Skip to main content

Microalgae in Biotechnological Application: A Commercial Approach

  • Chapter
Book cover Plant Biology and Biotechnology

Abstract

Microalgae are used as food, feed, and fodder and also used to produce a wide range of metabolites such as, proteins, carbohydrates, lipids, carotenoids, vitamins, fatty acids, sterols, etc. They are able to enhance the nutritional content of conventional food and feed preparations and hence positively affect humans and animal health including aquaculture animals. They also provide a key tool for phycoremediation of toxic metals and nanometal production. The use of microalgae in nanotechnology is a promising field of research with a green approach. The use of genetically modified algae for better production of different biotechnological compounds of interests is popular nowadays. Microalgal biomass production for sustainable biofuel production together with other high-value compounds in a cost-effective way is the major challenge of algal biotechnologists. Microalgal biotechnology is similar to conventional agriculture but has received quite a lot of attention over the last decades, because they can reach substantially higher productivities than traditional crops and can use the wastelands and the large marine ecosystem. As history has shown, research studies on microalgae have been numerous and varied, but they have not always resulted in commercial applications. The aim of this review is to summarize the commercial applications of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 331–338

    Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    CAS  Google Scholar 

  • Apt KE, Kroth- Pancic PG, Crossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum iricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Google Scholar 

  • Arica MY, Bayramoglu G, Yılmaz M, Genc O, Bektas S (2004) Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood rotting fungus Funalia trogii. J Hazard Mater 109:191–199

    PubMed  Google Scholar 

  • Arif M, Gupta R, Joshi MC (1995) Studies on the use of cyanobacteria as biofertilizer for vegetable cultivation in hydroponic system, in Schirmacher oasis region, East Antarctica Eleventh Indian expedition to Antarctica scientific rep Department of ocean development. Tech Publ 9:243–246

    Google Scholar 

  • Banicki JJ (2004) An alga a day keeps the doctor away. Engineered algae as a new means to vaccinate fish. Twine Line 26:1–5

    Google Scholar 

  • Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84

    Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    CAS  Google Scholar 

  • Becker EW (1994) In: Baddiley J et al (eds) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipids 3:259–272

    CAS  Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    CAS  PubMed  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report, U.S. Department of Energy.http://www.osti.gov”www.osti.govbridge”servlets”purl”493389”FXQyZ2”webviewable”493389.pdf

    Google Scholar 

  • Bhattacharya P, Pal R (2011) Response of cyanobacteria to arsenic toxicity. J Appl Phycol 23:293–299

    CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    CAS  Google Scholar 

  • Burlew JS (1953) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, 357

    Google Scholar 

  • Bursali EA, Cavas L, Seki Y, Bozkurt SS, Yurdakoc M (2009) Sorption of boron by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Chem Eng J 150:385

    CAS  Google Scholar 

  • Cai XH, Logan T, Gustafson T, Traina S, Sayre RT (1995) Application of eukaryotic algae for removal of heavy metal from water. Mol Mar Biol Biotechnol 4:338

    CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    CAS  PubMed  Google Scholar 

  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Ch 270:645–649

    CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation – a novel phenomenon. J Appl Phycol 21:145–152

    CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Pal R (2011) Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South 24-Parganas using algae as bioreagent. J Algal Biomass Utln 2(3):27–41

    Google Scholar 

  • Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  PubMed  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Google Scholar 

  • Chaumont D (2005) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Google Scholar 

  • Chen F (1997) High cell density culture of microalgae in heterotrophic growth. Trends Biotech 14:421–426

    Google Scholar 

  • Chen YC (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. J Appl Phyco 15:439–444

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  PubMed  Google Scholar 

  • De PK (1939) The role of blue-green algae in nitrogen fixation in rice fields. Proc R Soc Lond 127:121–139

    CAS  Google Scholar 

  • De la Noue J, de Pauw N (1988) The potential of microalgal biotechnology – a review of production and uses of microalgae. Biotechnol Adv 6:725–770

    PubMed  Google Scholar 

  • De la Noue J, Laliberte G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254

    Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desmorieux H, Decaen N (2005) Convective drying of Spirulina in thin layer. J Food Eng 66:497–503

    Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Steward WDP (ed) Algal physiology and biochemistry. University of California Press, Berkeley, pp 530–559

    Google Scholar 

  • Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 75:65–70

    Google Scholar 

  • Fish SA, Codd GA (1994) Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue green algae). World J Microb Biotechnol 10:338–341

    CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    CAS  Google Scholar 

  • Gekeler W, Grill E, Winnnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    CAS  Google Scholar 

  • Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456

    CAS  Google Scholar 

  • Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141

    Google Scholar 

  • Gupta AB, Shukla AC (1967) Studies on the nature of algal growth promoting substances and their influence on growth, yield, and protein content of rice plants. J Sci Technol 5:162–163

    CAS  Google Scholar 

  • Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98

    Google Scholar 

  • Harel M, Clayton D (2004) Feed formulation for terrestrial and aquatic animals. US Patent 20070082008 (WO/2004/080196)

    Google Scholar 

  • Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20:3832–3838

    CAS  Google Scholar 

  • Hawksworth DI, Mound LA (1991) Diversity data-bases: the crucial significance of collections. In: Hawksworth DL (ed) The biodiversity of microorganisms and insects. CAB International, Wallingford, pp 17–29

    Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194

    CAS  PubMed  Google Scholar 

  • Hirayasu H, Yoshikawa Y, Tsuzuki S (2005) Sulfated polysaccharides derived from dietary seaweeds increase the esterase activity of a lymphocyte tryptase, granzyme A. J Nutr Sci Vitaminol (Tokyo) 51:475–477

    CAS  Google Scholar 

  • Huang CP, Huang CP, Morehart AL (1990) The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24:433–439

    CAS  Google Scholar 

  • Huang X, EL-sayed IH, Qian W, EL-sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    CAS  PubMed  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    CAS  Google Scholar 

  • Iqbal M, Grey D, Stepan-Sarkissian F, Fowler MW (1993) A flat sided photobioreactor for culturing microalgae. Aquacult Eng 12:183–190

    Google Scholar 

  • Iwamoto H (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species—Chlorella. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 255–263

    Google Scholar 

  • Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue green algae as an immuno-enhancer and biomodulator. J Am Nutraceutical Assoc 3:24–30

    Google Scholar 

  • Kadam KL (2002) Environmental implications of power generation via coal microalgae cofiring. Energy 27:905–922

    CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    CAS  Google Scholar 

  • Kaushik BD (2007) Cyanobacterial biofertilizer technology. In: Kannaiyan S, Kumar K, Govindarajan K (eds) Biofertilizers technology. Scientific Publishers, Jodhpur, pp 53–59

    Google Scholar 

  • Khatoon N, Chattopadhyay P, Mukhopadhyay A, Mukhopadhyay M, Pal R (2009) Algal diet in prawn aquaculture. Fishing Chimes 28:44–47

    Google Scholar 

  • Khatoon N, Chaudhuri A, Sen Roy S, Kundu N, Mukherjee S, Majumdar D, Homechaudhuri S, Pal R (2010a) Algae as feed supplement in fish nutrition. J Bot Soc 64(2):85–93

    Google Scholar 

  • Khatoon N, Sengupta P, Homechaudhuri S, Pal R (2010b) Evaluation of algae based feed in goldfish (Carassius auratus) nutrition. Proc Zool Soc 63(2):109–114

    Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Sci 109:2589–2601

    CAS  Google Scholar 

  • Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    CAS  PubMed  Google Scholar 

  • Kopecky J, Schoefs B, Loest K, Stys D, Pulz O (2000) Microalgae as a source for secondary carotenoid production: a screening study. Arch Hydrobiol Suppl 133:153–168

    CAS  Google Scholar 

  • Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    CAS  Google Scholar 

  • Kuyucak N, Volesky B (1990) Biosorption by algal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 173–198

    Google Scholar 

  • Kyle (1996) Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Technol 2:106–112

    Google Scholar 

  • Kyle DJ, Sicotte VJ, Singer JJ, Reeb SE (1992) Bioproduction of docosahexaenoic acid DHA by microalgae. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. American Oil Chemists Society, Champaign, pp 287–300

    Google Scholar 

  • Lazo P, Dinis MT, Holt J, Faulk C, Arnold C (2000) Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture 188:339–351

    Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Google Scholar 

  • Lee CG, Palsson BO (1994) High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44:1161–1167

    CAS  PubMed  Google Scholar 

  • Lengke M, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)- chloride complex. Environ Sci Technol 40:6304–6309

    CAS  PubMed  Google Scholar 

  • Li DM, Qi YZ (1997) Spirulina industry in China: present status and future prospects. J Appl Phycol 9:25–28

    CAS  Google Scholar 

  • Liang S, Xueming L, Chen F, Chen Z (2004) Current microalgal health food R&D activities in China. Hydrobiologia 512:45–48

    Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3þbiosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A 61:761–765

    Google Scholar 

  • Liu Y, Yang S, Tan S, Lin Y, Tay J (2002) Aerobic granules: a novel zinc biosorbent. Lett Appl Microbiol 35:548–551

    CAS  PubMed  Google Scholar 

  • Lubián LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, González del Valle M, Parés G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12:249–255

    Google Scholar 

  • Maqubela MP, Mnkeni PNS, Malamissa O, Pardo MT, Acqui LPD (2008) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 315:79–92

    Google Scholar 

  • Mei L, Xitao X, Renhao X, Zhili L (2006) Chin J Oceanol Limnol 24:154

    Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27:1217–1228

    CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Indust Microbiol 17:477–489

    CAS  Google Scholar 

  • Misra S, Kaushik BD (1989) Growth promoting substances of cyanobacteria II detection of amino acids, sugars and auxins. Proc Indian Sci Acad B55:499–504

    Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses – review. Biores Technol 99:3949–3964

    CAS  Google Scholar 

  • Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Fernandez Sevilla JM, Acien Fernandez FG, Urda Cardona J (1995) Biomass and icosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Appl Microbiol Biotechnol 42:658–663

    CAS  Google Scholar 

  • Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J

    Google Scholar 

  • Munoz R, Guieysse B (2008) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Google Scholar 

  • Naas KE, Naess T, Harboe T (1992) Enhanced 1st feeding of Halibut Larvae (Hippoglossus hippoglossus L) in green water. Aquaculture 105:143–156

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    CAS  Google Scholar 

  • Narro ML (1987) Petrolium toxicity and oxidation of the aromatic hydrocarbons. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 491–511

    Google Scholar 

  • Nayak D, Nag M, Banerjee S, Pal R, Laskar S, Lahiri S (2006) Preconcentration of 198Au in a green alga, Rhizoclonium. J Radioanal Nucl Ch 268:337–340

    CAS  Google Scholar 

  • Olguín EJ, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycle process under tropical conditions. J Appl Phycol 15:249–257

    Google Scholar 

  • Oswald WJ (1988) Large scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 357–410

    Google Scholar 

  • Oswald WJ, Golueke C (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    CAS  PubMed  Google Scholar 

  • Parial D, Pal R (2014) Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 4:69–72

    Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria – a green chemistry approach. J Appl Phycol 24:55–60

    CAS  Google Scholar 

  • Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12:543–547

    Google Scholar 

  • Planas M, Cunha I (1999) Larviculture of marine fish: problems and perspectives. Aquaculture 177:171–190

    Google Scholar 

  • Pugh N, Pasco DS (2001) Characterization of human monocyte activation by a water soluble preparation of Aphanizomenon flos-aquae. Phytomedicine 8:445–453

    CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv Biochem Eng Biotechnol 59:123–151

    CAS  Google Scholar 

  • Pushparaj B, Pelosi E, Tredici M, Pinzani E, Materassi R (1997) An integrated system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Google Scholar 

  • Qiang H, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 6:391–396

    Google Scholar 

  • Radmer RJ (1996) Algal diversity and commercial algal products. Bioscience 46:263–270

    Google Scholar 

  • Radmer RJ, Parker BC (1994) Commercial applications of algae: opportunities and constraints. J Appl Phycol 6:93–98

    Google Scholar 

  • Rangel-Yagui CO, Godoy Danesi ED, Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Biores Technol 92:133–141

    CAS  Google Scholar 

  • Ratchford IAJ, Fallowfield HJ (1992) Performance of a flat figure, air-lift reactor for the growth of high biomass algal cultures. J Appl Phycol 4:1–9

    Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    CAS  PubMed  Google Scholar 

  • Reitain K, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Google Scholar 

  • Rodgers GA, Bergman B, Henriksson E, Urdis M (1979) Utilization of blue-green as biofertilizers. Plant Soil 52:99–107

    CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Roychoudhury P, Pal R (2014) Spirogyra submaxima-a green alga for nanogold production. J Algal Biomass Utln 5(1):15–19

    Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy-fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55(5):207–212

    Google Scholar 

  • Safonova E, Kvitko KV, Ienkevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial waste water by selected algae – bacterial consortia. Eng Life Sci 4:347–353

    CAS  Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria – as potential biofertilizer CIBTech. J Microbio 1:20–26

    Google Scholar 

  • Sancho MEM, Castillo JMJ, El Yousfi F (1999) Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture influence of light intensity. Process Biochem 34(8):811–818

    Google Scholar 

  • Satıroğlu N, Yalcınkaya Y, Denizli A, Arica MY, Bektas S, Genc O (2002) Application of NaOH treated Polyporus versicolor for removal of divalent ions of Group IIB elements from synthetic wastewater. Process Biochem 38:65–72

    Google Scholar 

  • Sayre RT, Wagner RE, Sirporanadulsil S, Farias C (2001) Transgenic algae for delivery antigens to animals. Int. Patent Number W.O. 01/98335 A2

    Google Scholar 

  • Schiedlmeier B, Schmitt R, Müller W, Kirk MM, Gruber H, Mages W, Kirk DL (1994) Nuclear transformation of Volvox carteri. Proc Natl Acad Sci U S A 91:5080–5084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiewer S, Volesky B (2000) In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, DC, pp 329–362

    Google Scholar 

  • Schlegel I, Doan NT, de Chazal N, Smith GD (1999) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479

    Google Scholar 

  • Schneider D (2006) Grow your own: would the wide spread adoption of biomass-derived transportation fuels really help the environment. Am Sci 94:408–409

    Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19:127–135

    CAS  Google Scholar 

  • Skulberg OM (2000) Microalgae as a source of bioactive molecules – experience from cyanophyte research. J Appl Phyco 12:341–348

    CAS  Google Scholar 

  • Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243:217–224

    CAS  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian China. Fed Eur Mat Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Spektorova L, Creswell RL, Vaughan D (1997) Closed tubular cultivators: an innovative system for commercial culture of microalgae. World Aquacult 28:39–43

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Subramanaian G, Uma L (1996) Cyanobacteria in pollution control. J Sci Ind Res 55:685–692

    Google Scholar 

  • Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092

    CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    CAS  PubMed  Google Scholar 

  • Teresa MM, Anto’nio AM, Nidia SC (2010) A review: microalgae for biodiesel production and other applications. Renew Sust Energ Rev 14:217–232

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Tilzer M (1983) The importance of fractional light absorbance by photosynthetic pigments for phytoplankton productivity in lake constance. Limnol Oceanogr 28:833–846

    CAS  Google Scholar 

  • Ting YP, Teo WK, Soh CY (1995) Gold uptake by Chlorella vulgaris. J Appl Phycol 7:97–100

    CAS  Google Scholar 

  • Um BH, Kim YS (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7

    CAS  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today & Tomorrow Printers & Publishers, New Delhi

    Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae- the India experience. CFTRI, Mysore, 25

    Google Scholar 

  • Vílchez C, Garbayo I, Lobato MV, Vega JM (1997) Microalgae-mediated chemicals production and wastes removal. Enzyme Microb Technol 20:562–572

    Google Scholar 

  • Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271

    CAS  PubMed  Google Scholar 

  • Volkman JK, Jeffery SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    CAS  Google Scholar 

  • Vonshak A (1997) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London, p 233

    Google Scholar 

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    CAS  PubMed  Google Scholar 

  • Wohlgeschaffen GD, Subba Rao DV, Mann KH (1992) Vat incubator with immersion core illumination—a new, inexpensive setup for mass phytoplankton culture. J Appl Phycol 4:25–29

    Google Scholar 

  • Xu X, Stevens M, Cortie MB (2004) In situ precipitation of gold nanoparticles onto glass for potential architectural applications. J Mater Chem 16:2259–2266

    CAS  Google Scholar 

  • Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502

    Google Scholar 

  • Yuan YV, Carrington MF, Walsh NA (2005) Extracts from dulse (Palmaria palmata) is effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43:1073–1081

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Khatoon, N., Pal, R. (2015). Microalgae in Biotechnological Application: A Commercial Approach. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_2

Download citation

Publish with us

Policies and ethics