Skip to main content

Assembly of Receptive Fields in Cat Visual Cortex

  • Conference paper
The Neural Basis of Early Vision

Part of the book series: Keio University International Symposia for Life Sciences and Medicine ((KEIO,volume 11))

  • 214 Accesses

Abstract

The origin of orientation selectivity in the responses of simple cells in cat visual cortex serves as a model problem for understanding cortical circuitry and computation. The feedforward model of Hubel and Wiesel [1] posits that this selectivity arises simply from the spatial organization of the receptive fields of thalamic inputs synapsing on each simple cell. Much evidence, including a number of recent intracellular studies, supports a primary role of the thalamic inputs in determining simple-cell response properties including orientation tuning. And yet, while the feedforward model seems to explain the broad outline of simple-cell properties, there are number of detailed aspects of the behavior of simple cells that have appeared not to be accounted for by the feedforward model. These properties include contrast invariance of orientation tuning, the exact relationship between receptive field geometry and orientation tuning, and the dynamics of orientation tuning. The apparent failures of the feedforward model have prompted the development of a class of models that rely on feedback circuitry within the cortex: Properly arranged feedback from excitatory connections within an orientation column and inhibitory connections to adjacent columns can account for many of the properties that the feedforward models miss. The feedforward and feedback models are different enough in character that they make radically different predictions about the nature of the computation performed by the cortex, the feedforward models acting more like passive filters, and the feedback models more actively shaping the representation of the retinal image. I will review a series of experiments designed to test these two models, and present evidence that the feedforward models, with little modification, can account in detail for the behavior of cortical simple cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160: 106–154

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Tokyo

About this paper

Cite this paper

Ferster, D.L. (2003). Assembly of Receptive Fields in Cat Visual Cortex. In: Kaneko, A. (eds) The Neural Basis of Early Vision. Keio University International Symposia for Life Sciences and Medicine, vol 11. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68447-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68447-3_25

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68449-7

  • Online ISBN: 978-4-431-68447-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics