Skip to main content

The Role of Thermal Energy in Shock Consolidation

  • Chapter
Shock Waves in Materials Science

Abstract

Dynamic consolidation has considerable potential for densifying high strength materials which are very difficult to sinter by conventional techniques. Formation of dense compacts requires the collapse of the gaps between the particles as well as considerable amount of energy deposited at the particle surfaces for interparticle bonding. The ultra rapid deformation and energy deposition in shock consolidation produces partial melting at the particle surfaces followed by a rapid solidification via heat conduction into the interior of the particles. A series of attempts have been made by a number of investigators to consolidate these difficult-to-consolidate powders [1–6]. However, there exist two major problems. One is cracking of the compacts at both the microscopic and macroscopic level. The other is a lack of uniformity in microstructure and mechanical properties within the resulting compacts. Three novel approaches have been implemented: (1) shock consolidation of pre-heated specimens; (2) shock densification at a low pressure (just above threshold for pore collapse) followed by hot isostatic pressing (hipping); (3) use of local shock-induced reactions to increase temperatures of particle interfaces and enhance bonding. Fig. 1 shows, in a schematic fashion, these three approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi T, Sawaoka AB (1987) Mater. Sci. 22: 3276.

    Article  ADS  Google Scholar 

  2. Akashi T, Sawaoka AB (1987) J. Mater. Sci. 22: 1127.

    Article  ADS  Google Scholar 

  3. Sawai S, Kondo K (1990) J. Am. Ceram. Soc. 73: 2428.

    Article  Google Scholar 

  4. Sawai S, Kondo K (1988) J. Am. Ceram. Soc. 71: C-185

    Article  Google Scholar 

  5. Tan T, Ahrens TJ (1988) J. Mater. Res. 3:1010.

    Article  ADS  Google Scholar 

  6. Potter DK, Ahrens TJ (1987) Appl Phys. Lett. 51: 317.

    Article  ADS  Google Scholar 

  7. Shang SS, Meyers MA (1991) Metall. Trans. 22A: 2667.

    Google Scholar 

  8. Shang SS, Hokamoto K, Meyers MA (1992) J. Mater. Sci. 27:5470.

    Article  ADS  Google Scholar 

  9. Wang SL, Meyers MA, Szecket A (1988) J. Mater. Sci. 23: 1786.

    Article  ADS  Google Scholar 

  10. Coker HL, Meyers MA, Wessels JF (1991) J. Mater. Sci. 25: 1277.

    Article  ADS  Google Scholar 

  11. Ferreira A, Meyers MA, Thadhani NN, Chang SN, Kough JR (1991) Metall. Trans. 22A: 685.

    Google Scholar 

  12. Ferreira A, Meyers MA, Thadhani NN (1992) Metall. Trans., in press.

    Google Scholar 

  13. Yu LH, Meyers MA, Thadhani NN (1990) J. Mater. Res. 5: 302.

    Article  ADS  MATH  Google Scholar 

  14. Gourdin WH (1984) J. Appl. Phys. 55: 172.

    Article  ADS  Google Scholar 

  15. Schwarz RB, Kasiraj P, Vreeland T Jr, Ahrens TJ (1984) Acta Metall. 32: 1243.

    Article  Google Scholar 

  16. Nesterenko VF (1988) Proe. Novosibirsk-Conference on Dynamic Compaction, 100.

    Google Scholar 

  17. Meyers MA, Murr LE (1981) in Shock Wave and High - Strain - Rate Phenomena in Metals, eds. Meyers MA, Murr LE, Plenum Press, N.Y., 487.

    Chapter  Google Scholar 

  18. Lotrich VF, Akashi T, Sawaoka A (1986) in Metallurgical Applications of Shock Wave and High - Strain - Rate Phenomena, eds. Murr LE, Staudhammer KP, Meyers MA.

    Google Scholar 

  19. Elliott NE, Staudhammer KP (1992) in Shock Wave and High -Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 371.

    Google Scholar 

  20. Ferreira A, Meyers MA (1992) in Shock Wave and High - Strain - Rate Phenomena in Matrials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 361.

    Google Scholar 

  21. Carroll MM, Holt AC (1972) J. Appi. Phys., 43: 1626.

    Article  ADS  Google Scholar 

  22. Norwood FR, Graham RA (1992) in Shock Wave and High- Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 989.

    Google Scholar 

  23. Shang SS, Meyers MA, unpublished results.

    Google Scholar 

  24. Helle AS, Easterling KE, Ashby MF (1985) Acta Metall. 33: 2163.

    Article  Google Scholar 

  25. Fischmeister HF, Arzt E (1983) Powder Metall. 26: 82.

    Google Scholar 

  26. Arzt E (1982) Acta Metall. 30: 1883.

    Article  Google Scholar 

  27. Staudhammer KP, Murr LE (1988) in Shock Waves for Industrial Applications, ed. Murr LE, NO YES Publishers, N.J., 237.

    Google Scholar 

  28. Norwood FR, Graham RA, Sawaoka A (1986) in Shock Waves in Condensed Matter, ed. Gupta YM, Plenum Press, 837.

    Chapter  Google Scholar 

  29. Thadhani NN, Holman GT, Romero B, Graham RA (1991) CETR Report No. A-01–91

    Google Scholar 

  30. Korth GE, Flinn JE, Green RC (1986) in Metallurgical Applications of Shock Wave and High - Strain - Rate Phenomena, eds. Murr LE, Staudhammer KP, Meyers MA, Marcel Dekker Inc., N.Y., 129.

    Google Scholar 

  31. Mutz AH, Vreeland T Jr. (1992) in Shock Wave and High - Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 425.

    Google Scholar 

  32. Ahrens TJ, Bond GM, Yang W, Liu G (1992) in Shock Wave and High - Strain - Rate Inc., N.Y., 339.

    Google Scholar 

  33. Sawaoka AB, Horie Y (1992) in Shock Wave and High - Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP Marcel Dekker Inc., N.Y., 323.

    Google Scholar 

  34. Prümmer R (1987) Explosivverdichtung Pulvriger Substanzen, Springer-Verlag, Berlin, Germany..

    Google Scholar 

  35. Meyers MA, Gupta BB, Murr LE (1981) J. of Metals 33: 21.

    Google Scholar 

  36. Meyers MA, Wang SL (1988) Acta Metall. 4: 925.

    Google Scholar 

  37. Gurney RK (1943) The Initial Velocities of Fragments From Bombs, Shells, and Grenades, BRL Report 405.

    Google Scholar 

  38. Yu LH, Meyers MA (1992) in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 303.

    Google Scholar 

  39. Meyers MA, Pak H.-r, (1985) J. Mater. Sci. 20: 2133.

    Article  ADS  Google Scholar 

  40. Wang SL, Meyers MA, Graham RA (1986) in Shock Waves in Condensed Matter, ed. Gupta YM, Plenum Press, 731.

    Chapter  Google Scholar 

  41. Morris DG (1981): Met. Sci. 15: 116.

    Article  Google Scholar 

  42. Potter DK, Ahrens TJ (1988) J. Appi. Phys. 63: 910.

    Article  ADS  Google Scholar 

  43. Yu LH, Meyers MA (1991) J. Mater. Sci. 26: 601.

    Article  ADS  Google Scholar 

  44. Kunishige K, Horie Y, Sawaoka AB (1992) in Shock Wave and High-Strain-Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Meyers, M.A., Shang, S.S., Hokamoto, K. (1993). The Role of Thermal Energy in Shock Consolidation. In: Sawaoka, A.B. (eds) Shock Waves in Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68240-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68240-0_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68242-4

  • Online ISBN: 978-4-431-68240-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics