Skip to main content

Performance Evaluation Techniques: An Application to Indian Garments Industry

  • Chapter
  • First Online:
Book cover Development and Sustainability

Abstract

One plausible way to assess empirically the impact of reforms in globalization on an industry is by evaluation of its performance under these reforms in the input–output framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see Kumbhakar and Lovell (2000), pp. 70–71, for details.

  2. 2.

    see Olson et al. (1980), for a detailed discussion.

  3. 3.

    Equations (10.17–10.21) in the Appendix give the details for a half-normal model.

  4. 4.

    For output-oriented technical efficiency the interpretation of radial and slack inefficiencies will just be reversed.

  5. 5.

    Here \( x_{1} \;\&\; x_{2} \) indicate two inputs and \( y \) represents one output.

  6. 6.

    Here \( y_{1} \;\&\; y_{2} \) indicate two outputs and \( x \) represents one input.

  7. 7.

    Data for the pre-globalization period could not be used due to non-comparable data collection procedures in the ASI framework.

  8. 8.

    As the variation of u is low, the estimation of technical efficiency under conditional mean model cannot be successfully performed for our sample of firms in the Garments Sector. There are convergence problems. .

  9. 9.

    There are some tests performed to check certain conditions regarding the applicability of the model. The rationale for these tests and the results for our application are spelt out in Appendix 2.

  10. 10.

    Size: Each year individual firms are arranged in ascending order of size (measured by values of intermediate inputs used by them) and then the firms are classified into different quartile groups like the lowest 25 % denoted by Very Small, the next 25 % denoted by Small, the third quartile denoted by Large, and the highest 25 % denoted by Very Large

     Age: Here classification of firms in terms of three age groups, namely, Very Old, Old, and Young is proposed utilizing information on whether the firms were established before 20 years, between 10 and 20 years and within 10 years’ time, respectively.

References

  • Afriat SN (1972) Efficiency estimation of production functions. Int Econ Rev 13(3):568–598

    Article  Google Scholar 

  • Aigner DJ, Chu SF (1968) On estimating the industry production function. Am Econ Rev 58(4):826–839

    Google Scholar 

  • Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econom 6(1):21–37

    Article  Google Scholar 

  • Ali M, Flinn JC (1989) Profit efficiency among basmati rice producers in Pakistan Punjab. Am J Agr Econ 71(2):303–310

    Article  Google Scholar 

  • Aragon Y, Daouia A, Thomas-Agnan C (2005) Nonparametric frontier estimation: a conditional quantile based approach. Econom Theory 21:358–389

    Google Scholar 

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30(9):1078–1092

    Article  Google Scholar 

  • Banker R, Datar S, Kemerer C (1991) A model to evaluate variables impacting the productivity of software maintenance projects. Manage Sci 37(1):1–18

    Article  Google Scholar 

  • Banker R, Gadh V, Gorr W (1993) A Monte Carlo comparison of production frontier estimation methods. European J Oper Res 37(3):332–343

    Google Scholar 

  • Banker RD, Natarajan R (2008) Evaluating contextual variables affecting productivity using data envelopment analysis. Oper Res 56(1):48–58

    Article  Google Scholar 

  • Battese GE, Broca SS (1997) Functional forms of stochastic frontier production functions and models for technical inefficiency effects: a comparative study for wheat farmers in Pakistan. J Prod Anal 8(4):395–414

    Article  Google Scholar 

  • Battese GE, Coelli TJ (1988) Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J Econom 38(3):387–399

    Article  Google Scholar 

  • Belbase K, Grabowski R (1985) Technical efficiency in Nepalese agriculture. J Dev Areas 19(4):515–525

    Google Scholar 

  • Bhandari AK, Maity P (2012) Efficiency of the Indian leather firms: some results obtained using two conventional methods. J Prod Anal 37:73–93

    Article  Google Scholar 

  • Bhandari AK, Maiti P (2007) Efficiency of Indian manufacturing firms: textile industry as a case study. Int J Bus Econ 6(1):71–88

    Google Scholar 

  • Bhavani T (1991) Technical efficiency in Indian modern small scale sector: an application of frontier production function. Indian Econ Rev 26(2):149–166

    Google Scholar 

  • Bjurek H, Hjalmarsson L, Førsund FR (1990) Deterministic parametric and non- parametric estimation of efficiency in service production. J Econom 46(1/2):213–227

    Article  Google Scholar 

  • Cavalluzzo L, Baldwin D (1993) Unionization and productive efficiency. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency. Oxford University Press, New York, pp 210–220

    Google Scholar 

  • Cazals C, Florens JP, Simar L (2002) Nonparametric frontier estimation: a robustb approach. J Econom 106(2002):1–25

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444

    Article  Google Scholar 

  • Cherchye L, Kuosmanen T, Post P (2000) Why convexify ? An assessment of convexity axioms In Dea, Helsingin Kauppakorkeakoulu Helsinki School Of Economics And Business Administration, Working Papers W-270

    Google Scholar 

  • Coelli TJ, Battese GE (1996) Identification of factors which influence the technical inefficiency of Indian farmers. Australian J Agr Econ 40(2):103–128

    Article  Google Scholar 

  • Coelli TJ, Perelman S, Romano E (1999) Accounting for environmental influences in stochastic frontier models: with application to international airlines. J Prod Anal 11(3):251–273

    Article  Google Scholar 

  • Cooper WW, Huang ZM, Li SX (1996) Satisficing DEA models under chance constraints. Ann Oper Res 66:279–295

    Article  Google Scholar 

  • Cummins JD, Zi H (1998) Comparison of frontier efficiency methods: an application to the U. S. Life Insurance Industry. J Prod Anal 10(2):131–152

    Article  Google Scholar 

  • Daouia A, Simar L (2007) Nonparametric efficiency analysis: a multivariate conditional quantile approach. Open Access Publications from University of Toulouse 1 Capitole http://neeo.univ-tlse1.fr, University of Toulouse 1, Capitole

  • Debreu G (1951) The coefficient of resource utilization. Econometrica 19(3):273–292

    Article  Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Series A (General) 120(3):253–290

    Google Scholar 

  • Farrell MJ, Fieldhouse M (1962) Estimating efficient production frontiers under IRS. J R Stat Soc Series A 125(2):252–267

    Article  Google Scholar 

  • Fuwa N, Edmonds C, Banik P (2007) Are small-scale farmers in Eastern India really inefficient? Examining the effects of microtopography on technical efficiency estimates. Agr Econ 36(3):335–346

    Article  Google Scholar 

  • Gabrielsen A (1975) On estimating efficient production functions. Working Paper No. A-85, Christian Michelsen Institute, Department of Humanities and Social Sciences, Bergen, Norway

    Google Scholar 

  • Goldar B (1985) Unit size and economic efficiency in small scale washing soap industry in India. Artha Vijnana 27(1):21–40

    Google Scholar 

  • Goldar B (1988) Relative efficiency of modern small scale industries in India. In: Suri KB (ed) Small scale enterprises in industrial development. Sage Publication, New Delhi

    Google Scholar 

  • Goldar B, Renganathan VS, Banga R (2004) Ownership and efficiency in engineering firms: 1990–91 to 1999–2000. Econ Polit Weekly 39(5):441–447

    Google Scholar 

  • Greene WH (1990) A gamma-distributed stochastic frontier model. J Econom 46(1/2):141–163

    Article  Google Scholar 

  • Gstach D (1998) Small sample performance of two approaches to technical efficiency estimation with multiple outputs. Department of Economics, Working Papers from Vienna University of Economics, Department of Economics

    Google Scholar 

  • Hattori T (2002) Relative performance of U. S. and Japanese electricity distribution: an application of stochastic frontier analysis. J Prod Anal 18(3):269–284

    Article  Google Scholar 

  • Herzog HW, Hofler RA, Schlottmann AM (1985) Life on the frontier: migrant information, earnings and past mobility. Rev Econ Stat 67(3):373–382

    Article  Google Scholar 

  • Hoffman AJ (1957) Discussion on Mr. Farrell’s paper. J R Stat Soc Series A 120(3):284

    Google Scholar 

  • Hofler RA, Polachek S (1985) A new approach for measuring wage ignorance in the labor market. J Econ Bus 37(3):267–276

    Article  Google Scholar 

  • Hjalmarsson L, Kumbhakar SC, Heshmati A (1996) DEA, DFA and SFA: a comparison. J Prod Anal 7(2–3):303–327

    Article  Google Scholar 

  • Huang ZM, Li SX (2001) Stochastic DEA models with different types of input–output disturbances. J Prod Anal 15:95–113

    Article  Google Scholar 

  • Huang CJ, Liu JT (1994) Estimation of a non-neutral stochastic frontier production function. J Prod Anal 5(2):171–180

    Article  Google Scholar 

  • Hunt-McCool JC, Warren RS Jr (1993) Earnings frontiers and labor market efficiency. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency. Oxford University Press, New York, pp 197–209

    Google Scholar 

  • Jondrow J, Lovell CAK, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econom 19(2/3):233–238

    Article  Google Scholar 

  • Kalirajan KP (1981) An econometric analysis of yield variability in paddy production. Can J Agr Econ 29(3):283–294

    Article  Google Scholar 

  • Kneip A, Park BU, Simar L (1998) A note on the convergence of nonparametric DEA estimators for production efficiency scores. Econom Theory 14(6):783–793

    Google Scholar 

  • Koopmans TC (1957) Three essays on the state of economic science. McGraw-Hill Book Company, New York

    Google Scholar 

  • Korostelev AP, Simar L, Tsybakov AB (1995) Efficient estimation of monotone boundaries. Anal Stat 23(2):476–489

    Google Scholar 

  • Kumbhakar SC, Ghosh S, McGuckin JT (1991) A generalized production frontier approach for estimating determinants of inefficiency in U. S. dairy farms. J Bus Econ Stat 9(3):279–286

    Google Scholar 

  • Kumbhakar SC, Lovell CAK (2000) Stochastic frontier analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kuosmanen T (2006) Stochastic nonparametric envelopment of data: combining virtues of SFA and DEA in a unified framework. MTT Discussion Paper No. 3/2006

    Google Scholar 

  • Kuosmanen T, Kortelainen M (2007) Stochastic DEA myths and misconceptions, PPT url http://www.docstoc.com/docs/50906992/Stochastic-DEA-Myths-and-misconceptions-TimoKuosmanen-HSE-MTT-Andrew-Johnson-Texas-A-M-University-Mika-Kortelainen-University-of-Manchester-XI-EWEPA-2009-Pisa

  • Kuosmanen T, Post GT (1999) Robust efficiency measurement. Rotterdam Institute for Business Economic Studies (RIBES), 1999/3/25, Rotterdam. Report, vol 9911

    Google Scholar 

  • Lall SV, Rodrigo GC (2001) Perspectives on the sources of heterogeneity in Indian industry. World Dev 29(12):2127–2143

    Article  Google Scholar 

  • Land KC, Lovell AK, Thore S (1993) Chance constrained data envelopment analysis. Manag Decis Econ 14(6):541–554

    Article  Google Scholar 

  • Levin H (1974) Measuring efficiency in educational production. Public Financ Quart 2(1):3–24

    Google Scholar 

  • Little IMD, Mazumdar D, Page JM Jr (1987) Small manufacturing enterprises: a comparative study of India and other economies, Oxford University Press, Washington

    Google Scholar 

  • Lundvall K, Battese GE (2000) Firm size, age and efficiency: evidence from Kenyan manufacturing firms. J Dev Stud 36(3):146–163

    Article  Google Scholar 

  • Maindiratta A (1990) Largest size efficient scale and size efficiencies of decision- making units in data envelopment analysis. J Econom 46(1/2):57–72

    Article  Google Scholar 

  • Meeusen W, Van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production function with composed error. Int Econ Rev 18(2):435–444

    Article  Google Scholar 

  • Neogi C, Ghosh B (1994) Intertemporal efficiency variations in Indian manufacturing industries. J Prod Anal 5(3):301–324

    Article  Google Scholar 

  • Nikaido Y (2004) Technical efficiency of small-scale industry: application of stochastic production frontier model. Econ Polit Weekly 39(6):592–597

    Google Scholar 

  • Nourzad F (2002) Real money balances and production efficiency: a panel data stochastic production frontier study. J Macroecon 24(1):125–134

    Article  Google Scholar 

  • Olesen OB, Petersen NC (1995) Incorporating quality into data envelopment analysis: a stochastic dominance approach. Int J Prod Econ 39:117–135

    Article  Google Scholar 

  • Olson J, Schmidt P, Waldman D (1980) A Monte Carlo study of estimators of the z stochastic frontier production functions. J Econom 13(1):67–82

    Article  Google Scholar 

  • Ondrich J, Ruggiero J (2001) Efficiency measurement in the stochastic frontier model. Eur J Oper Res 129:434–442

    Article  Google Scholar 

  • Page JM (1984) Firm size and technical efficiency: application of production frontiers of Indian survey data. J Dev Econ

    Google Scholar 

  • Pitt MM, Lee L-F (1981) Measurement and sources of technical inefficiency in the Indonesian weaving industry. J Dev Econ 9(1):43–64

    Article  Google Scholar 

  • Ramaswamy VK (1994) Technical efficiency in modern small-scale firms in Indian industry: applications of stochastic production, frontier. J Quant Econ 10(2):309–324

    Google Scholar 

  • Ray SC (2004) Data envelopment analysis: theory and technique for economics and operation research, Cambridge University Press, Cambridge

    Google Scholar 

  • Reifschneider D, Stevenson R (1991) Systematic departures from the frontier: a framework for the analysis of firm inefficiency. Int Econ Rev 32(3):715–723

    Article  Google Scholar 

  • Richmond J (1974) Estimating the efficiency of production. Int Econ Rev 15(2):515–521

    Article  Google Scholar 

  • Robinson MD, Wunnava PV (1989) Measuring direct discrimination in labor markets using a frontier approach: evidence from CPS female earnings data. South Econ J 56(1):212–218

    Article  Google Scholar 

  • Rossi MA, Canay IA (2001) Measuring inefficiency in public utilities: does the distribution matter? http://www.aaep.org.ar/espa/anales/pdf_01/rossi_canay.pdf

  • Roy Biswas P, Ghose A (2012a) Growth efficiency and productivity of Indian manufacturing industry: an econometric analysis, LAP Lambert Academic Publishing, Saarbrucken ISBN 978-3-8484-8354-9

    Google Scholar 

  • Roy Biswas P, Ghose A (2012b) Role of trade related factors in determining technical efficiency of West Bengal’s manufacturing industries : evidence from stochastic frontier approach. Trade Dev Rev 5(1):1–36

    Google Scholar 

  • Schmidt P (1976) On the statistical estimation of parametric frontier production functions. Rev Econ Stat 58(2):238–239

    Article  Google Scholar 

  • Seaver BL, Triantis KP (1989) The implications of using messy data to estimate production-frontier-based technical efficiency measures. J Bus Econ Stat 7(1):49–59

    Google Scholar 

  • Seiford LM, Zhu J (1999) An investigation of returns to scale in data envelopment analysis, Omega, Elsevier, vol 27(1), pp 1–11

    Google Scholar 

  • Shapiro KH, Müller J (1977) Sources of technical efficiency: the roles of modernization and information. Econ Dev Cult Change 25(2):293–310

    Article  Google Scholar 

  • Sharma KR, Leung PS (1998) Technical efficiency of carp production in Nepal: an application of the stochastic frontier production function approach. Aquacult Econ Manage 2:129–140

    Article  Google Scholar 

  • Simar L, Wilson PW (1998) Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Manage Sci 44:49–61

    Article  Google Scholar 

  • Simar L, Wilson PW (2000a) Statistical inference in nonparametric frontier models: the state of the art. J Prod Anal 13:49–78

    Article  Google Scholar 

  • Simar L, Wilson PW (2000b) A general methodology for bootstrapping in nonparametric frontier models. J Appl Stat 27:779–802

    Article  Google Scholar 

  • Simar L, Zelenyuk V (2006) On testing equality of two distribution functions of efficiency score estimated via DEA. Econom Rev 25(4):497–522

    Google Scholar 

  • Stevenson RE (1980) Likelihood functions for generalized stochastic frontier estimation. J Econom 13(1):57–66

    Article  Google Scholar 

  • Timmer CP (1971) Using a probabilistic frontier production function to measure technical efficiency. J Polit Econ 79(4):776–794

    Article  Google Scholar 

  • Van den Broeck J, Førsund FR, Hjalmarsson L, Meeusen W (1980) On the estimation of deterministic and stochastic frontier production functions. J Econom 13(1):117–138

    Article  Google Scholar 

  • Waldman D (1982) A stationary point for the stochastic frontier likelihood. J Econom 18(2):275–279

    Article  Google Scholar 

  • Wang H-J, Schmidt P (2002) One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. J Prod Anal 18(2):129–144

    Article  Google Scholar 

  • Winsten CB (1957) Discussion on Mr Farrell’s paper. J R Stat Soc Series A 120(3):282–284

    Article  Google Scholar 

  • Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput 3:149–175

    Google Scholar 

  • Wilson P, Hadley D, Asby C (2001) The influence of management characteristics on the technical efficiency of wheat farmers in Eastern England. Agr Econ 24(3):329–338

    Article  Google Scholar 

Download references

Acknowledgments

We thank Arijit Chakrabarty of ISI, Delhi, and Anup Bhandari of CDS, Trivandram, for their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Majumder .

Editor information

Editors and Affiliations

Appendices

Appendix 1

A Note on Normal–Half-Normal Model

The basic distributional assumption in this case is:

(i)\( v{}_{i}\sim iid - N(0,\sigma_{v}^{2} ) \)

(ii)\( u{}_{i}\sim iid - N^{ + } (0,\sigma_{u}^{2} ) \)

(iii)\( u_{i}\; \& \;v_{i} - Independent \)

So the joint density of \( u\;\&\; v \) is:

$$ f\left( {u,v} \right) = \frac{2}{{2\pi \sigma_{u} \sigma_{v} }}\exp \left\{ { - \frac{{u^{2} }}{{2\sigma_{u}^{2} }} - \frac{{v^{2} }}{{2\sigma_{v}^{2} }}} \right\} $$
(10.17)

Now assume \( \varepsilon = v - u \). Therefore the expression of joint density of \( u\;\& \;\varepsilon \) is:

$$ f\left( {u,\varepsilon } \right) = \frac{2}{{2\pi \sigma_{u} \sigma_{v} }}\exp \left\{ { - \frac{{u^{2} }}{{2\sigma_{u}^{2} }} - \frac{{\left( {\varepsilon + u} \right)^{2} }}{{2\sigma_{v}^{2} }}} \right\} $$
(10.18)

The marginal density of \( \varepsilon \) is:

$$ \begin{aligned} f\left( \varepsilon \right) &= \int\limits_{0}^{\infty } {f\left( {u,\varepsilon } \right)} du \hfill \\&= \frac{2}{{\sqrt {2\pi } \sigma }}\left[ {1 - \Upphi \left( {\frac{\varepsilon \lambda }{\sigma }} \right)} \right]\exp \left\{ { - \frac{{\varepsilon^{2} }}{{2\sigma^{2} }}} \right\} \hfill \\&= \frac{2}{\sigma }\varphi \left( {\frac{\varepsilon }{\sigma }} \right)\Upphi \left( { - \frac{\varepsilon \lambda }{\sigma }} \right) \hfill \\ \end{aligned} $$
(10.19)

where; \( \sigma = \left( {\sigma_{u}^{2} + \sigma_{v}^{2} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) and \( \lambda = \frac{{\sigma_{u} }}{{\sigma_{v} }} \)

The log likelihood function of the sample of \( N \) producer is:

$$ \ln L = {\text{CONS}} - N\ln \sigma + \sum\limits_{i = 1}^{N} {\ln \Upphi \left( { - \frac{{\varepsilon_{i} \lambda }}{\sigma }} \right)} - \frac{1}{{2\sigma^{2} }}\sum\limits_{i = 1}^{N} {\varepsilon_{i} } $$
(10.20)

The conditional distribution of \( u|\varepsilon \) is:

$$ \begin{aligned} f\left( {u|\varepsilon } \right) &= \frac{{f\left( {u,\varepsilon } \right)}}{f\left( \varepsilon \right)} \hfill \\ \hfill \\& = \frac{1}{{\sqrt {2\pi } \sigma_{*} }}{\raise0.7ex\hbox{${\exp \left\{ { - \frac{{\left( {u - \mu_{*} } \right)^{2} }}{{2\sigma_{*}^{2} }}} \right\}}$} \!\mathord{\left/ {\vphantom {{\exp \left\{ { - \frac{{\left( {u - \mu_{*} } \right)^{2} }}{{2\sigma_{*}^{2} }}} \right\}} {\left[ {1 - \Upphi \left( { - \frac{{\mu_{*} }}{{\sigma_{*} }}} \right)} \right]}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\left[ {1 - \Upphi \left( { - \frac{{\mu_{*} }}{{\sigma_{*} }}} \right)} \right]}$}} \hfill \\ \end{aligned} $$
(10.21)

where; \( \mu_{*} = - \frac{{\varepsilon \sigma_{u}^{2} }}{{\sigma^{2} }} \) and \( \sigma_{*}^{2} = \frac{{\sigma_{u}^{2} \sigma_{v}^{2} }}{{\sigma^{2} }} \)

Estimated Technical Efficiency of ith Firm:

$$ \begin{aligned} TE_{i}& = E\left( {\exp \left\{ { - u_{i} } \right\}|\varepsilon_{i} } \right) \hfill \\ &= \left[ {\frac{{1 - \Upphi \left( {\sigma_{*} - {\raise0.7ex\hbox{${\mu_{*i} }$} \!\mathord{\left/ {\vphantom {{\mu_{*i} } {\sigma_{*} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sigma_{*} }$}}} \right)}}{{1 - \Upphi \left( { - {\raise0.7ex\hbox{${\mu_{*i} }$} \!\mathord{\left/ {\vphantom {{\mu_{*i} } {\sigma_{*} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sigma_{*} }$}}} \right)}}} \right]\exp \left\{ { - \mu_{*i} + \frac{1}{2}\sigma_{*}^{2} } \right\} \hfill \\ \end{aligned} $$
(10.22)

Appendix 2

Some Conditions for SFPF Model

Likelihood Ratio Test

Suppose, we have a three input production function \( Y = f\left( {x,\,y,\,z} \right) \). In order to estimate the SFPF model, the chapter uses fixed assets, intermediate input, and man-days worked as inputs. It may be possible that some of the inputs may be unimportant. This may be judged by performing statistical significance of the parameters associated with that particular input variable using likelihood ratio test. The higher the value of the LR statistic and the closer the value of the probability to zero, the better the fit. The results of our study are summarized in Table 10.22. It is only for the year 2001–2002 for the input Fixed Asset that we find the fit is not so good. Still, we continue taking this input for the year.

Table 10.22 Likelihood ratio test for half-normal frontier model

Monotonicity Requirement

Three conditions need to be satisfied:

(i) \( f_{x} = \frac{\partial Y}{\partial x} \ge 0 \); (ii) \( f_{y} = \frac{\partial Y}{\partial y} \ge 0 \); and (iii) \( f_{z} = \frac{\partial Y}{\partial z} \ge 0 \)

Table 10.23 reports the number of firms having positive input elasticities for each of the inputs in our study. It is to be noted that these firms that have positive input elasticity with respect to an input would satisfy the Monotonicity Requirement for that input autmatically.

Table 10.23 Firms having positive input elasticity

Quasiconcavity Requirement

For a three-input model, three conditions need to be satisfied [Notations carry their usual meanings]:

  1. (a)

    \( \left| {\begin{array}{*{20}c} 0 & {f_{x} } \\ {f_{x} } & {f_{xx} } \\ \end{array} } \right| \le 0 \), which is a trivial requirement and is satisfied always;

  2. (b)

    \( \left| {\begin{array}{*{20}c} 0 & {f_{x} } & {f_{y} } \\ {f_{x} } & {f_{xx} } & {f_{xy} } \\ {f_{y} } & {f_{xy} } & {f_{yy} } \\ \end{array} } \right| \ge 0; \)

  3. (c)

    \( \left| {\begin{array}{*{20}c} 0 & {f_{x} } & {f_{y} } & {f_{z} } \\ {f_{x} } & {f_{xx} } & {f_{xy} } & {f_{xz} } \\ {f_{y} } & {f_{xy} } & {f_{yy} } & {f_{yz} } \\ {f_{z} } & {f_{xz} } & {f_{yz} } & {f_{zz} } \\ \end{array} } \right| \le 0. \)

We have to check the number of firms satisfying both (b) and (c) above. Table 10.24 reports the number of firms satisfying these requirements in our study.

Table 10.24 Firms satisfying regularity property

A note of caution may apply. The estimated parameters need to be adjusted according to the form of the production function and the form in which the variables are used to derive the function for the empirical estimation. For instance,

\( f_{x} = \frac{\partial Y}{\partial x} = \frac{\partial \ln Y}{\partial \ln x} \times \frac{Y}{x} = \varepsilon_{x}^{Y} \times \frac{Y}{x} \); and similarly for \( f_{y} = \varepsilon_{y}^{Y} \times \frac{Y}{y} \) and \( f_{z} = \varepsilon_{z}^{Y} \times \frac{Y}{z} \).

Again, for the second order derivatives \( f_{xx} ,\,f_{xy} ,\, \ldots ,f_{zz} \)in the matrix under (b) and (c) above need to be adjusted. For instance, \( f_{xx} \) should be \( \left[ {\beta_{11} + \left( {\varepsilon_{x}^{Y} } \right)^{2} \;- \;\varepsilon_{x}^{Y} } \right] \times \frac{Y}{{x^{2} }} \). Similarly, \( f_{yy} = \left[ {\beta_{22} + \left( {\varepsilon_{y}^{Y} } \right)^{2} \;-\; \varepsilon_{y}^{Y} } \right] \times \frac{Y}{{y^{2} }} \) and \( f_{zz} = \left[ {\beta_{33} + (\varepsilon_{z}^{Y} )^{2} - \varepsilon_{z}^{Y} } \right] \times \frac{Y}{{z^{2} }} \). Cross partials also need to be adjusted. In general, \( f_{ij} = \left[ {\beta_{ij} + \varepsilon_{i}^{Y} \varepsilon_{j}^{Y} } \right] \times \frac{Y}{{x_{i} x_{j} }}\,\forall \,\,i \ne j;\,{\text{and}}\,\,\,i,j = 1,\,2,\,3 \).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Bandyopadhyay, S., Majumder, S. (2013). Performance Evaluation Techniques: An Application to Indian Garments Industry. In: Banerjee, S., Chakrabarti, A. (eds) Development and Sustainability. Springer, India. https://doi.org/10.1007/978-81-322-1124-2_10

Download citation

Publish with us

Policies and ethics