison of AMD Treatments Trials (CATT). Ophthalmology. 2013;120(3):593–9.

    Article  PubMed  PubMed Central  Google Scholar 

  170. McKibbin M, Ali M, Bansal S, Baxter PD, West K, Williams G, et al. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Br J Ophthalmol. 2012;96(2):208–12.

    Article  PubMed  Google Scholar 

  171. Abedi F, Wickremasinghe S, Richardson AJ, Islam AF, Guymer RH, Baird PN. Genetic influences on the outcome of anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration. Ophthalmology. 2013;120(8):1641–8.

    Article  PubMed  Google Scholar 

  172. Abedi F, Wickremasinghe S, Richardson AJ, Makalic E, Schmidt DF, Sandhu SS, et al. Variants in the VEGFA gene and treatment outcome after anti-VEGF treatment for neovascular age-related macular degeneration. Ophthalmology. 2013;120(1):115–21.

    Article  PubMed  Google Scholar 

  173. Francis PJ. The influence of genetics on response to treatment with ranibizumab (Lucentis) for age-related macular degeneration: the Lucentis Genotype Study (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2011;109:115.

    PubMed  PubMed Central  Google Scholar 

  174. Chang W, Noh DH, Sagong M, Kim IT. Pharmacogenetic association with early response to intravitreal ranibizumab for age-related macular degeneration in a Korean population. Mol Vis. 2013;19:702.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hermann MM, van Asten F, Muether PS, Smailhodzic D, Lichtner P, Hoyng CB, et al. Polymorphisms in vascular endothelial growth factor receptor 2 are associated with better response rates to ranibizumab treatment in age-related macular degeneration. Ophthalmology. 2014;121(4):905–10.

    Article  PubMed  Google Scholar 

  176. Hagstrom SA, Ying G-S, Maguire MG, Martin DF, Gibson J, Lotery A, et al. VEGFR2 gene polymorphisms and response to anti–vascular endothelial growth factor therapy in age-related macular degeneration. Ophthalmology. 2015;122:1563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Smailhodzic D, Muether PS, Chen J, Kwestro A, Zhang AY, Omar A, et al. Cumulative effect of risk alleles in CFH, ARMS2, and VEGFA on the response to ranibizumab treatment in age-related macular degeneration. Ophthalmology. 2012;119(11):2304–11.

    Article  PubMed  Google Scholar 

  178. Tian J, Qin X, Fang K, Chen Q, Hou J, Li J, et al. Association of genetic polymorphisms with response to bevacizumab for neovascular age-related macular degeneration in the Chinese population. Pharmacogenomics. 2012;13(7):779–87.

    Article  CAS  PubMed  Google Scholar 

  179. Park UC, Shin JY, McCarthy LC, Kim SJ, Park JH, Chung H, et al. Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol Vis. 2014;20:1680.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Nakata I, Yamashiro K, Nakanishi H, Tsujikawa A, Otani A, Yoshimura N. VEGF gene polymorphism and response to intravitreal bevacizumab and triple therapy in age-related macular degeneration. Jpn J Ophthalmol. 2011;55(5):435–43.

    Article  CAS  PubMed  Google Scholar 

  181. Imai D, Mori K, Horie-Inoue K, Gehlbach PL, Awata T, Inoue S, et al. CFH, VEGF, and PEDF genotypes and the response to intravitreous injection of bevacizumab for the treatment of age-related macular degeneration. J Ocul Biol Dis Inform. 2010;3(2):53–9.

    Article  Google Scholar 

  182. Park UC, Shin JY, Kim SJ, Shin ES, Lee JE, McCarthy LC, et al. Genetic factors associated with response to intravitreal ranibizumab in Korean patients with neovascular age-related macular degeneration. Retina. 2014;34(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  183. Bessho H, Honda S, Kondo N, Nishimura K, Negi A. Positive association of complement factor H gene variants with the effect of photodynamic therapy in polypoidal choroidal vasculopathy. J Clinic Exp Ophthalmol. 2011;2:122.

    Google Scholar 

  184. Sakurada Y, Kubota T, Imasawa M, Tsumura T, Mabuchi F, et al. Angiographic lesion size associated with LOC387715 A69S genotype in subfoveal polypoidal choroidal vasculopathy. Retina. 2009;29:1522–6.

    Article  PubMed  Google Scholar 

  185. Nakata I, Yamashiro K, Yamada R, Gotoh N, Nakanishi H, Hayashi H, et al. Genetic variants in pigment epithelium-derived factor influence response of polypoidal choroidal vasculopathy to photodynamic therapy. Ophthalmology. 2011;118(7):1408–15.

    PubMed  Google Scholar 

  186. Park DH, Kim IT. LOC387715/HTRA1 variants and the response to combined photodynamic therapy with intravitreal bevacizumab for polypoidal choroidal vasculopathy. Retina. 2012;32(2):299–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported through the National Health and Medical Research Council of Australia (NHMRC) project grant 1008979 and Senior Research Fellowship 1028444 (PNB). A Melbourne International research Scholarship and Melbourne International fee remission scholarship from the University of Melbourne (MR). The Centre for Eye Research Australia (CERA) receives operational infrastructure support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul N. Baird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Riaz, M., Baird, P.N. (2017). Paradigm of Susceptibility Genes in AMD and PCV. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume I. Essentials in Ophthalmology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56511-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56511-6_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56509-3

  • Online ISBN: 978-4-431-56511-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics